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Abstract
Generalization beyond in-domain experience to
out-of-distribution data is of paramount signifi-
cance in the AI domain. Of late, state-of-the-art
Visual Question Answering (VQA) models have
shown impressive performance on in-domain data,
partially due to the language priors bias which,
however, hinders the generalization ability in prac-
tice. This paper attempts to provide new insights
into the influence of language modality on VQA
performance from an empirical study perspective.
To achieve this, we conducted a series of experi-
ments on six models. The results of these experi-
ments revealed that, 1) apart from prior bias caused
by question types, there is a notable influence
of postfix-related bias in inducing biases, and 2)
training VQA models with word-sequence-related
variant questions demonstrated improved perfor-
mance on the out-of-distribution benchmark, and
the LXMERT even achieved a 10-point gain with-
out adopting any debiasing methods. We delved
into the underlying reasons behind these experi-
mental results and put forward some simple propos-
als to reduce the models’ dependency on language
priors. The experimental results demonstrated the
effectiveness of our proposed method in improv-
ing performance on the out-of-distribution bench-
mark, VQA-CPv2. We hope this study can inspire
novel insights for future research on designing bias-
reduction approaches.

1 Introduction
Visuo-linguistic understanding is an important research topic
in the field of multimodal machine learning. Vision Lan-
guage (V+L) tasks, such as image caption [Karpathy and
Fei-Fei, 2015], referring expression comprehension [Yu et
al., 2016], natural language for visual reasoning [Suhr et
al., 2017], visual entailment [Xie et al., 2018], visual com-
monsense reasoning [Zellers et al., 2019], and visual ques-
tion answering (VQA) [Antol et al., 2015; Anderson et al.,

∗Corresponding author.

G-T answer: gray

Variant-1: is the man's shirt what color?

Question: what color is the man's shirt?

Variant-2: the man's shirt color is what?
Model prediction: gray

Model prediction: gray

Model prediction: gray

Figure 1: Here is an example that demonstrates the robustness of
VQA models to question disturbances. The purple font is used to
indicate the question type. Two kinds of disturbances are shown:
Variant-1, which involves exchanging the positions of the prefix
(question type) and postfix; and Variant-2, which randomly reorders
the words.

2018], serve as proxy tasks for evaluating the capacity of a
multi-modal system to achieve high-level multimodal learn-
ing and deeper visuo-linguistic understanding. This paper
specifically focuses on the VQA task, which has been a long-
standing challenge in the domains of computer vision and
natural language processing. Previous research has shown
that many state-of-the-art VQA models tend to rely exces-
sively on easily learnable language priors instead of effec-
tively reasoning based on the visual content within the im-
ages during training [Goyal et al., 2017; Jing et al., 2020;
Wen et al., 2021]. As a result, these VQA models can achieve
decent performance on in-distribution data by capturing su-
perficial correlations in the language modality. However,
over-reliance on language priors makes these models fragile
and results in poor performance on out-of-distribution (OOD)
data in real-world scenarios.

Recently, a broad variety of bias-reduction methods [Ca-
dene et al., 2019; Clark et al., 2019; Liang et al., 2021;
Han et al., 2021; Yulei et al., 2021] have been proposed,
among which the commonly used approach involves adding
a branch to capture language bias. For example, [Ramakr-
ishnan et al., 2018] trained a base VQA model along with
a question-only adversary to mitigate bias representation by
allowing the question-only model to perform poorly. How-
ever, some of these methods may introduce extra costs during
the inference stage. Besides, [Yulei et al., 2021] proposed
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a novel counterfactual inference framework based on causal
effects. [Han et al., 2021] introduced a greedy gradient en-
semble de-bias framework, where the bias model is forced to
overfit the biased data distribution, allowing the base model to
learn the general patterns. Apart from the model design side,
various methods from the data end have been developed to re-
duce language priors bias. For instance, HINT [Selvaraju et
al., 2019] and SCR [Wu and Mooney, 2019] utilize additional
annotated data to enhance models’ visual-grounding capacity
for better performance 1. CSS [Chen et al., 2020a] generated
counterfactual samples by masking the decisive word in the
question or crucial object in the image. [Liang et al., 2020]
further improved the CSS method by employing contrastive
learning to focus on the crucial elements. Thanks to the pre-
vious research on debiasing, some progress has been made
in addressing the issue of language priors. However, in this
paper, we aim to provide novel insights regarding the impact
of language modality on performance in VQA tasks through
empirical investigations. In this regard, we conducted a series
of confirmatory experimental analysis to investigate prior bias
issues. The empirical evidence revealed that, in comparison
to the co-occurrence between question types and answers, the
co-occurrence between objects and answers could potentially
be a more significant factor in contributing to language bias.
We also examine the state-of-the-art VQA models’ robust-
ness to word-sequence-related disturbance of questions and
found that models are resistant to such disturbance to some
extent. Figure 1 shows an example. Moreover, we found
that VQA models trained with variant questions demonstrated
higher accuracy in the OOD evaluation. We conducted exper-
iments to analyze the reasons behind this phenomenon and
based on these findings, we proposed bias-reduction propos-
als to alleviate the language bias issue. To sum up, the main
contributions of this paper are as follows:

• We provide empirical evidence demonstrating that lan-
guage bias in VQA tasks is not solely caused by the
co-occurrence of question types and answers, but also
by the co-occurrence of visually-grounded concepts and
answers, with the latter having a greater impact. Addi-
tionally, there may also exist multimodal bias.

• Extensive experiments reveal that models trained with
variant questions outperform those trained with original
questions. This improvement is attributed to the disrup-
tions in the word sequence of questions, which impact
the model’s learning of prior knowledge related to ques-
tion types, leading to reduced bias-dependency learning.

• In light of the above findings, we propose de-biasing
methods into multiple base VQA models by incorporat-
ing variant questions during training. The experimen-
tal results demonstrate significant performance enhance-
ments on the VQA-CPv2 benchmark for the base models
equipped with our proposed method.

1However, it has been revealed that the accuracy improvements
of these methods result from the regularization effects [Shrestha et
al., 2020]. Besides, collecting such human annotations can be ex-
pensive and burdensome.

2 Related Work

Visual Question Answering. As a high-level task that
bridges the gap between computer vision and natural lan-
guage processing, VQA [Antol et al., 2015; Yang et al., 2016;
Agrawal et al., 2017; Anderson et al., 2018; Kim et al., 2018;
Liu et al., 2022a] has received considerable attention from
both the computer vision and natural language processing
communities. Since the proposal of bottom-up and top-down
(UpDn) attention mechanism [Anderson et al., 2018], it has
been the de-facto standard baseline for the VQA task. [Kim et
al., 2018] proposed a bilinear attention network (BAN) to ef-
ficiently compute multimodal representations. Additionally,
[Yu et al., 2019] developed a deep modular co-attention net-
work (MCAN) on top of the powerful Transformer [Vaswani
et al., 2017], which models both intra- and inter-modal in-
teractions simultaneously, making it a powerful baseline for
the VQA task. In addition, pre-trained Vision Language
Models (VLMs) [Tan and Bansal, 2019; Chen et al., 2020b;
Su et al., 2020; Zhang et al., 2021; Zeng et al., 2022;
Wang et al., 2022] that learn high-level multi-modal represen-
tations from large-scale data via a variety of pre-training tasks
have demonstrated state-of-the-art performance in many Vi-
sion Language (V+L) tasks, including VQA. For instance, the
DPT model [Liu et al., 2022b], which aligns the objectives
of the pre-trained visual-language model with the specific re-
quirements of the VQA task, has demonstrated improved gen-
eralizability and performance.

Bias and Robustness in VQA. The study of robustness in
VQA is an important topic, particularly the issue of language
bias, which significantly affects the OOD performance in
VQA task. As such, an increasing number of bias-mitigation
approaches [Cadene et al., 2019; Guo et al., 2021; Chen et
al., 2020a; Han et al., 2021] and benchmarks [Agrawal et al.,
2017; Agrawal et al., 2018; Kervadec et al., 2021a] have been
proposed. [Cadene et al., 2019] built a question-only branch
to capture the unwanted regularities by dynamically adjust-
ing the loss. [Clark et al., 2019] trained a naive model that
relied solely on dataset biases and then used an ensemble ap-
proach to incorporate a robust model that focused on other
generalized patterns. [Liang et al., 2021] added a question-
only branch to measure the intensity of language priors and
then reshaped the objective function based on the loss of the
question-only branch. [Lao et al., 2021] proposed the LP-
Focal loss, which endows the cross-entropy loss with sample-
level loss re-weights by building a question-only branch to
capture language priors. [Yang et al., 2021] proposed a CCB
method by building content and context branches to focus on
local content and global context, respectively. On top of these
two branches, a joint loss function with language bias opti-
mizes the prediction. [Kervadec et al., 2021a] suggested that
the standard evaluation metric is misleading by the overall
accuracy under the unbalanced concepts and questions, thus
they proposed a new benchmark consisting of a dataset and
a new evaluation metric. Apart from the language bias issue,
[Gokhale et al., 2020] found that VQA models could answer
single questions but struggled to answer logical compositions
of multiple such questions. Therefore, they constructed an
augmentation of the VQA dataset by collecting logical com-
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position questions, including negation, conjunction, disjunc-
tion, and antonyms. [Shah et al., 2019] proposed a train-
ing scheme by exploiting cycle consistency to regularize the
training process, which allows VQA models to become robust
to linguistic variations. Besides, [Kervadec et al., 2021b] ar-
gued that noise and uncertainties in visual inputs are the main
bottlenecks in VQA, which prevent the successful learning of
reasoning capacities. SwapMix [Gupta et al., 2022] investi-
gated the robustness of VQA models from the perspective of
visual context. They swapped some irrelevant objects in the
image and found VQA models are not robust for such visual
context perturbation, indicating models over-rely on them to
make predictions.

3 Empirical Analysis
3.1 Task Definition
The VQA task has been cast as a classification problem,
where given an image, I and a question Q, the objective is
to predict an answer â from all the candidate answers A. This
prediction is based on the image content and the context of
the question. Without loss of generality, a VQA model can
be formulated as a function transformation F : (Q, I) 7→ A.
The objective function p(.) is formulated as:

â = argmax
a∈A

p(a|Q, I; Θ), (1)

where Θ denotes the model parameters. The common solu-
tion to predict the answer is via the cross-entropy loss

Lce = − 1

N

N∑
i

ailog(pi)

pi = Softmax(Whi + b),

(2)

where N denotes the number of samples, W and b are the
learnable matrix and bias, hi is the fused multi-modal feature.

3.2 Revisiting Question in VQA
Which Contributes More Bias?
The language priors bias in the VQA task is generally at-
tributed to the co-occurrence of certain question-types and an-
swers [Agrawal et al., 2018], and most bias-reduction meth-
ods are designed based on this hypothesis. In this section, we
attempt to verify that the language bias issue is not solely due
to the co-occurrence of question-types and answers through
empirical analysis. To begin, we decompose the question
into two parts: the question type (also known as the prefix)
and the concepts (which include objects and other visually-
grounded words or phrases in the question, also known as the
postfix). We then examine their respective contributions to
the final accuracy of the model. Intuitively, it is difficult to
answer a question correctly if the question is incomplete (i.e.,
only the prefix or postfix is given). If an incomplete ques-
tion is answered correctly, it suggests that there is some co-
occurrence correlation between the incomplete portion and
the corresponding answer, which indicates the presence of
bias. These experiment settings are as follows. Dataset:
We selected the widely-used VQAv2 benchmark [Goyal et
al., 2017] and its OOD benchmark, VQA-CPv2 [Agrawal

et al., 2018]. Base VQA models: In the experiment, we
chose the most frequently used base models in the VQA task,
which include attention-based models such as SAN [Yang et
al., 2016] and UpDn [Anderson et al., 2018]), bilinear atten-
tion network, BAN 2 [Kim et al., 2018], co-attention based
model, MCAN [Yu et al., 2019]), multi-modal pre-trained
model, LXMERT [Tan and Bansal, 2019] and a question-only
model (henceforth, Q-only). Among them, the LXMERT
model uses BERT [Devlin et al., 2019] as the question en-
coder, while the other models use LSTM [Hochreiter and
Schmidhuber, 1997] or GRU [Cho et al., 2014] as question
encoders. Validation mode: We conducted two types of ver-
ification. The first type involved training models with original
questions and evaluating them on either the prefix or postfix.
The second type involved training models with either prefix
or postfix and evaluating them on the original questions. All
text inputs were padded or truncated to a fixed length using a
predetermined character. Moreover, for the sake of simplic-
ity in implementation, we used the questions with the prefix
removed as postfix in our experiments.

The experimental results are presented in Table 1, and sev-
eral important findings can be derived from these results.
The results for the first type of verification mode are dis-
played in columns highlighted with a light green background
in Table 1. We observed that all models with postfix inputs
achieved better performance than those with prefix inputs on
the VQA-CPv2 test split, particularly for the BAN, LXMERT,
and MCAN models, where the postfix inputs contributed sig-
nificantly more than the prefix. On the VQAv2 dataset, the
BAN, LXMERT, and MCAN models performed slightly bet-
ter with postfix inputs, while the prefix inputs resulted in bet-
ter performance for the remaining models. The experimental
results for the second type of verification mode are shown in
columns against a light yellow background in Table 1. As
can be seen, when models were trained with the postfix, their
accuracy performances were better than those trained with
the prefix for all the models except MCAN, which showed
slightly lower performance on both VQA-CPv2 and VQAv2.
The results from both verification modes in Table 1 indicate
that postfix contribute more to the bias issue than prefixes.
Moreover, we noticed that certain models (e.g., Q-only, UpDn
and LXMERT) trained with postfix even outperformed those
trained with the complete question on the VQA-CPv2 dataset.
We conjecture that this could be attributed to the differences
in question-type distributions between the training and test
splits. Consequently, some models that do not learn informa-
tion about the prefix of questions during the training process
may exhibit better performance on VQA-CPv2.

Are There Any Other Kinds of Bias?
Also, Table 1 demonstrates that all models perform better
than the Q-only model. Apart from the difference in model
design, the Q-only model only takes the question as input,
whereas others incorporate both the question and image as
inputs. This allows these models to potentially depend on the
co-occurrence between visual objects in the image and the
keywords in the question. Therefore, we speculate that the
bias issue exists not only in the language modality but also

2We use the 4-layers version of BAN in this paper.
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Model VQA-CPv2 VQAv2
ques pre-train post-train pre-test post-test ques pre-train post-train pre-test post-test

Q-only 21.37 17.34 24.87 15.22 16.85 45.09 33.33 35.68 31.73 25.9
SAN 40.7 22.75 40.35 20.07 27.16 62.78 44.93 50.71 39.9 36.77
UpDn 41.53 26.12 42.3 21.7 28.75 65.56 45.19 52.65 40.78 37.32
BAN 41.73 26.6 28.18 22.18 37.76 67.07 37.28 37.87 39.17 41.19

LXMERT 40.96 28.44 43.61 21.05 36.77 64.51 44.91 54.37 40.24 42.23
MCAN 43.73 26.31 26.11 20.5 34.41 68.65 41.46 40.56 39.17 39.87

Table 1: The performance in terms of accuracy (Acc. %) on the VQA-CPv2 test split and VQAv2 validation split. The ques columns indicate
models trained and tested with original question; pre-train and post-train denote models trained on prefix and postfix respectively and tested
on the original question; pre-test and post-test refer to models trained on the original question and tested on the prefix and postfix respectively.
The better results are bold. Note that the LXMERT was fine-tuned for 10 epochs.

across multimodalities due to the fact that incomplete ques-
tions cannot be answered.

The Robustness to Variant Question
Robustness has always been a crucial concern in machine
learning. [Cui et al., 2022] proposed a novel pre-training
paradigm for language models. Their approach involves pre-
dicting the original order of perturbed words in text, aiming
to enhance the model’s resilience to the text modality and
improve its ability to comprehend text semantics. Inspired
by their work, this paper investigated the robustness of state-
of-the-art VQA models to disruptions in the questions. To
achieve this, a series of confirmatory experiments were con-
ducted to evaluate the robustness of VQA models. Specifi-
cally, we conducted the experiments on three types of vari-
ant questions. Given a question such as “what color is the
flower?” with the prefix “what color is”, we defined three
kinds of variant questions as follows:

• variant-1: = Concate(postfix, prefix), i.e., exchange
the positions of the prefix and postfix, resulting in a vari-
ant such as “the flower what color is?”

• variant-2: = Random(question), i.e., shuffle the order of
the words in the question randomly, resulting one of the
possibilities as “the flower color is what?”

• variant-3: = Inverse(question), i.e., inverse the word
sequence of the question, making the variant as “flower
the is color what?”

To evaluate the model’s robustness to the variant questions,
we define an evaluation metric Rob as follow,

%Rob =
Nrv,rq

Nrq
× 100%, (3)

where Nrq represents the number of correct predictions for
the original questions, and Nrv,rq the number of both original
questions and their variants that are correctly answered.

For the selection of VQA models, we have used the ones
chosen in the previous section. The experimental results are
presented in Table 2. The results on the VQAv2 validation
split demonstrate that all models experience varying degrees
of performance degradation when evaluated on variant ques-
tions. Among them, MCAN and LXMERT show comparable
performance on this in-distribution dataset. Furthermore, the

Model tested with VQA-CPv2 VQAv2
Acc. Rob Acc. Rob

Q-only

question 21.37 – 45.09 –
variant-1 18.30 59.5 33.26 61.7
variant-2 19.10 53.6 32.73 61.0
variant-3 15.22 40.7 27.75 51.0

SAN

question 40.7 – 62.78 –
variant-1 30.42 61.6 50.05 73.7
variant-2 28.52 53.9 47.59 70.0
variant-3 27.43 51.4 44.87 65.2

UpDn

question 41.53 – 65.56 –
variant-1 36.86 69.1 55.71 79.7
variant-2 31.39 55.3 49.83 70.8
variant-3 28.38 47.7 47 66.4

BAN

question 41.73 – 67.07 –
variant-1 42.29 79.9 59.52 84.6
variant-2 39.87 70.1 55.26 78.3
variant-3 35.09 60.6 48.42 68.1

LXMERT

question 40.96 – 64.51 –
variant-1 43.06 87.4 60.76 90.4
variant-2 40.17 74.7 56.28 82.6
variant-3 39.12 69.9 53.96 78.6

MCAN

question 43.73 – 68.65 –
variant-1 44.13 85.2 64.8 91.7
variant-2 42.73 74.7 59.17 82.6
variant-3 41.68 68.9 57.88 80.4

Table 2: The accuracy (Acc.%) and Rob in terms of different variant
models on VQA-CPv2 test split and VQAv2 validation split.

results regarding robustness, Rob indicate that all models ex-
hibit the best robustness for variant-1, followed by variant-2,
and the worst for variant-3. Meanwhile, from the results of
the VQA-CPv2 test split, an intriguing observation was that
when tested with variant-1 questions, the test accuracy was
even higher than that of the original questions in terms of
the BAN, MCAN, and LXMERT models. The above exper-
imental results lead us to consider a hypothesis, that is, vari-
ant questions may help alleviate language priors dependency.
To further verify this hypothesis, we conducted another se-
ries of experiments. In this experimental setup, we trained
VQA models using variant questions as text inputs, and the
resulting models are referred to as variant models. During
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Model trained with VQA-CPv2 VQAv2
All Yes/No Num Other All Yes/No Num Other

Q-only

question 21.37 41.01 12.14 13.61 45.09 69.57 32.37 29.81
variant-1 27.80+6.43 53.64 39.32 11.09 41.81 68.21 30.21 24.78
variant-2 22.41+1.04 42.47 12.4 14.65 43.9 68.55 31.99 28.29
variant-3 25.90+4.53 66.02 1.34 11.62 32.38 65.69 1.09 15.32

SAN

question 40.70 41.62 13.14 47.77 62.78 78.69 41.52 56.31
variant-1 40.95+0.25 56.03 15.5 40.02 57.25 75.69 35.62 48.96
variant-2 41.32+0.62 43.21 13.17 48.06 61.47 76.96 40.76 55.17
variant-3 31.41-9.29 40.18 12.46 32.01 48.45 68.09 24.21 39.94

UpDn

question 41.53 42.91 13.56 48.55 65.56 82.87 44.9 57.87
variant-1 44.83+3.30 60.45 20.84 43.23 60.37 79.86 35.21 52.21
variant-2 42.33+0.80 44.89 13.35 48.94 64.22 81.5 43.75 56.5
variant-3 33.89-7.64 41.22 24.9 32.52 50.35 71.52 29.68 39.72

BAN

question 41.73 42.72 13.51 48.95 67.07 84.11 48.2 59.11
variant-1 47.19+5.46 61.21 18.41 47.74 63.81 81.39 44.67 55.51
variant-2 49.92+8.19 67.92 20.72 48.49 63.04 81.1 42.91 54.62
variant-3 45.87+4.14 66.81 15.04 43.37 55.19 75.51 33.01 45.61

LXMERT

question 43.29 46.37 15.38 49.34 65.67 83.31 46.69 57.29
variant-1 53.66+10.37 75.21 21.4 51.22 65.34 83.14 45.82 56.96
variant-2 43.57+0.28 46.49 15.71 49.68 65.29 83.19 46.35 56.7
variant-3 45.33+2.04 51.93 22.2 48.21 59.82 76.78 43.18 51.33

MCAN

question 43.73 42.6 15.69 52.02 68.65 85.91 51.05 60.17
variant-1 48.57+4.84 52.53 26.15 52.64 66.45 81.4 50.73 59.23
variant-2 48.79+5.06 55.79 22.00 52.48 66.65 81.93 50.61 59.27
variant-3 48.47+4.74 65.75 18.19 47.73 58.97 79.85 38.37 48.54

Table 3: The performance (in %) in terms of different variant models on VQA-CPv2 test split and VQAv2 validation split.

Q-only SAN UpDn BAN MCAN LXMERT
var1 var2 var3 var1 var2 var3 var1 var2 var3 var1 var2 var3 var1 var2 var3 var1 var2 var3

!→% 28.5 11.2 42.1 23.0 10.5 44.3 20.0 11.3 44.6 15.5 14.7 23.4 14.1 14.1 21.6 8.5 9.0 22.6
%→! 17.5 6.0 17.8 19.1 11.7 16.6 23.1 13.1 21.2 23.7 28.0 26.3 24.1 24.2 28.9 27.6 10.6 23.4

Table 4: The ratio (in %) of prediction changes of variant models on VQA-CPv2 test split. The mark!→%(lower is better) measures the
ratio (based on the predictions of original models) of questions that the original model can answer correctly while the variant models cannot;
%→!(higher is better) represents the opposite case. The var(x) is abbreviated of variant-(x).

the inference stage, we evaluated the performance of the vari-
ant models on original questions. The experimental results
are presented in Table 3. As shown, some variant models
achieved comparable performance to that of the original mod-
els on VQAv2 dataset. Furthermore, almost all the variant
models achieve better performance on VQA-CPv2, except for
SAN and UpDn, whose performances degrade when trained
with variant-3. The LXMERT, fine-tuned for 20 epochs,
even achieved a 10-point gain without adopting any debias-
ing methods when trained with variant-1 questions. Besides,
a notable phenomenon can be observed in Table 3, which is
that the accuracy changes of different variant models mainly
occur in the “Yes/No” metric, although the changes demon-
strated by different models vary.

3.3 Why Did the Performance Improve?
To figure out the reasons behind the accuracy improvements
from these variant models on VQA-CPv2, we conducted fur-
ther experimental analysis. Firstly, we performed a fine-

grained analysis of the experimental results to investigate how
the predictions of the variant models differed from those of
the original models. To be more specific, we aimed to deter-
mine the number of predictions that changed from correct to
incorrect and vice versa for the variant models.

The results are presented in Table 4, from which it can be
seen that almost all of the variant-2 models have the small-
est proportion of samples that were predicted correctly by
the original model but predicted incorrectly by the variant
models. The corresponding variant-1 model of the LXMERT
model performs the best, with the smallest proportion of cor-
rect predictions flipped to incorrect ones, and it can also flip
27.6% of the incorrect predictions to correct ones. Besides,
the BAN and MCAN models also demonstrate good perfor-
mance regarding converting incorrect predictions to correct
ones. Additionally, we conducted further analysis to exam-
ine the question types that correspond to the change in per-
formance of the variant models. The results are depicted in
Figure 2. It can be observed that the accuracy improvement
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Figure 2: Statistics on the top-10 question types for each answer
type corresponding to prediction-flip samples. The subplots (a) and
(b) are statistics with respect to best-performing variant model of
LXMERT, while (c) and (d) are with respect to best-performing vari-
ant model of UpDn. The first column represents the distribution of
question types where the model changed its incorrect predictions to
correct predictions, while the second column represents the opposite
case.

mainly stems from the “Yes/No” answer type, and the most
frequent question type is “is there”. On the other hand, the
decreased performance mainly comes from the “Other” an-
swer type, and the most frequent corresponding question type
is “what”. Based on the previous results, we aimed to inves-
tigate further which words in the question the variant models
focus on and how this differs from the attention of the origi-
nal models. To achieve this, one of the most straightforward
ways is to compare the feature representations produced by
the models and their corresponding variant models for the
same question. We visualized the attention weights of the
questions with respect to the models and their variant mod-
els. Specifically, the question was first fed into the model to
obtain its feature representation. Then, we mapped the atten-
tion to each word of the question. Figure 3 presents two toy
examples. The subplots (a) and (c) in Figure 3 show that the
model trained using the original question input mode places
a higher weight on question type, such as the examples “is
this” and “what color is”. The abundance of questions that
start with the phrase “is this” in the training dataset makes
it easier for the models to learn these simple patterns. In
contrast, for the models trained with variant questions, the
aforementioned scenario does not occur, resulting in slightly
smoother visualization feature representations, as shown in
subplots (b) and (d) of Figure 3.

In addition, more detailed results are presented in Table

3. For instance, the results of the trained variant models
on the in-distribution VQAv2 dataset reveal that almost ev-
ery model’s performance, in terms of each answer type, has
decreased to varying degrees when compared to the perfor-
mance of the original models. This demonstrates that learning
the pattern of the variant questions would negatively affect the
performance of the original question on in-distribution data.
However, the performance of variant models on the OOD test
set is quite different. Almost all models showed improve-
ments in the All metric, primarily due to the improvements
in “Yes/No” and “Num” answer types. However, the mod-
els trained with variant-1 questions, including Q-only, SAN,
BAN, and UpDn, showed a decrease in performance on the
“Other” metric. In contrast, LXMERT improved its perfor-
mance when trained with variant-1 questions, with an accu-
racy improvement of +1.88% on “Other” metric. The reason
for these experimental results may lie in the different question
encoders used by these models.

3.4 Other Property
Furthermore, we found that the trained variant models exhibit
better semantic robustness than the original models. We cal-
culated the semantic similarity between the encoded original
questions and encoded the variant questions by:

simi = 1− 1

N

N∑
i

cos < qi, vari > (4)

where N is the number of the samples, qi and vari denote the
encoded original question and variant question, respectively.
The results are shown in Figure 4.

4 How to Utilize These Traits?
The variant models exhibit more promising results on VQA-
CPv2 compared to the original model. As demonstrated in
the previous section, the variant models can avoid learning
the inherent prior knowledge related to question types from
the questions, allowing them to focus on other useful patterns.
However, it should be noted that the syntactic structure of the
variant questions may be incomplete or incorrect, and the se-
mantics of the variant questions may even be entirely differ-
ent. Therefore, the variant questions can only be utilized to
aid in the design of de-biasing methods.

4.1 Proposals
To take advantage of the trait of variant models while pre-
serving the semantics of the original question, one ap-
proach is to use the contrastive learning paradigm to com-
bine the two encodings. In this approach, the variant
question is treated as the positive sample, while negative
samples are randomly sampled from the mini-batch dur-
ing training. The process can be formulated as Lcon =

− 1
N

∑N
i log( esim(hi,h

pos
i

)

esim(hi,h
pos
i

)+
∑

esim(hi,h
neg
i

)
), where hi is the

joint feature representation of two kinds modality, hpos
i and

hneg
i represent the positive feature and negative feature, re-

spectively, sim(hi, h
pos
i ) =

hi·hpos
i

||hpos
i ||·||hi|| . During the training

stage, the total optimization objective includes the VQA loss
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(a) (b) (c) (d)

Figure 3: Examples of the visualization concerning the weight mapping to each word of the questions. The subplots (a) and (b) are the
visualizations with respect to the question “Is this a cowboy hat?”, (a) is the result of the UpDn model trained with original questions, (b)
is the result of UpDn model trained with variant questions. (c) and (d) are the visualizations with respect to the question “What color is the
shirt?”, (c) is the result of UpDn model trained with original questions, (d) is the result of UpDn model trained with variant questions.
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Figure 4: The semantic similarity between the encoded original
questions and the encoded variant questions under different models.
simi-(i) means the semantic similarity between the original question
and the variant-(i) question.

Lce and the contrastive loss Lcon. Besides, another straight-
forward way is to combine the features of the original ques-
tion with those of the variant question directly as a kind of
data augmentation. Specifically, the joint features were en-
coded by a weighted combination of two kinds of features.
Therefore, the resulting features cover richer patterns.

4.2 Experiments
In this section, we validate the effectiveness of the latter de-
biasing method on the OOD benchmark, i.e., VQA-CPv2.
The proposed method is model-agnostic and can be com-
bined with any other VQA model. Here, we also choose
the most widely used base VQA models, SAN, UpDn, BAN,
LXMERT, MCAN, and the Q-only model, as the baseline
models. Regarding the implementation details in the train-
ing process, we adhere to the experimental settings of the
open-source codes and do not modify other parameters such
as learning rate, batch size, or optimizer. The experimental
results are presented in Table 5. As evident from the results,
all base models exhibited performance improvements when
integrated with the method proposed in this paper. More-
over, the majority of models demonstrated enhancements in
the “Other” metric, with only the UpDn and LXMERT mod-
els experiencing a slight decrease. This indicates that the base
models combined with the proposed method can not only im-

prove the simple pattern but also learn more difficult patterns.
In addition, while the performance of some models combined
with the proposed method may not be as good as the results
of the variant models, the overall accuracy has improved sig-
nificantly compared to the original models.

Model VQA-CPv2
All Yes/No Num Other

Q-only 21.37 41.01 12.14 13.61
Q-only+ours 26.3 42.59 11.7 16.23
SAN 40.70 41.62 13.14 47.77
SAN+ours 41.41 43.37 12.82 48.23
UpDn 41.53 42.91 13.56 48.55
UpDn+ours 44.95 54.51 14.89 48.18
BAN 41.73 42.72 13.51 48.95
BAN+ours 43.63 45.96 15.04 50.25
MCAN 43.73 42.6 15.69 52.02
MCAN+ours 44.89 44.58 16.24 52.92
LXMERT 43.29 46.37 15.38 49.43
LXMERT+ours 50.85 71.54 17.19 49.24

Table 5: The experimental results (Acc.%) of base VQA models
combined with the proposed data augmentation method. Note that
the LXMERT was fine-tuned for 20 epochs.

5 Conclusion and Future Work
In this paper, we investigate language modality in the VQA
task through experimental analysis. The empirical findings
indicated that the issue of language priors bias is not only re-
lated to question types alone, the postfix of questions even
has a greater impact on language bias. Furthermore, we ob-
served that variant models outperform original models on the
VQA-CPv2 benchmark. We identified the underlying reasons
for these results and proposed new debiasing methods based
on these findings. The experimental results demonstrated that
our method enhances the VQA models’ generalization ability.
Our main purpose is not to pursue state-of-the-art results but
to gain insights for designing bias-reduction methods. How-
ever, we only present some novel experimental findings, and
we plan to provide in-depth theoretical analysis and probe
other methods to leverage these traits in future work.
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Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, pages 1724–1734, 2014.

[Clark et al., 2019] Christopher Clark, Mark Yatskar, and
Luke Zettlemoyer. Don’t take the easy way out: Ensem-
ble based methods for avoiding known dataset biases. In
EMNLP-IJCNLP, pages 4067–4080, 2019.

[Cui et al., 2022] Yiming Cui, Ziqing Yang, and Ting Liu.
Pert: Pre-training bert with permuted language model.
CoRR, abs/2203.06906, 2022.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understand-
ing. In NAACL-HLT, pages 4171–4186, 2019.

[Gokhale et al., 2020] Tejas Gokhale, Pratyay Banerjee,
Chitta Baral, and Yezhou Yang. Vqa-lol: Visual question
answering under the lens of logic. In ECCV, pages 379–
396, 2020.

[Goyal et al., 2017] Yash Goyal, Tejas Khot, Douglas
Summers-Stay, Dhruv Batra, and Devi Parikh. Making the
v in vqa matter: Elevating the role of image understanding
in visual question answering. In CVPR, pages 6325–6334,
2017.

[Guo et al., 2021] Yangyang Guo, Liqiang Nie, Zhiyong
Cheng, Feng Ji, Ji Zhang, and Del Alberto Bimbo.
Adavqa: Overcoming language priors with adapted mar-
gin cosine loss. In IJCAI, pages 708–714, 2021.

[Gupta et al., 2022] Vipul Gupta, Zhuowan Li, Adam Ko-
rtylewski, Chenyu Zhang, Yingwei Li, and Alan Yuille.
Swapmix: Diagnosing and regularizing the over-reliance
on visual context in visual question answering. In CVPR,
pages 5078–5088, 2022.

[Han et al., 2021] Xinzhe Han, Shuhui Wang, Chi Su, Qing-
ming Huang, and Qi Tian. Greedy gradient ensemble for
robust visual question answering. In ICCV, pages 1564–
1573, 2021.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Jing et al., 2020] Chenchen Jing, Yuwei Wu, Xiaoxun
Zhang, Yunde Jia, and Qi Wu. Overcoming language pri-
ors in vqa via decomposed linguistic representations. In
AAAI, pages 11181–11188, 2020.

[Karpathy and Fei-Fei, 2015] Andrej Karpathy and Li Fei-
Fei. Deep visual-semantic alignments for generating im-
age descriptions. In CVPR, pages 3128–3137, 2015.

[Kervadec et al., 2021a] Corentin Kervadec, Grigory An-
tipov, Moez Baccouche, and Christian Wolf. Roses are
red, violets are blue... but should vqa expect them to? In
CVPR, pages 2776–2785, 2021.

[Kervadec et al., 2021b] Corentin Kervadec, Theo Jaunet,
Grigory Antipov, Moez Baccouche, Romain Vuillemot,
and Christian Wolf. How transferable are reasoning pat-
terns in vqa? In CVPR, pages 4207–4216, 2021.

[Kim et al., 2018] Jin-Hwa Kim, Jaehyun Jun, and Byoung-
Tak Zhang. Bilinear attention networks. In NeurIPS, pages
1571–1581, 2018.

[Lao et al., 2021] Mingrui Lao, Yanming Guo, Yu Liu, and
Michael S Lew. A language prior based focal loss for vi-
sual question answering. In ICME, pages 1–6. IEEE, 2021.

[Liang et al., 2020] Zujie Liang, Weitao Jiang, Haifeng Hu,
and Jiaying Zhu. Learning to contrast the counterfactual
samples for robust visual question answering. In EMNLP,
pages 3285–3292, 2020.

[Liang et al., 2021] Zujie Liang, Haifeng Hu, and Jiaying
Zhu. Lpf: A language-prior feedback objective function
for de-biased visual question answering. In SIGIR, pages
1955–1959, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4116



[Liu et al., 2022a] Yuhang Liu, Wei Wei, Daowan Peng,
Xian-Ling Mao, Zhiyong He, and Pan Zhou. Depth-aware
and semantic guided relational attention network for visual
question answering. TMM, pages 1–14, 2022.

[Liu et al., 2022b] Yuhang Liu, Wei Wei, Daowan Peng, and
Feida Zhu. Declaration-based prompt tuning for visual
question answering. In IJCAI, pages 3264–3270, 2022.

[Ramakrishnan et al., 2018] Sainandan Ramakrishnan,
Aishwarya Agrawal, and Stefan Lee. Overcoming lan-
guage priors in visual question answering with adversarial
regularization. In NeurIPS, pages 1548–1558, 2018.

[Selvaraju et al., 2019] Ramprasaath R Selvaraju, Stefan
Lee, Yilin Shen, Hongxia Jin, Shalini Ghosh, Larry Heck,
Dhruv Batra, and Devi Parikh. Taking a hint: Leverag-
ing explanations to make vision and language models more
grounded. In ICCV, pages 2591–2600, 2019.

[Shah et al., 2019] Meet Shah, Xinlei Chen, Marcus
Rohrbach, and Devi Parikh. Cycle-consistency for robust
visual question answering. In CVPR, pages 6649–6658,
2019.

[Shrestha et al., 2020] Robik Shrestha, Kushal Kafle, and
Christopher Kanan. A negative case analysis of visual
grounding methods for vqa. In ACL, pages 8172–8181,
2020.

[Su et al., 2020] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li,
Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training
of generic visual-linguistic representations. In ICLR, 2020.

[Suhr et al., 2017] Alane Suhr, Mike Lewis, James Yeh, and
Yoav Artzi. A corpus of natural language for visual rea-
soning. In ACL, pages 217–223, 2017.

[Tan and Bansal, 2019] Hao Tan and Mohit Bansal. Lxmert:
Learning cross-modality encoder representations from
transformers. In EMNLP-IJCNLP, pages 5099–5110,
2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, pages 5998–6008, 2017.

[Wang et al., 2022] Zirui Wang, Jiahui Yu, Adams Wei Yu,
Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Sim-
ple visual language model pretraining with weak supervi-
sion. In ICLR, 2022.

[Wen et al., 2021] Zhiquan Wen, Guanghui Xu, Mingkui
Tan, Qingyao Wu, and Qi Wu. Debiased visual ques-
tion answering from feature and sample perspectives. In
NeurIPS, pages 3784–3796, 2021.

[Wu and Mooney, 2019] Jialin Wu and J. Raymond Mooney.
Self-critical reasoning for robust visual question answer-
ing. In NeurIPS, pages 8601–8611, 2019.

[Xie et al., 2018] Ning Xie, Farley Lai, Derek Doran, and
Asim Kadav. Visual entailment task for visually-grounded
language learning. CoRR, abs/1811.10582, 2018.

[Yang et al., 2016] Zichao Yang, Xiaodong He, Jianfeng
Gao, Li Deng, and Alex Smola. Stacked attention net-
works for image question answering. In CVPR, pages 21–
29, 2016.

[Yang et al., 2021] Chao Yang, Su Feng, Dongsheng Li,
Huawei Shen, Guoqing Wang, and Bin Jiang. Learning
content and context with language bias for visual question
answering. In ICME, pages 1–6. IEEE, 2021.

[Yu et al., 2016] Licheng Yu, Patrick Poirson, Shan Yang,
Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In ECCV, pages 69–85, 2016.

[Yu et al., 2019] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao,
and Qi Tian. Deep modular co-attention networks for
visual question answering. In CVPR, pages 6281–6290,
2019.

[Yulei et al., 2021] Niu Yulei, Tang Kaihua, Zhang Han-
wang, Lu Zhiwu, Hua Xian-Sheng, and Wen Ji-Rong.
Counterfactual vqa: A cause-effect look at language bias.
In CVPR, pages 12700–12710, 2021.

[Zellers et al., 2019] Rowan Zellers, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. From recognition to cognition:
Visual commonsense reasoning. In CVPR, pages 6720–
6731, 2019.

[Zeng et al., 2022] Yan Zeng, Xinsong Zhang, and Hang Li.
Multi-grained vision language pre-training: Aligning texts
with visual concepts. In ICML, pages 25994–26009, 2022.

[Zhang et al., 2021] Pengchuan Zhang, Xiujun Li, Xiaowei
Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi,
and Jianfeng Gao. Vinvl: Revisiting visual representations
in vision-language models. In CVPR, pages 5579–5588,
2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4117


	Introduction
	Related Work
	Empirical Analysis
	Task Definition
	Revisiting Question in VQA
	Which Contributes More Bias?
	Are There Any Other Kinds of Bias?
	The Robustness to Variant Question

	Why Did the Performance Improve?
	Other Property

	How to Utilize These Traits?
	Proposals
	Experiments

	Conclusion and Future Work

