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Abstract

The robustness of graph classification models plays
an essential role in providing highly reliable appli-
cations. Previous studies along this line primarily
focus on seeking the stability of the model in terms
of overall data metrics (e.g., accuracy) when facing
data perturbations, such as removing edges. Empir-
ically, we find that these graph classification mod-
els also suffer from semantic bias and confidence
collapse issues, which substantially hinder their
applicability in real-world scenarios. To address
these issues, we present MGRL, a multi-view rep-
resentation learning model for graph classification
tasks that achieves robust results. Firstly, we pro-
poses an instance-view consistency representation
learning method, which utilizes multi-granularity
contrastive learning technique to perform semantic
constraints on instance representations at both the
node and graph levels, thus alleviating the semantic
bias issue. Secondly, we proposes a class-view dis-
criminative representation learning method, which
employs the prototype-driven class distance opti-
mization technique to adjust intra- and inter-class
distances, thereby mitigating the confidence col-
lapse issue. Finally, extensive experiments and
visualizations on eight benchmark dataset demon-
strate the effectiveness of MGRL.

1 Introduction
Graph classification models represented by graph neural net-
works (GNN), which aggregate graph nodes information us-
ing the graph topology for representation learning, have
demonstrated remarkable performance in various graph clas-
sification tasks [Wang et al., 2022; Ma et al., 2022a]. How-
ever, this learning mechanism is susceptible to cascade ef-
fects, making graph classification models highly sensitive to
the graph-structure input [Zhu et al., 2021]. This results
in extremely poor robustness of graph classification models
against noisy data, severely hindering their implementation
in real-world scenarios.
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Figure 1: (a) Semantic bias analysis on DD dataset. The perturbed
graph representations (•) deviate from the original graph represen-
tations (⋆). PCA Visualization of graph representations. (b) Con-
fidence collapse analysis on MUT dataset. The confidence variation
of the prediction results is up to 60% when removing some edges.

To improve the robustness of graph classification models,
researchers have proposed various approaches, such as adver-
sarial attacks based approaches [Zhang et al., 2022; Xu et al.,
2022], graph representation learning based approaches [You
et al., 2020; Zheng et al., 2020], graph structure learning
based approaches [Luo et al., 2021; Song et al., 2022] and
data augmentation based approaches [Wang et al., 2021;
Han et al., 2022], etc. These approaches all rely on driving
the model to converge on the prediction of original and per-
turbed graphs. In consequence, when confronted with noisy
inputs, models trained using the above approaches do not jit-
ter as much in predictive metrics (e.g., accuracy) as models
learned using vanilla graph classification models.

Despite the outstanding performance, we empirically find
that the existing graph classification approaches cannot guar-
antee semantic consistency across perturbed and original
graphs, which we call the semantic bias issue. In detail, for a
robust graph classification model, the semantic embedding of
the perturbed and original graphs should be as close as possi-
ble while maintaining the stability of the metrics. This is cru-
cial for applying graph classification models in some critical
scenarios, such as bioinformatics and healthcare. As shown in
Figure 1 (a), when we add 30% perturbations (adding edges)
to the input graphs of the G-Mixup model [Han et al., 2022],
as observed, the semantic representations of the perturbed
graphs deviates significantly from that of the original graphs.

To deal with the above semantic bias issue, we propose
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an instance-view consistency representation learning method
that performs semantic constraints through multi-granularity
contrastive learning. Specifically, we rely on dropouts in the
neural network to acquire multiple perturbed representations
from the same original graph. Then, we employ unsupervised
contrastive learning [Gao et al., 2021] to maximise the se-
mantic consistency of the multiple perturbed representations
at both the node- and graph-level. Moreover, we introduce an
instance weighting method to avoid semantic damage caused
by false-negative representations in contrastive learning.

Another empirical finding is that the prediction confidence
(i.e. prediction probability) of existing graph classification
models can vary dramatically in response to data perturba-
tions, even leading to a collapse of the prediction results,
which we call the confidence collapse issue. Existing meth-
ods usually simulate perturbation scenarios to evaluate the ro-
bustness of graph classification models. The fact is that sim-
ulations of perturbation scenarios are restricted, and the over-
all metrics stability of the dataset does not guarantee that the
confidence in the data would remain constant. When expe-
riencing complex or varied disturbances in practical circum-
stances, predicting confidence in graph classification models
collapses. As shown in Figure 1 (b), when we remove 30%
edges to the input graphs, for the G-Mix model [Han et al.,
2022] , the prediction confidence changes by up to 60%.

To alleviate the confidence collapse issue, we propose a
class-view discriminative representation learning method that
adjusts intra- and inter-class distances utilizing the prototype-
driven class distance optimization technique. Specifically,
we employ class prototypes, i.e. class centres, as targets to
drive graph representations closer to the class prototype of
the same class and away from other class prototypes. In addi-
tion, we design prototype centre loss to further increase inter-
class spacing by adjusting the distance between prototypes.
In this way, the model can obtain discriminative representa-
tions, thereby increasing its tolerance to perturbed data and
mitigating changes in prediction confidence.

Based upon the above, we effectively integrate these two
solutions into a unified model, resulting in our approach,
Multi-View Graph Representation Learning (MGRL), where
both solutions share the common goal: to learn a robust
graph representation. The motivation behind this model is
that a better representation can lead to more efficient and ro-
bust prediction results. We choose several relevant baselines
from graph classification robustness studies for comparison
on eight benchmark datasets, and the experimental results
validate the effectiveness of MGRL.

Summarily, we make the following contributions: (1) We
empirically discover that existing graph classification mod-
els suffer from semantic bias and confidence collapse issues
when facing data perturbations. (2) We propose a novel
model, MGRL, which alleviates the semantic bias issue via
instance-view consistency representation learning, and miti-
gates the confidence collapse issue via class-view discrimi-
native representation learning, respectively. (3) We demon-
strate the effectiveness of our model through comparison,
ablation, and visualization experiments on eight benchmark
graph classification datasets.

2 Related Work
The recent advances in deep learning have enabled graph
classification models to achieve superior performance on var-
ious graph classification tasks [You et al., 2020; Sun et al.,
2020; Hassani and Ahmadi, 2020; Xu et al., 2021; Chu et al.,
2021; Li et al., 2022b; Ma et al., 2022a; Wang et al., 2022;
Ma et al., 2022b]. These approaches typically rely on a
well-designed model architecture to understand the seman-
tics of graph data. However, the message aggregation mech-
anism of graph classification models makes them highly sen-
sitive to the structure of graph data [Zhang and Zitnik, 2020;
Zhu et al., 2021], resulting in severe challenges to the robust-
ness of graph classification models

Based on the above considerations, researchers have pro-
posed various methods to address the robustness of these
graph models [Geisler et al., 2021; Luo et al., 2021; Wang
et al., 2021; Li et al., 2022a; Xu et al., 2022; Han et al.,
2022]. For example, [Zheng et al., 2020] and [Luo et al.,
2021] enhances the robustness of graph classification mod-
els by removing task-irrelevant edges from graph data. How-
ever, these previous approaches simply sought to maintain the
overall data metric when facing data perturbations. Different
from previous work, we experimentally verify that existing
graph robust classification models are suffering from seman-
tic bias and confidence collapse problems. Then, we explore
the robustness of graph classification models for the first time
from these two perspectives .

3 Methodology
3.1 Problem Formulation
Given a graph G = {V, E}, we denote the node set and
edge set as V = {v1, · · · , vN} and E ⊆ V × V respec-
tively. The associated node feature matrix is represented as
X = {xv|v ∈ V} ∈ R|V|×d, where xv denotes feature for
node v and d is the dimension of input feature. Also, we
leverage A ∈ {0, 1}|V|×|V| to denote the adjacency matrix,
where Ai,j = 1 if (vi, vj) ∈ E . In this paper, we aim to learn
a graph neural encoder F(·) to obtain more robust represen-
tations for downstream graph-level classification task, which
can be formalized as : ŷ = F(G(X,A)).

3.2 Overview
This paper proposes a multi-view graph representation learn-
ing model (named MGRL), which utilizes the instance-view
consistency representation learning method and class-view
discriminative representation learning method to alleviate the
semantic bias and confidence collapse problems, thereby en-
hancing the effectiveness and robustness of graph classifica-
tion models. As illustrated in Figure 2, our model primarily
contains a perturbed graph encoder and two representation
learning modules with different views.

3.3 Perturbed Graph Encoder
In this part, we employ the perturbed graph encoder to obtain
different perturbed representations. For graph data pertur-
bations, most existing works rely on human priors or expert
knowledge [You et al., 2020] to design some specific pertur-
bation strategies. Due to the diversity of data distribution and
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Figure 2: An illustration of our proposed model named MGRL. MGRL performs representation learning from two views to alleviate the
semantic bias and confidence collapse issues, improving the effectiveness and robustness of graph classification models.

downstream tasks, these methods are not always effective and
may even destroy the graph’s semantics [Xia et al., 2022]. To
circumvent this difficulty, we introduce the standard dropout
as perturbations to obtain different graph embeddings. We re-
fer to these embeddings as perturbed representations, which
share the same gold label. This operation is the effective data
perturbation method capable of preserving the samples’ se-
mantics [Gao et al., 2021].

Specifically, given a graph G with N nodes, we pass it
to the graph neural encoder and forward propagate K times.
Since the dropout in the neural network can randomly discard
different neurons, the K perturbed representations we obtain
have some differences. The process can be formalized as:

{hk}Kk=0 = Graph Encoder (G) (1)

where hk = {hn
k ∈ Rd1}Nn=0 denotes the node representa-

tions set of the kth perturbation, hn
k denotes one node repre-

sentation from hk, d1 denotes the dimension of node repre-
sentation and K denotes the number of perturbation.

3.4 Instance-View Consistency Representation
Learning

In this section, we elaborate on our instance-view consis-
tency representation learning approach. It employs a multi-
granularity contrastive learning technique to perform seman-
tic consistency learning at both node and graph levels, allevi-
ating the semantic bias issue in graph classification models.

Node-Level Semantic Consistency Learning. We argue
that a node representation obtained by a robust graph classi-
fication model possesses the following qualities: On the one
hand, each node ought to maintain its semantic stability. That
is, its semantic representation should not change significantly
in response to data perturbations. On the other hand, each
node representation should keep its semantic identity, mean-

ing that different node representations are required to retain a
specific semantic distance in the embedding space.

To achieve the above purpose, inspired by deep graph con-
trastive representation learning [Zhu et al., 2020; Hassani and
Ahmadi, 2020], we introduce the prevalent unsupervised con-
trastive learning [Gao et al., 2021] to constrain node represen-
tation semantics. In detail, we select a node representation
hn
k from the node representation set hk as an anchor. Ac-

cordingly, the corresponding node representations from other
K − 1 perturbed representation set are employed as positive
representations, denoted as hj . Also, we regard the node rep-
resentations other than hn

k and hj among {hk}Kk=0 as negative
node representations, denoted as hneg . Note that our negative
representations contain intra- and inter-graph node represen-
tations simultaneously.

We aim to maximize the semantic consistency between the
anchor and positive node representations while minimizing
the semantic consistency between the anchor and negative
node representations. Therefore, the node-level consistency
representation learning loss is defined as follows:

Lnodel =

− log

∑K
j=1 I[j ̸=k]e

s(hn
k ,hj)/τ1

N−1∑
neg=1

es(h
n
k ,hneg)/τ1

︸ ︷︷ ︸
intra-graph

+

(K−1)(N−1)∑
neg=1

es(h
n
k ,hneg )/τ1

︸ ︷︷ ︸
inter-graph

(2)

where s(, ) is a metric function to measure the semantic sim-
ilarity between different node representations, the I indicates
an indicator function and τ1 is a temperature parameter. In
this paper, we choose cosine similarity as the metric function
following the previous works [Zhu et al., 2020].

Graph-Level Semantic Consistency Learning. With the
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help of node representations, we can employ a READOUT
function to obtain perturbed graph representations:

{Hk}Kk=0 = READOUT({hk}Kk=0) (3)

where the Hk ∈ Rd2 represents the graph representation for
the kth perturbation. We adopt global average pooling as the
READOUT function.

To maintain the semantic consistency of the model at the
graph level, we can directly adopt a similar learning approach
to the node level (Equation 2) for our purpose. Differently, the
anchor is represented as a graph representation Hk, and the
positive representations are the other K − 1 perturbed graph
representations from the same original graph, marked as Hj .
In addition, we refer to all perturbed graphs from other orig-
inal graph representations within the mini-batch as negative
representations, marked as Hneg . We can derive the optimi-
sation objective of the graph-level semantic consistency:

Lgraph = − log

∑K−1
j=1 I[j ̸=k]e

s(Hk,Hj)/τ2∑(M−1)K
neg=1 es(Hk,Hneg )/τ2

(4)

where M indicates the number of graph in a mini-batch .
As observed in Equation 4, the unsupervised contrastive

learning adopted can push away all other negative graph rep-
resentations, regardless of whether they have the same gold
label as the anchor representation. We refer to these incor-
rectly pushed-away representations as false negative repre-
sentations. We argue that this indiscriminate learning mech-
anism would disrupt the semantic representation learning of
the graph encoder. Note that, the above case exists only for
graph-level consistency representation learning. The negative
representations of the anchor representation come from one
mini-batch, which may contain graph representations with the
same label as the anchor. In contrast, the negative represen-
tations of a node all come from an original graph and share
the same label. Considering this, we introduce an instance
weighting method to avoid the detriment caused by false neg-
ative representations for graph-level consistency learning.

More specifically, given an anchor graph representation
Hk, and its label yk, one of anchor’s negative graph repre-
sentations hneg , the negative representation’s label yneg , we
can depend on their gold labels to generate the weight of this
negative representation:

wneg =

{
0, if yneg = yk
1, if yneg ̸= yi

(5)

This way, if a graph representation is the anchor’s false
negative representation, its weight will be set to 0. Con-
versely, the weight is set to 1. To this point, the Equation
4 can be rewritten as follows:

Lgraph = − log

∑K−1
j=1 I[j ̸=k]e

s(Hk,Hj)/τ2∑(M−1)K
neg=1 wneges(Hk,Hneg )/τ2

(6)

where wneg represents the weights of negative representa-
tions.

Datasets Graphs Avg.Nodes Avg.Edges Classes
IB 1000 19.22 96.53 2
IM 1500 65.94 89 3
RB 2000 497.63 497.75 2
CO 5000 2475.78 74.49 3
PR 1113 72.82 39.06 2
DD 1178 715.66 284.32 2
NC 4110 32.30 29.87 2

MUT 4337 30.77 30.32 2

Table 1: The statistics of datasets.

Eventually, our instance-view consistency representation
learning loss can be defined as follows:

Linstance view = α1Lnode + α2Lgraph (7)
where α1 and α2 are trade-off parameters.

3.5 Class-View Discriminative Representation
Learning

In this section, we describe our class-view discriminative rep-
resentation learning approach. It utilizes a prototype-driven
class distance optimization technique to adjust intra- and
inter-class distances, thereby mitigating the confidence col-
lapse issue of graph classification models.

To be specific, given K perturbed graph representations
{Hk}Kk=0, we first map these representations to the class
space through a nonlinear projection network, a one-layer
MLP followed by an activation function:

{zk}Kk=0 = Projection({Hk}Kk=0) (8)

where the zk ∈ Rd3 represents the class space embedding
for the kth perturbed graph representation and d3 denotes the
dimension of the representation.

Then, with the help of the gold label, we can directly obtain
the class prototypes by averaging the representation vectors
with the same label, which can be denoted as:

ci =
1

Ni

Ni∑
i=0

I [yk = yi] zk (9)

where yi and Ni denote the label and number belonging to
class i respectively. yk denotes the gold label of zk.

Since the calculation of class prototypes involves all graph
representations, resulting in huge computational expense.
Therefore, we introduce a moving average method [Ge et al.,
2023] to update the class prototypes. This method can reduce
the computational cost while stabilising training:

ci,t = λ ∗ ci,t + (1− λ) ∗ ci,(t−1) (10)

where ci,t denotes the prototype of class i in the t step and
the λ ∈ (0, 1) is the moving average coefficient.

To optimize intra- and inter-class distances, we urge graph
representations from the same class to approach the class pro-
totype and move away from other class prototypes. We can
learn a more compact class representation by reducing intra-
class distances and increasing inter-class distances. The loss
function can be defined as follows:
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Methods IB IM RB CO PR DD NC MUT
MVGRL [2020] 72.20±1.86 53.73±1.61 - 79.24±1.32 62.14±1.20 65.71±4.09 69.24±1.26 74.38±0.86

InfoGraph [2020] 70.20±2.56 52.93±1.61 74.40±2.35 79.00±0.66 61.78±1.18 69.91±3.58 67.25±1.96 76.09±1.32

GraphCL [2020] 73.20±2.03 54.00±2.34 75.59±2.35 79.12±1.18 61.96±3.41 69.55±3.62 66.71±1.46 77.10±1.14

CSSL [2021] 72.40±1.85 52.79±2.71 75.40±3.12 80.48±0.95 60.71±1.59 70.58±2.60 67.29±0.56 76.78±1.22

VIB-GSL [2022] 72.60±1.85 53.33±1.43 - 79.12±1.00 61.60±0.89 70.15±1.91 65.10±2.00 69.63±1.88

CAL [2022] 72.02±1.72 53.73±2.65 73.60±1.93 81.04±0.46 60.53±2.21 70.92±2.52 70.41±0.71 76.91±0.47

NodeSam [2022] 72.40±2.87 53.46±0.97 74.20±2.11 80.80±1.17 61.78±1.04 70.42±3.37 66.08±1.31 75.67±1.34

G-Mixup [2022] 73.00±1.28 51.33±2.14 74.70±0.74 78.36±0.40 60.71±1.95 70.50±1.97 66.87±0.54 76.32±1.72

MGRL (Ours) 73.79±2.19 55.20±2.28 75.80±1.53 81.96±0.85 62.85±1.33 72.60±0.85 68.32±0.23 77.56±0.47

Table 2: Summary of graph classification results. ’-’ denotes out of memory to complete the experiment.

Lpro =
−1

KM

KM∑
j=1

·Iy=yi · log
e(d(ci,t,zi)/τ3)∑|C|

o=1 Iyi ̸=yo
· e(d(zi,co,t)/τ3)

(11)

where zi belongs to class i, ci,t is the class prototype of class
i, co,t denotes a class prototype of other class, d(·) denotes
the distance measure function, |C| is the number of class and
τ3 denotes the distance scaling factor.

Intuitively, we can adjust the class distances for discrimi-
native representation learning via Equation 11, where the de-
nominator represents the distance between class representa-
tions zi and its corresponding class prototype ci,t, and the nu-
merator represents the distance between class representations
zi and other class prototypes co,t. Generally, the distance be-
tween the zi and co,t is much larger than the distance between
the zi and ci,t, resulting in ed(zi,co,t) (denominator) being sig-
nificantly smaller than ed(ci,t,zi) (numerator). In particular, as
training proceeds, the former keep decreasing and the latter
keep increasing to approach e. This causes the gradient sig-
nal produced by Equation 11 to maintain decreasing, slowing
or even ending training.

To handle this issue, we design prototype centres, the av-
erage vector of the two class prototypes, as virtual represen-
tations. The prototype centre is closer to the class representa-
tions than other class prototypes co,t, so it can provide more
gradient signal for class distance optimisation.

Intuitively, we can directly replace the co,t in Equation 11
by the prototype centre. However, we experimentally find
that utilizing the prototype centre to adjust the prototype dis-
tance can achieve better results. Therefore, we further adjust
the inter-class distance by the following prototype centre loss:

Lcen =
1

|C|

|C|∑
j=1

I[j ̸=i] d(ci,t, c
i,j
cen) (12)

where ci,jcen denotes the prototype centre of class prototype
ci,t and class prototype cj,t Since the cosine function is used
as the distance metric function, we minimize the Equation 12
equivalent to maximizing the distance between the prototype
centre ci,jcen and the prototype ci,t.

Eventually, our loss for class-view discriminative represen-
tation learning can be defined as follows:

Lclass view = α3Lpro + α4Lcen (13)
where α3 and α4 are trade-off parameters.

3.6 Training Objective
To the end, we obtain prediction results for the graph classifi-
cation task employing a forward propagation network, which
consists of a layer of perceptrons, and the standard cross-
entropy loss can be defined as:

Lce = −
|C|∑
i=1

ylog(ŷ) (14)

where the y denotes the gold label.
Finally, the whole objective training loss for our model can

be expressed as follows:

Ltotal(θ) = Linstance view + Lclass view + Lce (15)

where θ denotes the parameters of the model.

4 Experiment
4.1 Datasets
We evaluate our approach on eight benchmark datasets
from TUDataset [Morris et al., 2020], including four so-
cial networks datasets, such as IMDB-BINARY (IB), IMDB-
MULTI (IM), COLLAB (CO) and REDDIT-BINARY (RB),
and four bioinformatics datasets, such as PROTEINS (PR),
DD, NCI1 (NC) and Mutagenicity (MUT). The details of the
statistical results of the datasets are shown in Table 1.

4.2 Implementation Details
We adopt accuracy as an evaluation metric for the graph clas-
sification task and employ GCN [Kipf and Welling, 2017] as
the graph encoder. We randomly select 80% of the data for
the training set, 10% for the validation set, and the remaining
10% for the test set. During the practical implementation, the
batch size is set to 32, the dropout is set to 0.5, the moving
average coefficient λ is set to 0.0001, and the α1, α2, α3, α4

are set to 0.001, 1, 1, 1, respectively. We utilize a grid search
technique to select the other best hyper-parameters with the
learning rate selected from {0.01, 0.05, 0.001, 0.005}, the
temperature parameter τ1, τ2 and τ3 selected from {0.07, 0.1,
0.3, 0.5, 0.7, 0.9} and the K selected from {2,4,6,8,10}. We
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Figure 3: Robustness to semantic consistency on DD. The closer the original graph representations (⋆) and the perturbed graph representa-
tions (•), the better the semantic consistency. Different colors denote different graph samples. PCA Visualization of graph representations.
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Figure 4: Robustness to confidence variation on the MUT dataset.
The smaller the variation of confidence, the better the robustness.

train our model using the Adam optimizer [Kingma and Ba,
2015] and adopt the validation set to perform model tuning.
For comparison with related works, we leverage the open-
source implementation of their original papers. We use Py-
Torch to implement our model on a Linux machine with a
GPU device Tesla V100 SXM2 32 GB. All experimental re-
sults are from an average of five runs.

4.3 Performance Comparison
To evaluate the effectiveness and robustness of our model,
we select some related works for comparison, including three
graph representation learning approaches: MVGRL [Hassani
and Ahmadi, 2020], InfoGraph [Sun et al., 2020], GraphCL
[You et al., 2020], one graph structure learning approach
VIB-GSL [Sun et al., 2022], one graph causal learning ap-
proach CAL [Sui et al., 2022] and three graph data augmenta-
tion approaches CSSL [Zeng and Xie, 2021], NodeSam [Yoo
et al., 2022] and G-Mixup [Han et al., 2022].

As observed in Table 2, our MGRL shows the best re-
sults on most datasets, e.g. 2.84% higher accuracy than the
competitive method GraphCL on the CO dataset and 2.14%
higher accuracy than the model G-Mixup on the PR dataset,
respectively. GraphCL develops four graph-specific data per-
turbation strategies to improve the model’s semantic encod-
ing capability. Unfortunately, these perturbation strategies
may corrupt the original semantic structure of the graph. G-
Mixup employs a mixup method for data expansion but ig-
nores class-level representation learning. In contrast, our ap-
proach not only maintains the semantic integrity of the graph
data but also learns the class discriminative representations
through a prototype-driven distance optimisation technology.

4.4 Robustness Studies
Robustness to semantic consistency. As shown in Figure

3, our model MGRL demonstrates a strong advantage in se-
mantic consistency under various perturbation scenarios. For
instance, when removing edges, the perturbed graph repre-
sentations of the NodeSam and G-Mixup models completely
deviate from the original samples since they only focus on
the overall metric of the data. In contrast, our MGRL utilises
multi-granularity contrastive learning to obtain a consistent
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Figure 5: Comparison of the results of four different model graph-level representation. T-SNE visualizations on the CO dataset.

Model 20% 40% 60% 80%

Removing
Edges

NodeSam 71.60 66.10 60.00 54.00
G-Mixup 72.40 65.69 56.60 51.29
MGRL 73.40 66.50 60.00 54.49

Adding
Edges

NodeSam 71.90 71.20 70.00 68.30
G-Mixup 74.20 73.20 73.30 73.00
MGRL 75.40 75.29 74.20 74.00

Table 3: Robustness to overall metric with different topology cor-
ruption ratios on the RB dataset.

Methods IB CO PR NC
MGRL 73.79 81.96 62.85 68.32
MGRLw/o nodel level 72.60 81.40 61.60 67.88
MGRLw/o graph level 72.60 81.04 60.00 67.88
MGRLw/o instance view 71.60 80.60 59.57 67.61
MGRLw/o prototype center 72.40 81.24 61.42 68.12
MGRLw/o class view 71.40 80.16 60.07 67.13

Table 4: Ablation studies on model components.

representation from the instance perspective.

Robustness to confidence variation. To assess the
model’s ability to stabilise confidence, we compare the abso-
lute value of the difference in prediction confidence between
the original and perturbed graphs for different models. As
shown in the Figure 4, MGRL has the smallest jitter in pre-
diction confidence for the two different perturbation scenar-
ios compared to the other three models. The reason is that our
prototype-driven class distance optimisation method learns a
class-view discriminative representation, thereby improving
the tolerance of the model to perturbed samples. This can
effectively mitigate the confidence collapse issue.

Robustness to overall data metric. We compare the
change in model performance against the perturbations to as-
sess its robustness to the overall data metric. As shown in Ta-
ble 3, our method achieves the best results when faced with
different proportions of perturbations. For example, when re-
moving 20% of the edges, our method obtains an accuracy
of 73.40%, while the two different models NodeSam and G-
Mixup yield an accuracy of 71.60% and 72.40%.

4.5 Ablation Studies
To explore the effectiveness of each model compo-
nent, we design five variants of MGRL, including:
(1) MGRLw/o nodel level removes the nodel-level seman-
tic consistency learning, (2) MGRLw/o graph level cuts
out the graph-level semantic consistency learning, (3)
MGRLw/o instance view does not use the instance-view rep-
resentational learning module, (4) MGRLw/o prototype center

deletes prototype center loss and (5) MGRLw/o class view re-
moves class-view representation learning module.

As observed in Table 4, the removal of any model
component results in a decrease in model performance.
For example, compared to MGRL, the accuracy of
MGRLw/o nodel level and MGRLw/o graph level decrease by
approximately 0.56% and 0.92% on CO dataset respectively,
with MGRLw/o instance view drops even more. We observe
the largest degradation for MGRLw/o class view, suggesting
that class-view representation learning is more important to
the classification performance of the model.

4.6 Graph-Level Representation Studies
To demonstrate that our model can learn discriminative rep-
resentations, we visualize the graph embedding obtained by
the graph encoders of different models on the CO dataset. As
observed in Figure 5, the different class representations of
CSSL, NodeSam and G-Mixup have almost no spacing, and
the representations within the same class are more dispersed.
In contrast, the graph representations learned via MGLR are
more compact and have greater inter-class distances, indicat-
ing that our model can achieve more discriminative represen-
tations. The reason is that we use the prototype-driven class
distance optimization approach to simultaneously force sam-
ples away from other class prototypes and different class pro-
totypes away from each other.

5 Conclusion
This paper proposes the MGRL to improve the performance
and robustness of graph classification models simultaneously.
MGRL utilizes an instance-view consistency representation
learning method and a class-view discriminative represen-
tation learning method to alleviate semantic bias and confi-
dence collapse issues. The experiments on eight benchmark
datasets illustrate the effectiveness of our MGRL.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4043



Acknowledgements
We sincerely thank the reviewers for their insightful com-
ments and valuable suggestions. Thanks for the computing
infrastructure provided by Beijing Advanced Innovation Cen-
ter for Big Data and Brain Computing.

References
[Chu et al., 2021] Guanyi Chu, Xiao Wang, Chuan Shi, and

Xunqiang Jiang. Cuco: Graph representation with cur-
riculum contrastive learning. In Zhi-Hua Zhou, editor,
Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, 19-27 August 2021, pages 2300–2306.
ijcai.org, 2021.

[Gao et al., 2021] Tianyu Gao, Xingcheng Yao, and Danqi
Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November, 2021,
pages 6894–6910. Association for Computational Linguis-
tics, 2021.

[Ge et al., 2023] Ling Ge, Chunming Hu, Guanghui Ma,
Hong Zhang, and Jihong Liu. Prokd: An unsuper-
vised prototypical knowledge distillation network for zero-
resource cross-lingual named entity recognition. CoRR,
abs/2301.08855, 2023.

[Geisler et al., 2021] Simon Geisler, Tobias Schmidt, Hakan
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