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Abstract
Understanding other agents is a key challenge in
constructing artificial social agents. Current works
focus on centralised training, wherein agents are al-
lowed to know all the information about others and
the environmental state during training. In contrast,
this work studies decentralised training, wherein
agents must learn the model of other agents in order
to cooperate with them under partially-observable
conditions, even during training, i.e. learning
agents are myopic. The intrinsic motivation for ar-
tificial agents is modelled on the concept of human
social motivation that entices humans to meet and
understand each other, especially when experien-
cing a utility loss. Our intrinsic motivation encour-
ages agents to stay near each other to obtain better
observations and construct a model of others. They
do so when their model of other agents is poor,
or the overall task performance is bad during the
learning phase. This simple but effective method
facilitates the processes of modelling others, res-
ulting in the improvement of the performance in
cooperative tasks significantly. Our experiments
demonstrate that the socially-motivated agent can
model others better and promote cooperation across
different tasks.

1 Introduction
Humans understand others through active social interactions
[Tomasello, 2009]. When we cooperate with others to
achieve a goal and when experiencing a setback, we seek in-
formation about the ambient context and our partners [Swann
et al., 1981]. Thus modelling others is integral to our world-
view.

Modelling other agents is challenging [Albrecht and Stone,
2018; Rabinowitz et al., 2018], wherein the modelling pro-
cess is often realised as an auxiliary task for each agent (1)
to either construct a better representation of the observation
[He et al., 2016; Hernandez-Leal et al., 2019; Zintgraf et al.,
2019; Papoudakis et al., 2021; Ndousse et al., 2021; Gu et
al., 2021] or (2) to generate predictions that are useful for the
decision-making process (e.g. actions [Jaques et al., 2019;
Lowe et al., 2017; Wen et al., 2021], goals [Raileanu et al.,

2018], or individual or joint value functions [Chitnis et al.,
2019]). However, these methods are based on the centralised-
training decentralised-execution (CTDE) paradigm wherein
agents are trained under the assumption that they know all
about the world’s states and can access others’ observations.
A recent approach [Papoudakis et al., 2021] has pioneered to
model other agents using partial observations; however, this
work still makes a strong assumption about using the other
agents’ observations during training. Thus the problem of
modelling other agents without access to their full observa-
tion is still open.

In human research, the hypothesis that we tend to be more
active in seeking information about others when losing con-
trol is supported by evidence in [Swann et al., 1981]. Inspired
by this, we address the aforementioned open problem by in-
troducing a new social reward that encourages agents to meet
each other so that they can do better modelling. Prior works
have investigated social motivation (SM) to facilitate cooper-
ative learning in multi-agent reinforcement learning [Khan et
al., 2018; Zheng et al., 2021]. Influencing others was em-
ployed as intrinsic motivation (IM) in [Jaques et al., 2019]
to improve cooperation, and the method was extended to de-
centralised training by learning a model of other agents to
generate a prediction of the others’ next action. The work
in [Jaques et al., 2019] refers to staying nearby each other
as a side-effect of encouraging them to model each other. In
other words, encouraging agents to model others will impli-
citly bring agents near each other. However, in reality, the
agents often ignore modelling other agents since it is a diffi-
cult auxiliary task.

In this work, we propose intrinsic motivation for artificial
agents to encourage them to meet and understand others, es-
pecially when experiencing a utility loss. If the agents meet
often, they can collect more relevant information about oth-
ers, and this simple but effective method underpins our mod-
elling. Furthermore, better understanding between agents sig-
nificantly improves the performance in cooperative tasks.

The intrinsic reward, also called social motivation (SM),
is proportional to the number of time steps in which agents
are in each other’s vicinity. This contributes to the final re-
ward by being modulated through an adaptive social mo-
tivation coefficient (ASMC). This ASMC encourages agents
to come close when the task performance reduces or if
it evaluates that its model of the other agent is incorrect.
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Our setting is decentralised training; that is, the agent can
only access its own observations. We demonstrate our res-
ults on a) a partial-observable decentralised-training variant
of the speaker-listener game [Mordatch and Abbeel, 2018;
Papoudakis et al., 2021], in which agents need to under-
stand each other to communicate goals and achieve high
team performance; and b) Facilitating cooperation in a level-
based foraging environment [Christianos et al., 2020]—a
mixed cooperative-competitive setting, in which each agent
can choose to be selfish or cooperative in a group. We show
empirically that such socially motivated agents are effective
in cooperative and mixed cooperative-competitive settings,
outperforming agents with other types of intrinsic motiva-
tions.

Our contributions are a) Formulation of a novel, explicit so-
cial motivator for agents that is controlled adaptively by both
the team performance and the efficacy of modelling the other
agents; b) Demonstration that agents using our social motiv-
ation outperform agents that are not socially-motivated both
in cooperative and mixed cooperative-competitive settings.

2 Related Works
2.1 Modelling Other Agents (MOA)
The work in [Papoudakis et al., 2021] predicts the observa-
tion of others during the training phase; however, it is only a
feasible assumption in the centralised-training paradigm. In
[Ndousse et al., 2021], authors augmented the agent with the
reconstruction loss as an auxiliary task to construct the latent
space that is useful for predicting the next state of the environ-
ment. This is similar to the local version in [Papoudakis et al.,
2021], and both, as we show in our experiments, do not be-
have well in the decentralised-training setting. Dealing with
modelling under the partial observability problem, in [Gu
et al., 2021], the authors derived a mutual information loss
between the policy representation and the teammates’ situ-
ation to learn the encoder. However, it requires the states of
the environment during training, while we do not provide any
information except the observation of the agent itself, the so-
called decentralised-training paradigm [Zhang et al., 2018;
Iqbal and Sha, 2019; Qu et al., 2019; Tan, 1993; de Witt et
al., 2020]. We are the first work that to apply the bias in
humans about social motivation [Pittman and Pittman, 1980;
Swann et al., 1981] to explicitly encourage agents to stay
close to each other to facilitate learning the model of other
agents under partial observability and decentralised-training
scenario. Current research employs the model of others for
different purposes: (1) as a condition to the decision-making
(DM) process either by using features generated by the model
of others or using the prediction such as action, intention, and
goal, etc.—the neural networks that generate this informa-
tion will not be trained by signals from the DM networks
[Papoudakis et al., 2021; Papoudakis and Albrecht, 2020;
Hernandez-Leal et al., 2019]; (2) as an auxiliary task to
get a better representation of the observation (shared fea-
ture with the DM networks)—the model of others networks
and the DM networks will share parameters at some levels
[Hernandez-Leal et al., 2019]; or (3) as a mechanism to pro-
duce more training signals during the learning phase—the

model of others is used to shape rewards to learn social in-
fluence [Jaques et al., 2019]. Our work is in line with the first
type of model in the listed methods, which contains different
modules for modelling other agents and for its policy.

2.2 Social Motivation for Cooperative RL
The phenomenon that a human is intrinsically motivated by
novel situations is conveyed early in [White, 1959; Berlyne,
1966]. In artificial intelligence (AI), it is first known as com-
putational curiosity [Schmidhuber, 1990; Meyer and Wilson,
1991], and is an emerging research in developmental robotics
[Oudeyer and Kaplan, 2009]. In developing single reinforce-
ment learning (RL) agents, intrinsic motivation is considered
as an instrument to develop exploratory behaviour [Barto,
2013]. The first line is count-based intrinsic motivation, in
which the novelty of a state or observation is evaluated by
counting the number of time steps that the agents visit a par-
ticular state or receive the observation from the environment
[Bellemare et al., 2016; Tang et al., 2017]. The second line
is surprise-based intrinsic motivation [Pathak et al., 2017].
This method motivates the agent to explore states and obser-
vations that are unpredictable. Although encouraging agents
to meet others more can also be considered a form of curiosity
about the world since it tends to reveal novel and interesting
information about others—the world surrounding the agents,
our proposed method and results also highlight the import-
ance of focusing on other agents in social scenarios, as dis-
cussed in [Lerer and Peysakhovich, 2017; Eccles et al., 2019;
Hughes et al., 2018].

Finding computational social intrinsic motivation is a fruit-
ful direction [Khan et al., 2018]. In MARL, research mainly
focuses on utilising agents with surprise-based intrinsic mo-
tivation. The idea of intrinsic motivation from single RL is
directly applied to MARL by learning the individual intrinsic
reward for each agent to stimulate them to behave differently,
leading to diversity amongst the group [Du et al., 2019]. In
[Chitnis et al., 2019], each agent predicts the effects of joint
actions and regularises each agent’s action toward this joint
action to achieve the collaborative task. Different to ours,
this method only works in the centralised-training paradigm.
Episodic memory is also employed to compute the social in-
trinsic motivation [Zheng et al., 2021]. Prior works also pro-
posed intrinsic motivation in MARL which is inspired by hu-
man social interaction. In [Jaques et al., 2019], authors pro-
posed to motivate agents to act in a way that can change the
action of others. In this work, the model of others is to gen-
erate actions of others to make causal inferences in the in-
dependent training. Utilising the model of other agents to
generate action to execute the causal reasoning will implicitly
cause the agents to be close to each other, i.e. staying near
others is considered to be a side-effect of the regulariser to
predict others’ actions. However, it is merely the case in real-
ity since if the agents cannot soon find the benefit of learning
from others, they will not focus on the modelling task. We,
instead, argue that in the decentralised-training paradigm, it
is crucial to explicitly encourage agents to be visible to each
other. In other words, our agents are intrinsically motivated
to model others. Being an orthogonal method, our reward can
also help to increase the performance of agents proposed in
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Figure 1: Modelling other agents with social motivation. During
training, the controlled agent ( ) learns to represent its opponent’s
policy ( ) by reconstructing its observation and by predicting the
other agent’s actions based on its history τ i

t . The controlled agent is
motivated to meet other agents by the reward rst that is proportional
to the number of time steps it sees an agent in its field of view ( ).
rst is further regularised by the adaptive social motivation coefficient
(αsm

t ) that increases if the task reward ( ) diminishes or its model
of others ( ) is poor.

[Jaques et al., 2019] and different count-based and surprise-
based intrinsic motivations. In social robotics, this is known
as social drive [Breazeal, 2004], where the robots have their
own threshold for a social level to manage social interaction.

Other methods, such as [Wang et al., 2019; Fayad and
Ibrahim, 2021], proposed intrinsic motivation to act so that
the controlled agent can encourage other agents to explore
the states of the world. In these methods, the intrinsic re-
ward was defined by the difference between the action value
and the counterfactual function. Zhang et al. [Zhang et al.,
2021] proposed an intrinsic reward to guide agents’ attention
toward different regions and tasks to improve performance in
dyadic collaborative manipulation. In [Yoo et al., 2022], au-
thors implemented the idea of influence-seeking behaviour in
social agents by directly measuring the variance of the ex-
pectation of return. Agents can also be motivated to behave
more predictably to their partners [Ma et al., 2022]. The work
in [Hussenot et al., 2021] proposed intrinsic motivation to
learn exploratory behaviours from the demonstrations of oth-
ers. However, none of the listed methods considers the mo-
tivation to learn about others.

3 Preliminaries
3.1 Problem Formulation
We consider Multi-Agent Partially Observable Markov De-
cision Process (MA-POMDP) settings defined by the tuple
⟨S, T ,Aj ,R,Ωj , N⟩ with N is the number of agents and
j ∈ {1 . . . N} is the index of jth agent in the environment.
Here, S is the world state space, Ωj is a function that map
the world state space to the observation space Oj character-
ised by each agent Ωj : S 7→ Oj , T is the transition function
that returns the next state of the environment based on the
current state and the joint action of all agents in the environ-
ment a ∈ AN = ×j∈{1...N}Aj , i.e. T : S × AN 7→ S .
At time step t, the agent jth will observe the observation
ojt ∈ Oj and take an action ajt ∈ Aj . Each agent receives
the reward Rj : S × AN 7→ R and tries to maximise the ex-

Figure 2: The modelling-and-meeting relationship. The average
number of meetings in one episode during training (left) and the
action prediction loss when the agent sees the others (right). MOA
is agent with model of others but not socially motivated, MOA + SM
is agent with model of others and socially motivated, and No MOA
is agent without model of others.

pected return E
[∑T

t=0 γ
trjt

]
, where T is the episode length

and γ ∈ (0, 1) is the discount factor. In this paper, we deal
with the decentralised-training problem in which the agents
can only access its observation ojt during training [Tan, 1993;
de Witt et al., 2020]. In our setting, we aim to find the op-
timal policy πi of a controlled agent ith, denoted as the su-
perscript i, to work in a group with other agents, denoted as
the superscript −i, sampled from a fixed set of L policies
Π−i =

{
π−i
l

}
l=1...L

. In case the controlled agent maintains
a model of other agents, we also refer to other agents (−i)
as modelled agents. The solution to our problem is finding
the optimal policy πi

∗ of the controlled agent i over the fixed
policy set of opponents Π−i, i.e.

πi
∗ = argmaxπiEπ−i∼Π−i

[
T∑

t=0

γtrit

]
.

3.2 Policy Conditioned on Other’s Policy
Representation

The general framework of the policy that is conditioned
on the representation of other’s policy is shown in Fig-
ure 1. The controlled agent i encodes its history τ it ={〈

oit′ , a
i
t′

〉}
t′=1...t−1

, which possibly contains information
about others, into a vector that represents the policy of the
modelled agents by a neural network zt = encoder(τ it ). To
capture the temporal characteristic of the trajectory, we used
the long-short term memory for implementing the encoder.
This vector zt is used as an input to the decoder for recon-
structing the observations of the controlled agent i (õit) and
predicting the actions of modelled agents −i (ã−i

t ). These are
two objectives to train the agents to have the ability to model
other agents (included in Lmoa) that are specified in the Sec-
tion 4.3. In the decentralised-training paradigm, agents will
lack information about others due to the partial observation
in the training phase. Hence, the implicit assumption to con-
struct a good model about others is that the observation of the
agent i contains the trajectory of other agents −i. The more
times the agent i sees others, the more data and information
it can obtain to build a sufficient model about others.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4084



3.3 The Modelling-and-Meeting Relationship
This section analyses the relationship between modelling
other agents and the number of meetings between agents,
e.g. staying close and observing others. Figure 2 shows a
partial result from agents trained in our experiment. In this
figure, MOA stands for agents with the model of others but
not socially motivated, MOA + SM denotes agents with the
model of others and socially motivated, and No MOA denotes
agents without the model of others. MOA does not meet oth-
ers more than No MOA (purple and green curves are almost
at the same level). However, explicitly encouraging agents
to meet others, MOA + SM, increases the number of meet-
ing other agents (see Fig. 2 (left), the blue curve is at higher
level than both the purple and green curves) and improves the
performance in modelling other agents (see Fig. 2 (right), the
blue bar is lower than the green bar).

To improve the performance in cooperative tasks that re-
quires an understanding of others, we need to address two
failure cases for agents under partial observability: (1) Case
1: reward hacking while the agent only focuses on learning
to reduce the loss in reconstructing the scene, e.g. going to a
region without others. In this situation, because there are no
other agents, it can enjoy the pleasure of predicting the static
environment well (but not beneficial to the primary task); (2)
Case 2: ignorance of modelling other agents. During the
earlier stages, agents can learn the policy to optimise the por-
tion of task rewards that do not require coordination.

4 Approach
4.1 Motivation to Understand Others
In the previous section, we argue that the challenge of mod-
elling other agents under partial observation in decentralised
training mainly comes from the fact that agents can not see
each other during training. This causes the lack of training
signal, which may block agents from learning a good model
of others. Therefore, we propose to motivate the agent toward
actions that can facilitate social interaction, e.g. meeting each
other more during the training stage.

At every time step t, to motivate the controlled agent to
meet others, we augment its reward with rst . The reward rst
is proportional to the number of frames that the agent ob-
serves others in a set of experiences during a partial traject-
ory τt′:t′+Tb

=
{〈

oit, a
i
t

〉}
t=t′,...,t′+Tb

where Tb < T is the
length of counting window. Specifically, if the controlled
agent i has an experience

〈
oit, a

i
t

〉
∈ τt′:t′+Tb

, we first count
the number of observations that the agent observes others

cst =
∑

τt′:t′+Tb

I
[
−i in oit

]
=

∑
τt′:t′+Tb

I
[ ]

with I [·] is an indicator function. We then compute the reward
for stimulating agents to meet by

rst = eKsc
s
t

where Ks is a coefficient that regulates how the augmented
reward is sensitive to having other in the field of view.

4.2 Seeking Information
The controlled agent is motivated to see others if there is a
decrease in its rewards. In other words, the agent actively
seeks information to improve its model of others when the
returns are reduced and focuses on refining the policy when
the model about others is adequate. This allows the agent
to simultaneously find the optimal policy while maintaining
the motivation to understand other agents since the controlled
agent can come back to model other agents at any time dur-
ing the training process. To model this adaptive behaviour,
we introduce an adaptive social motivation coefficient αsm

t
(ASMC), which is updated every window of episodes. In a
window of episodes wth, we denote the minimum reward re-
ceived as rmin

w . The coefficient is defined as a non-linear func-
tion, which is formally written as

αsm
t =

1

2
(tanh (−Kw∆w) + 1)︸ ︷︷ ︸

task performance

−Kmlogp
(
a−i
t |τt

)︸ ︷︷ ︸
ability to model other

where ∆w = rmin
w − rmin

w−1 is the difference between the min-
imum returns in two consecutive window of episodes, Kw

indicates the sensitive of the decrease in returns to αsm
t , and

Km weights the importance of modelling other agents.
The first term will increase when the task performance re-

duces. Intuitively, the second term encourages the agent to
follow and model other agents if it evaluates that the model of
the other is incorrect, which is computed by the accuracy of
predicting other agents’ actions. Furthermore, this adaptive
social motivation coefficient αsm

t is employed to regularise
the effect of the reward for encouraging agents to meet rst ,
which is detailed in the next section.

4.3 The Social Motivation Reward
The social reward based on social motivation is constructed
as

rsmt = αsm
t rst .

Because both αsm
t and rst are positive, it implies that our ap-

proach only encourages the controlled agent to meet others.
We balance between understanding others and achieving high
task performance. This social reward differs from other in-
trinsic social rewards proposed in the literature: it focuses on
improving the model of other agents under partial observation
in decentralised training.

The agents will optimise the reward

rt = rit + rsmt = rit + αsm
t rst ,

which includes: the primary task reward (rit) and the pro-
posed social motivation reward (rsmt ). During the training
process, the modelling other agent process is encouraged by
minimising the loss Lmoa = Lobs+Lact with the observation
reconstruction loss and the action prediction loss are:

Lobs =
(
oit − õit

)2
, and

Lact = −logp
(
a−i
t |τt

)
,

respectively.
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5 Experiments
We conduct a suite of experiments to show:

• The effect of our method on the performance of agents
with/without the model of others, hence, proving the im-
provement is via better modelling of other agents;

• That our proposed approach outperforms other intrinsic
motivations in the cooperative settings; and,

• The analysis of the effect of social motivation on cooper-
ation in the mixed cooperative-competitive setting.

5.1 Cooperative Setting
Setting: The Speaker-Listener Game
The speaker-listener game is a cooperative game in which two
agents need to communicate to achieve goals. This game has
two agents—one is the controlled agent, the other is the mod-
elled agent—and three landmarks in different colours. Based
on the world observation and the message received from its
teammate, the agent will take physical actions to navigate to
the landmark (goal) that has the same colour as the agent.
Since each agent cannot observe its own colour, it relies on
the message sent by its teammate. Because the game is co-
operative, the reward that the controlled agent tries to optim-
ise is the team reward, i.e. the average of the negative dis-
tances between team members and their goals. Each epis-
ode is terminated after 25 timesteps or 50 timesteps. In the
original implementation of the game and a recent investiga-
tion in modelling other agents [Mordatch and Abbeel, 2018;
Papoudakis et al., 2021], both agents can share observations
during training. We study a variant with the changes in the
observability of agents during both training and execution. In
our setting, agents are in partial observability in both training
and execution, which means they can only observe others’
positions if others are in their field of view.

Training Other Agents
Before joining the training process, the agent navigation
policy of −i is pre-trained with a fixed communication policy.
We trained 10 agents by MADDPG [Lowe et al., 2017] until
they converged to the optimal navigation behaviour. We con-
ducted 5 self-play games to train 10 agents, i.e. each game
has two agents with the same architecture but different initial-
isation. The reward is given as the original speaker-listener
games described in [Mordatch and Abbeel, 2018]. This stage
of pre-training a set of fixed policies is well-known for re-
search in modelling other agents [Papoudakis et al., 2021].

Baselines
In figures onward, the socially-motivated agent with the ad-
aptive social motivation coefficient (ASMC) αsm

t is denoted
as SM + ASMC. The socially-motivated agent without the
ASMC is denoted as SM and has fixed αsm = 0.001. We
optimised the controlled agent’s policy using A2C algorithm
and set hyper-parameters Ks = 5.0,Kw = 15.0,Km = 0.1.

We compare the performances of our agents which have
the model of others and are socially motivated (SM and SM
+ ASMC) to (1) agents without model of other agents (No
MOA), (2) agents that are socially motivated but without
model of other agents (No MOA + SM), and (3) agents with

model of other agents but are not socially motivated (LIAM-
Local) [Papoudakis et al., 2021]. We also considered dif-
ferent intrinsic motivations, including count-based IM (IC),
surprised-based IM (IS), and causal influence (CI) agents.

Motivation to Model Other Agents Helps Improve Team
Performance in Cooperative Tasks
Figure 3 (left column) shows team rewards, i.e. the perform-
ance of learning agents in the speaker-listener task. To ana-
lyse the effects of social motivation on the performance, we
decompose the team reward into the reward to the modelled
agent rmodelled (the negative distance between the controlled
agent and its goal) in Fig. 3 (middle column), and the reward
to the controlled agent rcontrolled (between the modelled agent
and its goal) in Fig. 3 (right column). First, agents without the
model of others perform worse (black and purple curves) be-
cause this task requires understanding others’ interpretation
of messages. Second, the agent augmented with the model of
others behaves better than the agent without the model of oth-
ers (the green curve); however, it is far worse than agents with
models that are encouraged to meet others (the blue and red
curves). The improvement mainly comes from the perform-
ance of the modelled agent, i.e. the controlled agent sends
more precise messages that match with the understanding of
the modelled agent. Third, our SM can only help in case the
agent has the model of other agents. Otherwise, it could not
increase the performance of the team, i.e. our new social re-
ward is to stimulate agents to understand each other. Finally,
agents with ASMC achieve higher team returns than agents
with fixed αsm. Figure 4 shows that our agents can predict
the other’s actions significantly better than the agent without
social motivation. Results as shown in Fig. 4 and 3 (right
column) empirically prove that the improvement in the team
reward and the reward received by our agent is due to the
ability to model others better.

Comparison with Other Intrinsic Motivations (IMs)
Encouraging agents to meet reduces the reconstruction loss
compared to the cases where agents are motivated by other
IMs such as novelty-based, surprise-based, and influence-
based intrinsic motivation. This is shown in Table 1.

5.2 Mixed Cooperative-Competitive Setting
Setting: The Level-based Foraging
In this setting, two agents try to collect four apples in the grid
world. Agents can only partially observe the world. Each
agent has its level, as does each apple. They can pick an
apple if the sum of all agents’ levels is higher than the apple
level. If there is an apple nearby at the lower level, one can
choose to collect this apple instead of cooperating with others
individually. Therefore, this setting has mixed cooperative-
competitive properties, i.e. one can selfishly collect the apple
with a lower level and cooperate with others only to collect
the high-level apples. Understanding whether the opponent is
cooperative or competitive is critical to achieving high per-
formance in this environment. One episode is terminated
when all apples are collected or the episode length (50 time
steps) is reached.
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(a) Episode Length is 25

(b) Episode Length is 50

Figure 3: Performance in decentralised-training cooperative setting (higher is better). The team return (left column), the return received
by the modelled agent (middle column), and the return received by the controlled agent (right column) vs. the training timestep when trained
with the episode length T = 25 and T = 50. Social motivation reward significantly helps to improve the performance of the agent in a
cooperative task, especially when the episode lasts long and there is enough time for agents to regulate between acting to model and acting
towards achieving a high reward in the task. With the adaptive social motivation coefficient, the agent can balance between learning to
achieve its own task (higher performance in the middle figure) and learning to model other agents, leading to obtaining higher team rewards.
Encouraging agents to meet others does not help to increase the performance if agents do not have models about others.

Team Reward (↑) rmodelled (↑) rcontrolled (↑) Act. Prediction Loss (↓)
No MOA −17.724± 0.051 −14.841± 0.039 −20.608± 0.074

No MOA + SM −17.660± 0.052 −14.905± 0.035 −20.413± 0.076
LIAM-Local −17.385± 0.068 −14.757± 0.060 −20.013± 0.080 1.224± 0.031

Intrinsic Count (IC) −17.263± 0.117 −14.649± 0.054 −19.877± 0.180 1.164± 0.052
Intrinsic Surprise (IS) −17.262± 0.079 −14.701± 0.040 −19.824± 0.140 1.206± 0.039
Causal Inference (CI) −17.181± 0.065 −14.649± 0.055 −19.738± 0.102 1.118± 0.042

Social Motivation (SM) −16.822± 0.094 −14.619± 0.069 −19.026± 0.121 0.844± 0.048
SM + ASMC −16.636± 0.036 −14.487± 0.026 −18.785± 0.050 0.861± 0.033

IC + SM −16.563± 0.142 −14.438± 0.088 −18.688± 0.196 0.759± 0.031
IS + SM −16.671± 0.075 −14.543± 0.042 −18.800± 0.126 0.763± 0.030
CI + SM −16.531± 0.072 −14.424± 0.046 −18.639± 0.102 0.786± 0.027

IC + SM + ASMC −16.782± 0.068 −14.518± 0.051 −19.046± 0.100 0.892± 0.034
IS + SM + ASMC −16.626± 0.046 −14.444± 0.049 −18.808± 0.072 0.846± 0.022
CI + SM + ASMC −16.709± 0.124 −14.528± 0.063 −18.891± 0.189 0.852± 0.028

Table 1: Quantitative comparison on cooperative task. rcontrolled shows the performance of the modelled agent, which indicates how well
our agent can model the other to help the other to achieve the task. rmodelled, instead, shows the performance of the controlled agent on
achieving its own task. The rmodelled does not different across all, but the rcontrolled are different. This illustrates the improvement from the
team reward actually comes from the improvement in modelling other agents. We also could observe the lower action prediction loss while
social motivation is applied.
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(b) Episode Length 50

Figure 4: Losses to encourage modelling other agents during
training (lower is better). The socially-motivated agent can learn
to better reconstruct observations and predict the actions of others.

Training Other Agents
Our population of fixed policy agents are diverse in the social
value orientations (SVO) [Murphy and Ackermann, 2014;
Griesinger and Livingston Jr, 1973; Liebrand and McClin-
tock, 1988]—a measure in social psychology to indicate a
preference of weighting rewards between themselves and oth-
ers. In AI, this concept was applied to estimate human so-
cial behaviour in driving to build better autonomous vehicles
[Schwarting et al., 2019] or to create distinct populations of
artificial social learning agents in [McKee et al., 2020]. We
pre-trained 5 pairs of agents with different SVOs θSV O ∈
{0◦, 30◦, 45◦, 60◦, 90◦}. For example, θSV O = 0◦, the agent
is individualistic, while agent with θSV O = 90◦ is altruistic.

Evaluation
In this setting, to analyse the effect of the social motivation
and the adaptive social motivation coefficient, we paired up
trained agents with different opponents that have different
SVOs. Each pair of agents is evaluated in environments in
which there are different numbers of heavy apples—apples
that have a higher level than all agents and require agents to
cooperate in collecting successfully. The difference in the
number of heavy apples will create a different demand for
cooperation to achieve in this social environment. If there are
no heavy apples, agents do not need to cooperate. However,
if all apples are heavy, they need to cooperate in collecting.

Results
In Figure 5, we compare the difference between pairs
of methods (left column) SM and LIAM-Local, (middle
column) SM+ASMC and LIAM-Local, and (right column)
SM+ASMC and SM, for increasing levels of θSV O, taking
agents from individualistic to fully altruistic in different en-
vironment condition. First, we observe that having SM will
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Figure 5: Pairwise comparison of performance between meth-
ods in mixed cooperative-competitive setting for (a) the oppon-
ent and (b) the controlled agent, with different levels of altru-
ism. Comparison between (left column) SM and LIAM-Local,
(middle column) SM+ASMC and LIAM-Local, and (right column)
SM+ASMC and SM. Each cell shows the difference between the re-
turn obtained by agents in environments with differing numbers of
heavy apples. The lighter colour means a higher difference.

improve the performance of agents that have the model of oth-
ers. This is shown by the fact that there are no negative values
in the left and middle columns in Fig. 5(a,b). Second, when
paired up with individualist agents (low SVOs), the difference
between the performance of the socially-motivated agent and
the agent without SM is higher when there are fewer heavy
apples. It is because in an environment where every apple
can be collected, if our agent realises that the other agent is
individualist, it will try to collect as much as possible; hence
modelling the opponent in earlier steps of the episode im-
proves the performance of the controlled agent. In contrast, if
all apples in the environment are heavy, then our agent cannot
collect more apples because of the opponent’s uncooperative
behaviour. Third, interestingly, agents motivated to meet oth-
ers during training improves the performance of their partner
who has high SVO, i.e. who is altruistic and willing to co-
operate, as shown in Fig. 5(a), leading to higher performance
of the team. Finally, the ASMC helps to increase the reward
of our agents when it is matched with more selfish agents in
environments that do not require cooperation.

6 Conclusions
We propose a novel social motivation for artificial agents
under partial observation in decentralised training. Differ-
ent from other intrinsic motivations, we explicitly motivate
agents to meet others to acquire information to build a better
model about others, especially when the agent experiences a
decrease in its performance or if the model of others is poor
during training. We empirically show that this social motiva-
tion increases the performance of agents in cooperative tasks.
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