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Abstract
Learning disentangled representations with varia-
tional autoencoders (VAEs) is often attributed to the
regularisation component of the loss. In this work,
we highlight the interaction between data and the
reconstruction term of the loss as the main contrib-
utor to disentanglement in VAEs. We show that
standard benchmark datasets have unintended corre-
lations between their subjective ground-truth factors
and perceived axes in the data according to typical
VAE reconstruction losses. Our work exploits this
relationship to provide a theory for what constitutes
an adversarial dataset under a given reconstruction
loss. We verify this by constructing an example
dataset that prevents disentanglement in state-of-the-
art frameworks while maintaining human-intuitive
ground-truth factors. Finally, we re-enable disen-
tanglement by designing an example reconstruction
loss that is once again able to perceive the ground-
truth factors. Our findings demonstrate the subjec-
tive nature of disentanglement and the importance
of considering the interaction between the ground-
truth factors, data and notably, the reconstruction
loss, which is under-recognised in the literature.

1 Introduction
A fundamental challenge in machine learning is discovering
useful representations from high-dimensional data that can
be used to solve subsequent tasks effectively. Recently, deep
learning approaches have showcased the ability of neural net-
works to extract meaningful features from high-dimensional
inputs for tasks such as classification [Krizhevsky et al.,
2012] and reinforcement learning [Mnih et al., 2015]. How-
ever, these learned representations are often not semantically
meaningful, which can negatively impact interpretability, fair-
ness [Locatello et al., 2019a], and downstream task perfor-
mance [Locatello et al., 2019b].

Prior work has therefore argued that it is desirable to learn
a representation that is disentangled [Bengio et al., 2013].
While there is no consensus on what constitutes a disentangled
representation, it is generally agreed that it should be factorised
so that each latent variable corresponds to a single explanatory
variable responsible for generating the data [Burgess et al.,

2017]. For example, a single image from a video game may
be represented by continuous latent variables governing the x
and y positions of the player or enemies, as well as categorical
variables governing their clothing or appearance.

A common approach to discovering these representations
is variational autoencoders (VAEs) [Kingma and Welling,
2014], which are trained on unlabelled data to learn a lower-
dimensional representation capable of reconstructing the input.
However, it has been shown that unsupervised methods can-
not reliably learn representations without the introduction of
supervision or inductive biases [Locatello et al., 2019b]. The
recently introduced Ada-GVAE framework partially overcame
this problem by using a weakly supervised signal to discover
underlying factors [Locatello et al., 2020], but there remains
room for improvement.

Interestingly, VAEs do not have an explicit mechanism that
encourages the learning of disentangled representations, but it
is theorised that this behaviour is related to the regularisation
term and the information bottleneck principle [Burgess et al.,
2017; Mathieu et al., 2019; Rolinek et al., 2019]. However,
despite this hypothesis, there is still no explicit reason for why
the representations learnt by these frameworks should align
with generative factors in the data. Nonetheless, these frame-
works have been shown to produce disentangled representa-
tions when trained on synthetically generated data, as mea-
sured by appropriate metrics [Eastwood and Williams, 2018;
Chen et al., 2018; Zaidi et al., 2020].

In this paper, we aim to understand why VAEs implicitly
learn disentangled representations by investigating the inter-
action between the reconstruction loss of the VAE and the
input data. We provide compelling evidence that disentan-
glement occurs not because of special algorithmic choices or
the regularisation term, but because of how VAEs perceive
distances between observations in the datasets themselves
according to the reconstruction loss, and the fact that these
distances accidentally correlate to the chosen ground-truth
factors generating the data. In particular, we find that stan-
dardised benchmarks are constructed in such a way that they
unintentionally encourage models to learn what appear to be
disentangled representations.

The main, summarised contributions of this paper1 are:

1Our extended paper with factor importance results and full ex-
periment details is available at: https://arxiv.org/abs/2202.13341
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(i) We introduce the concept of perceived distance, in terms
of the VAE reconstruction loss, to measure overlap or
similarity between dataset pairs. We demonstrate that
perceived distances in existing datasets unintentionally
correspond to the distances between ground-truth fac-
tors, and that VAEs learn these distances, explaining why
learnt representations may appear disentangled.

(ii) We provide a technique to visualise the correlation be-
tween perceived distances in the data and ground-truth
factors generating the data. We use this understanding
to provide a theory for what constitutes an adversarial
dataset under a given reconstruction loss.

(iii) We reveal the ineffectiveness of state-of-the-art models
by using our theory to design a simple, example adver-
sarial dataset with constant perceived distance between
elements, over which VAE-based frameworks fail to learn
disentangled representations.

(iv) We provide an example solution to the adversarial dataset
that modifies the reconstruction loss, and thus perceived
distances across the dataset, so that VAE frameworks are
again able to capture the ground-truth factors.

(v) We contribute Disent, a general PyTorch [Paszke et al.,
2017] disentanglement framework, with common models,
metrics, and datasets.2

2 Background
Assume a dataset X =

{
x(0), ...,x(n)

}
is a set of independent

and identically distributed (i.i.d) observations x ∈ RN, gener-
ated by some random process involving an unobserved random
variable z ∈ RD of lower dimensionality D ≪ N. Addition-
ally, the true prior distribution z ∼ p∗(z) and true conditional
distribution x ∼ p∗(x|z) are unknown. Variational autoen-
coders (VAEs) aim to learn this generative process. Unlike
autoencoders (AEs), which consist of an encoder fϕ(x) = z
and decoder gθ(z) = x̂ with weights ϕ and θ, VAEs instead
construct a probabilistic encoder by using the output from the
encoder or inference model to parameterise approximate pos-
terior distributions z ∼ qϕ(z|x). The approximate posterior
is then sampled during training to obtain representations z,
which are then decoded using the generative model to obtain
reconstructions x̂ ∼ pθ(x|z).

A factorised Gaussian encoder [Kingma and Welling,
2014] is commonly used. The posterior is modelled using
a multivariate Gaussian distribution with diagonal covariance
z ∼ N (µϕ(x), σϕ(x)), and the prior is given by the mul-
tivariate normal distribution pθ(z) = N (0, I), with a mean
of 0 and diagonal covariance I. To enable backpropagation,
the reparameterisation trick in Equation (1) is used to sample
from the posterior distribution by offsetting the distribution
means by scaled noise values.3

z = µϕ(x) + σϕ(x)⊙ ϵ, where ϵ ∼ N (0, I) (1)

VAEs maximise the evidence lower bound (ELBO) by min-
imising the loss given by Equation (4). VAE-based approaches

2Disent framework repository: https://github.com/nmichlo/disent.
Code is provided under the MIT license.

3The notation ⊙ represents the element-wise product.

Figure 1: Nearby distributions in the latent space that correspond to
different inputs. The VAE reconstructs a sample from the middle
distributions. Left: weaker regularisation leads to few sampling mis-
takes, resembling a lookup table [Mathieu et al., 2019]. Right: strong
regularisation leads to more reconstruction mistakes, where samples
are attributed to nearby distributions, encouraging reorganisation.

often make slight modifications to this loss [Higgins et al.,
2016; Zhao et al., 2017; Hou et al., 2017; Kumar et al., 2018;
Chen et al., 2018; Kim and Mnih, 2018; Locatello et al.,
2020], but the terms of these modified loss functions can usu-
ally still be grouped into reconstruction and regularisation
components, given by Equations 2 and 3 respectively. The
regularisation term affects the representations learnt by the
encoder, while the reconstruction term improves the outputs
from the decoder. These terms usually contradict in prac-
tice, with strong regularisation leading to worse reconstruc-
tions but often better disentanglement [Higgins et al., 2016;
Burgess et al., 2017].

Lrec(x, x̂) = Eqϕ(z|x) [log pθ(x|z)] (2)

Lreg(x) = −DKL (qϕ(z|x) ∥ pθ(z)) (3)
LVAE(x, x̂) = Lrec(x, x̂) + Lreg(x) (4)

2.1 Random Sampling Reorganises VAE
Embeddings

Disentanglement in VAEs is generally attributed to the regu-
larisation term in Equation (3); however, we highlight that reg-
ularisation only enables the underlying disentanglement mech-
anism. Disentanglement arises rather as a result of VAEs reor-
ganising the latent space to minimise reconstruction mistakes
due to random sampling from the probabilistic encoder during
training. Through this mechanism, a VAE will place similar
observations according to the reconstruction loss in Equa-
tion (2) close together in the latent space [Burgess et al., 2017;
Mathieu et al., 2019; Zietlow et al., 2021], as this action min-
imises sampling errors.

The regularisation term enables this interaction by control-
ling the overlap between latent distributions corresponding
to different inputs. If these distributions overlap sufficiently,
the decoder will often attribute a random sample to an in-
correct input, see Figure 1. Thus, a mistake will be made
during the decoding process, which encourages reorganisation
to minimise the reconstruction error.

3 Related Work
The following works are the most applicable to our research,
falling under three general categories: (i) explanations for
disentanglement, (ii) the role of the reconstruction loss in
disentanglement, and (iii) problems with disentanglement.

Firstly, Burgess et al.[2017] relate VAEs to the information
bottleneck principle. Which explains that random sampling
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leads to a local minimisation of the reconstruction loss which
reorganises the latent space so that points close in pixel space
are close in the latent space. Mathieu et al.[2019] argue that
VAEs do not explicitly encourage disentanglement through
their design. Rather, they provide the explanation that the
diagonal prior typically used in VAEs when combined with
random sampling produces a similar effect to PCA. Our work
takes inspiration from these ideas to develop the theory of
perceived overlap in VAEs, which we use to analyse datasets
and improve or hinder disentanglement.

Secondly, inspired by Burgess et al.[2017] most modern
frameworks offer some way to balance the regularisation and
reconstruction components of the loss, the ControlVAE auto-
mates this process [Shao et al., 2020]. Hou et al.[2017] instead
swap out the reconstruction loss of VAEs for a perceptual loss
function, which can improve the representations learnt by the
model. Zietlow et al.[2021] extend the analysis of Mathieu
et al.[2019]; However, emphasis is placed on constructing
adversarial datasets that hinder disentanglement performance
using a mild transformation, obtained from trained models
which achieve poor disentanglement scores. Our work pro-
vides intuition by constructing an example adversarial dataset
that targets a specific reconstruction loss, and then remedies
this problem by adjusting the loss.

Finally, Locatello et al.[2019b] show that useful represen-
tations cannot be reliably learnt with unsupervised methods,
unless inductive biases are introduced, and Gondal et al.[2019]
show that representations learnt on synthetic data often do not
transfer well to real-world data. Our work investigates the
interplay between the reconstruction loss and data as the main
bias in VAEs, standard choices accidentally disentangle syn-
thetic data.

4 Existing Disentanglement Datasets
Consider the 3D Shapes dataset [Burgess and Kim, 2018] in
Figure 2a, which contains observations of shapes fixed in the
centre of the image with progressively changing attributes or
factors such as size and colour. If, as humans, we are given
unordered observations from a traversal along the size factor
of 3D Shapes, it would be easy to order these observations
using a perceived increase or decrease in the size of the shape.
We might even say that the shapes in the images overlap by
different amounts, considering shapes that are closer in size to
possess more overlap, and thus also considering them as closer
together in terms of distance. This idea naturally extends
to VAEs ordering pairs of observations, and so we seek to
investigate the correspondence between how these frameworks
perceive distances over data points to reorganise the latent
space and the ground-truth factors themselves.

4.1 Dataset Ground-truth Distance
Synthetic datasets [Burgess and Kim, 2018; LeCun et al.,
2004; Matthey et al., 2017; Reed et al., 2015; Gondal et al.,
2019] used for benchmarking disentanglement frameworks are
all generated from F ∈ N+ ground-truth factors of variation.
Each factor i ∈ [F] represents some property about the data
that can be varied,4 and has a dimensionality or size of fi > 0

4The bracket notation [F] gives the natural numbers set {1, ...,F}.

where fi ∈ N+. The set of all factors used for generating the
dataset is written as Y = [f1] × ... × [fF]. The full dataset
is generated from this set of factors using some ground-truth
generative process X = {g∗(y) | y ∈ Y}. Examples of this
generative process are given in Figure 2.

With this construction of synthetic datasets, it is fitting
to describe the ground-truth distances between observations
x(a),x(b) ∈ X using the Manhattan or ℓ1 distance between
their corresponding ground-truth factors y(a),y(b) ∈ Y , 5 as
in Equation (5). It is important to note that this choice may
not be optimal for single factors; rather, ℓ1 distance naturally
aligns with how the datasets are constructed.

dgt(x
(a),x(b)) = ∥y(a) − y(b)∥1. (5)

4.2 VAE Perceived Distance
With the idea of ground-truth distances between observations,
we need a distance measure between observations as perceived
by VAE frameworks. We derive the perceived distance be-
tween dataset elements from the noisy sampling procedure
and the chosen reconstruction loss in a VAE framework.

Let z(b) ∼ qϕ(z|x(a)) be a (possibly incorrect) sample
from the posterior distribution corresponding to some input
element x(a) ∈ X . Since the regularisation term encourages
latent distributions to overlap, this sample z(b) may be incor-
rectly attributed by the decoder to a distribution corresponding
to some other element from the dataset x(b) ∈ X , with recon-
struction x̂(b) ≈ x(b). As the VAE objective consisting of the
regularisation and reconstruction losses is jointly optimised,
the decoder becomes better at reconstructing the inputs. In
an ideal scenario, the inputs map to outputs (x̂ → x), and
reconstructions are samples from our dataset: x̂ ∈ X . While
this is not the case in practice due to the regularisation term,
we derive the perceived distance in Equation (7) from this
assumption that x̂ → x. This allows us to directly compare
the elements x(a),x(b) ∈ X within a dataset using the recon-
struction loss as a distance function:

dpcv(x
(a),x(b)) = lim

x̂→x
Lrec(x

(a), x̂(b)) (6)

= Lrec(x
(a),x(b)). (7)

The perceived distance depends on the choice of reconstruc-
tion loss, which in literature is usually the pixel-wise Mean
Squared Error (MSE) for data that is assumed to be normally
distributed. We assume MSE is used throughout the rest of
this work, unless specified. Note that analyses are similar for
other pixel-wise losses, such as Binary Cross-Entropy (BCE).

4.3 Perceived Distances Correspond to
Ground-Truth

In Section 4.1, all the ground-truth factors of a dataset are
defined as the set Y = [f1] × . . . × [fF]. In Equation (9),
we now define a factor traversal Y(a,i) ⊂ Y as the ordered
set of all the coordinates along a factor i ∈ [F] such that
the set passes through a point y(a) ∈ Y . The number of

5When indexing y(a), z(a),x(a), for convenience a may be an
integer or a ground-truth factor a = y(a)
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elements in the traversal is equal to the size of the chosen factor
|Y(a,i)| = fi, and each element in the traversal generates the
same traversal ∀y(b) ∈ Y(a,i), Y(a,i) = Y(b,i). Figure 2 gives
examples of traversals.

Y(a,i) = . . .×
{
y
(a)
i−1

}
× [fi]×

{
y
(a)
i+1

}
× . . . (8)

=
{
(. . . , y

(a)
i−1, j, y

(a)
i+1, . . .) | ∀j ∈ [fi]

}
(9)

We compute the distance matrix D̃(a,i) ∈ Rfi×fi , for some
distance function d, between pairwise elements along a factor
traversal Y(a,i), written in Equation (10) using matrix notation.

D̃(a,i) =
(
d(x(u),x(v))

)
∈ Rfi×fi ∀u, v ∈ Y(a,i) (10)

To examine the ground-truth factors within our datasets, we
compute the average distance matrix D(i) = Ea∈Y [D̃

(a,i)]
for each factor i ∈ [F]. We plot these results in Figure 3 for
both the ground-truth distance dgt and perceived distance dpcv.
It is immediately obvious from these plots that the ground-
truth distances and the distances perceived by a VAE may
accidentally correspond.

Finally, we relate our work to Burgess et al.[2017] by out-
lining a direct approach in our extended paper in Footnote 1
for computing relative factor importance using perceived dis-
tances. A factor is considered more important if a VAE prefers
to learn it before another factor.

4.4 VAEs Learn Perceived Distances
We compute distance matrices over a trained β-VAE at various
levels of the network, including the representation layer and re-
constructions. At each level of the VAE, the learnt distances all
correspond to the original perceived distances already present
within the dataset, see Figure 4. Since VAEs reorganise the
embedding space according to the perceived distances, and
noting results from Section 4.3, VAEs may discover structures
that are similar to the underlying ground-truth factors.

Our results in Figures 3 and 4 provide empirical evidence
that VAEs mimic the distances already present in the dataset
according to the reconstruction loss. To appear disentangled
if the goal is factored representations, individual latent units
will need to encode portions of the distances that correspond
to factors within the data. However, it is known that VAEs
with diagonal priors are rotationally invariant [Mathieu et al.,
2019], thus the same distances between the means µ of latent

distributions can be learnt for any arbitrary rotation of the
latent space. This suggests that VAEs disentangle by accident,
since ground-truth factors naturally correspond with distances
in the dataset. If these perceived distances were to change
such that they do not correspond to the ground-truth distances,
VAEs might not be able to learn meaningful representations.
This is highlighted by the fact that VAEs are already known to
perform poorly on real-world data [Gondal et al., 2019].

5 Adversarial Datasets
In the previous section, we highlighted the striking similarity
between the ground-truth distances and the perceived distances
between observations in synthetic ground-truth datasets. This
suggests that disentanglement occurs because latent distances
accidentally correspond to ground-truth distances, when the
latent space is reorganised to minimise reconstruction errors
and perceived distances from the data space are captured.

Consider the example of a single chess piece moving across
a chess board; there are no smooth transitions between grid
points, since the piece is only valid when placed in the middle
of squares. We describe such a dataset as having constant
perceived distance. This property is adversarial in nature as
it is impossible for a VAE to order these observations using
pixel-wise perceived distance. It is tempting to think that a
harder case is if the perceived distances do not correspond
to ground-truth distances; however, an (incorrect) ordering
can then still be found. Existing datasets such as Cars3D
already satisfy this incorrect ordering, which may explain the
generally worse disentanglement performance compared to
other datasets, see Figure 3.

Formally, we say that a dataset has constant overlap when
the pairwise distances over factor traversals are all equal. Let
i ∈ [F] be a factor and y(a) ∈ Y be ground-truth coordi-
nate vector. Then, for all elements over the factor traversal
∀y(b) ∈ Y(a,i)/

{
y(a)

}
, the corresponding perceived distance

is constant such that dpcv(x(a),x(b)) = Cf with Cf ∈ R and
Cf > 0. Along factor traversals in such a dataset, no distinct
ordering of elements can be found when a VAE tries to min-
imise the sampling error over the reconstruction loss. Going
forward, we only consider the case where ∀f ∈ [F], Cf = C
for some C > 0.

5.1 Example XYSquares Adversarial Dataset
Taking inspiration from the chess piece example, we design a
synthetic adversarial dataset called XYSquares (See Figure 5)

(a) 3D Shapes (b) Cars3D (c) dSprites (d) NORB

Figure 2: Common existing datasets used to benchmark disentanglement frameworks. These synthetic datasets are generated from ground-truth
factors. Columns: represent a traversal along a single factor.
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(a) 3D Shapes (b) Cars3D (c) dSprites (d) NORB

Figure 3: Distances in the ground-truth factor space naturally correspond to distances in the data space for current synthetic datasets. Top Row:
Average ground-truth distance (ℓ1) matrices over factor traversals. Bottom Row: Average pixel-wise perceived distance (MSE) matrices over
observations from the same factor traversals. Columns: Different ground-truth factors within each dataset.

Figure 4: β-VAEs learn similar distances between observations at all
levels of the network depending on the reconstruction loss. Rows:
Different factors of the Cars3D dataset (Top to bottom: elevation,
azimuth, car type), Columns: Distance matrices computed over factor
traversals (Left to right: ground-truth distances, perceived distances
between observations, ℓ2 distances over latent distribution means, KL
divergences between latent distributions, perceived distances between
reconstructions).

that specifically targets VAEs that use a pixel-wise recon-
struction loss such as MSE, resulting in constant perceived
distances. The dataset consists of three 8 × 8 pixel squares
in a world of size of 64 × 64. This leaves 8 grid positions
along each axis without any pixel-wise overlap. The three
squares are each assigned a colour according to R (1, 0, 0),
G (0, 1, 0) and B (0, 0, 1) to avoid any channel-wise overlap.
With 6 ground-truth factors (three squares moving along two
axes), each with 8 possible values, this gives a total dataset
size of 86 = 262144 observations. In the rightmost column
of Figure 8, we validate that this leads to constant perceived
distances between observation pairs in factor traversals.

Figure 5: Columns represent ground-truth factor traversals over our
adversarial XYSquares dataset. Pixel-wise losses measure constant
values along these traversals.

5.2 Experimental Setup
We now investigate the performance of VAEs on our new
dataset. In particular, we use the unsupervised β-VAE [Hig-
gins et al., 2016] and the state-of-the-art weakly supervised
Ada-GVAE [Locatello et al., 2020]. The β-VAE scales the
VAE regularisation term with a coefficient β > 0, while the
Ada-GVAE breaks symmetry and encourages shared latent
variables between pairs of observations. This is achieved by
averaging together latent distributions between observation
pairs that are estimated to remain unchanged when the KL di-
vergence is below some threshold. We note that if the weakly
supervised Ada-GVAE performs poorly, then it is highly likely
that another unsupervised method will also perform poorly.

We use the same Adam [Kingma and Ba, 2015] opti-
miser and convolutional neural architecture as Burgess et
al.[2017]. To evaluate disentangled representations, we use
the MIG [Chen et al., 2018] (Mutual Information Gap) and
DCI Disentanglement [Eastwood and Williams, 2018] scores.
MIG measures the mutual information between the highest
and second highest latent units for each factor, and DCI Dis-
entanglement measures how much each latent unit captures a
ground-truth factor using a predictive model.

Finally, we perform an extensive hyper-parameter grid
search for existing frameworks and datasets before running
our own experiments. Hyperparameters include the learning
rate, size of the latent dimension, training steps, batch size
and β values. See our extended paper in Footnote 1 for further
details on all experiments conducted throughout the remainder
of the paper.

5.3 Example Adversarial Dataset Results
Figure 6 shows that the disentanglement performance over
XYSquares is extremely poor compared to existing datasets,
even with the state-of-the-art Ada-GVAE. We are concerned
only with the maximum score obtained for each model and
dataset, as the graph is plotted over the hyper-parameter
sweeps. This validates our adversarial dataset hypothesis in
Section 5. Not only is the disentanglement performance poor,
but much smaller values for β are needed when tuning the reg-
ularisation loss. Example latent traversals from a VAE trained
over the adversarial dataset are given in Figure 7, results are
far from disentangled and do not correspond in any way to the
ground-truth factors in Figure 5.

5.4 Example of Varying Levels of Overlap
We have examined the effect of training on existing datasets
with significant amounts of overlap, as well as our own adver-
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Figure 6: Densities over repeated runs for the attained MIG scores
(left) and DCI Disentanglement scores (right) for the weakly-
supervised Ada-GVAE (Left half of densities) and β-VAE (Right
half of densities). XYSquares hurts the disentanglement performance
significantly. Quartiles are marked with horizontal lines. We sweep
over β values and latent dimension sizes. See our extended paper in
Footnote 1 for details.

Figure 7: VAEs with pixel-wise losses fail to learn disentangled rep-
resentations over the XYSquares dataset. Rows show latent traversals
over a subset of latent units of a β-VAE. Varying one latent unit does
not have an obvious effect or correspond to ground-truth factors.

sarial dataset with constant perceived distances according to
pixel-wise losses. However, we have not investigated increas-
ing levels of overlap in datasets, or rather reducing perceived
between observations that are also close in ground-truth factor
space. To do so, we modify XYSquares by decreasing the
spacing between grid points while keeping the number of grid
points constant along each factor, ensuring the dataset size
remains fixed at 86 = 262144 observations.

The original adversarial dataset, with a spacing of 8, has
a constant distance value of dpcv(x(a),x(b)) = C8. As the
spacing s decreases from 8 → 1 over the datasets, the proba-
bility increases that any two observations re-sampled along a
single factor traversal overlap p(dpcv(x

(a),x(b)) < C8) and
should thus be placed closer together in the latent space. More
overlap leads to more unique distance values which in turn
allows for easier ordering of data points. We visualise this
concept using ground-truth and perceived distance matrices in
Figure 8.

We verify our statements through the experimental results
in Figure 9, where the β-VAE and Ada-GVAE are trained
on these datasets. As the spacing decreases and overlap is
introduced, the disentanglement performance improves, since
it is easier for a VAE to introduce an ordering over repre-
sentations. Even for the XYSquares dataset with 1 pixel of
overlap between grid points, an ordering of elements along
factor traversals can be induced. However, the probability of a
VAE encountering these scenarios in the latent space due to

Figure 8: Ground-truth distance matrices (far left) and pixel-wise
perceived distance matrices (left to right) over factor traversals. The
spacing between grid-points of XYSquares decreases from 8px to
1px, which improves the correlation between perceived distances and
ground-truth distances.

Figure 9: XYSquares spacing vs disentanglment score (MIG – left,
DCI Disentanglement – right). Decreasing (left to right) levels of
overlap leads to decreased disentanglement performance. Each ex-
periment is repeated 5 times with previously tuned hyper-parameters.
See our extended paper in Footnote 1 for further details.

random sampling is low, and thus it is still not always easy for
the model to learn disentangled representations over such a
dataset.

6 Example of Introducing Overlap
The previous section focused on increasing overlap by chang-
ing the underlying dataset; however, this still does not solve
the case for the original XYSquares dataset with constant
pixel-wise perceived distance. Throughout this paper, we have
provided evidence that VAEs disentangle based on their re-
construction loss, which happens to align with ground-truth
factors of variation in common benchmark datasets. This
correspondence is not optimal for all tasks and we propose
that this leads to the poor disentanglement performance in
these settings. Our solution is to choose a loss function that
modifies perceived distances such that they also correspond to
ground-truth distances.

The new loss function we choose cannot be a pixel-wise
approach, as this does not capture the distances due to the
spatial nature of the XYSquares dataset. For the sake of sim-
plicity in this example, we convert the existing pixel-wise loss
function into a spatially aware loss function by introducing
a differentiable augmentation to its inputs. An appropriate
augmentation for our dataset is a channel-wise box blur. The
problem, however, is that the decoder needs to be able to re-
construct the data, and so purely replacing the pixel-wise loss
with the augmented loss may not succeed. Rather, in Equa-
tion (11), we append the augmented term to the existing loss
and scale it by a constant α > 0.

LOverlap(x, x̂) = Lrec(x, x̂) + αLrec(blur(x), blur(x̂))
(11)
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Figure 10: β-VAEs learn similar distances between observations. Top
row: box blur augmented MSE. Bottom row: pixel-wise MSE loss.
Columns: Distance matrices computed over factor traversals. All
factors of XYSquares have the same statistics. This plot is constructed
in a similar way to Figure 4.

6.1 Example Augmented Loss Experiments

We choose a channel-wise box blur for our loss function with
a radius of 31, or a total kernel size of 63× 63. We efficiently
implement large filters using the Fast Fourier Transform. The
size of the filter ensures that if two observations have active
pixels on opposite sides of the images, then overlap will still be
introduced between them. We set α = 632, while this appears
large, a box blur kernel is normalised so that the sum of all
its values is 1. We accordingly update our perceived distance
measure and evaluate the new distances over the XYSquares
dataset for each factor in Figure 10 after training and tuning
β-VAEs.

Finally, in Figure 11, we compare the performance of the
spatially-aware loss function to the original pixel-wise loss.
Our new loss significantly improves the disentanglement per-
formance over the adversarial dataset. This is because it allows
our models to capture perceived distances between observa-
tions that align with the ground-truth factors.

While our choice of loss may not be optimal for disentan-
glement of these specific x and y factors from our adversarial
dataset, disentanglement results are impressive. This is impor-
tant because it provides the intuition that changing the loss
function changes perceived distances and affects the ability of
VAE frameworks to learn disentangled representations. We
leave learning or identification of optimal reconstruction losses
for different datasets, to improve disentanglement, as future
work.

Figure 11: MIG and DCI scores for Ada-GVAE and β-VAE using
the MSE loss and our modified loss function. Introducing a spa-
tially aware loss function allows us to capture ground-truth distances
between observations and allows the models to disentangle the adver-
sarial XYSquares dataset.

7 Considerations for Disentanglement
Research

We highlight the similarity between introducing overlap in
Section 6 through the reconstruction loss function and varying
levels of overlap in Section 5.4 through modifications to the
construction of the dataset itself. Both methods aim to improve
disentanglement by changing perceived distances to better
correspond to the ground-truth factors, while keeping ground-
truth factors fixed.

The problem is that ground-truth factors can indeed change,
and this choice, while at the discretion of the researcher, is
largely ignored in literature. For example, a researcher may
choose RGB, HSV or categorical representations for colours,
they may choose binary or continuous encodings for positions,
or they may split or merge various factors together.

As our work shows, disentanglement is largely dependent
on the chosen reconstruction loss and not special algorithmic
choices. Obtaining improved disentanglement results under
current VAE disentanglement frameworks will ultimately re-
quire supervision from the researcher to adjust perceived dis-
tances of the model to the task at hand. This contradicts the
current notion that unsupervised and weakly supervised disen-
tanglement methods can automatically uncover these human
interpretable ground-truth factors [Higgins et al., 2016].

Ultimately, benchmarking against synthetic datasets with
already subjective ground-truth factors will thus always remain
problematic. There are infinitely many datasets with infinitely
many choices as to what constitutes their ground-truth factors.
Accurate disentanglement through future methods may need
general world knowledge so that the methods can adapt to the
task at hand.

8 Conclusion
In this paper, we demonstrated that there are fundamental char-
acteristics of existing datasets that encourage VAEs to learn
disentangled representations. Our work provides a theory
for how VAEs perceive distances between pairs of observa-
tions in datasets. We used this theory to provide intuition
by constructing an adversarial dataset for pixel-wise losses
over-which state-of-the-art VAEs fail to learn disentangled
representations. Finally, we re-enabled disentanglement over
the example adversarial dataset by again adjusting perceived
distances, instead through a change of the VAE reconstruction
loss to capture the ground-truth factors of the dataset.

Our results highlight issues in current representation learn-
ing approaches. We find that the focus on regularisation for dis-
entanglement is misplaced, rather, disentanglement is largely
accidental, and careful choice of the reconstruction loss or data
is needed to capture the ultimately subjective ground-truth fac-
tors. This is impractical in the real world, since perceived
distances cannot be a prerequisite for true disentanglement.
More advanced methods are therefore required that can un-
cover true meaning within the data.
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