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Abstract
Source-Free domain adaptation transits the source-
trained model towards target domain without ex-
posing the source data, trying to dispel these con-
cerns about data privacy and security. However,
this paradigm is still at risk of data leakage due
to adversarial attacks on the source model. Hence,
the Black-Box setting only allows to use the out-
puts of source model, but still suffers from over-
fitting on the source domain more severely due
to source model’s unseen weights. In this pa-
per, we propose a novel approach named RAIN
(RegulArization on Input and Network) for Black-
Box domain adaptation from both input-level and
network-level regularization. For the input-level,
we design a new data augmentation technique as
Phase MixUp, which highlights task-relevant ob-
jects in the interpolations, thus enhancing input-
level regularization and class consistency for tar-
get models. For network-level, we develop a Sub-
network Distillation mechanism to transfer knowl-
edge from the target subnetwork to the full target
network via knowledge distillation, which thus al-
leviates overfitting on the source domain by learn-
ing diverse target representations. Extensive exper-
iments show that our method achieves state-of-the-
art performance on several cross-domain bench-
marks under both single- and multi-source black-
box domain adaptation.

1 Introduction
Domain adaptation [Wang and Deng, 2018] is proposed to
transfer knowledge from the labeled training data that form
the source domain to the unlabeled test data that form the tar-
get domain. Owing to the concerns about data privacy and se-
curity, a new setting –Source-Free domain adaptation [Liang
et al., 2020]– emerges, where source data are completely un-
available when adapting to the target. Even so, there are still
potential risks if the source models are visible. Some works
like dataset distillation [Wang et al., 2018] and DeepInversion
[Yin et al., 2020] may recover data from the model through
adversarial attacks. In such a case, Black-Box domain adap-
tation [Zhang et al., 2021] is proposed to consider the source

Conventional
MixUp

Phase MixUp

Figure 1: Comparisons between the conventional MixUp [Zhang
et al., 2018] and our Phase MixUp. (Best viewed in color.) µ is
the ratio of the “hammer” image fused into the “television” image.
Note that when µ = 0.50, in Conventional MixUp the dark shadow
outweighs “television”, while in Phase MixUp both the core objects
can be highlighted. Besides, when µ = 0.75, the “television” is
completely unseen in Conventional MixUp, while it still exists in
Phase MixUp. These demonstrate that Phase MixUp can alleviate
the interference of background and style information.

models are completely unseen and only model outputs are ac-
cessible for target adaptation, which is a more strict version
of Source-Free domain adaptation.

Due to the limited access to the source model, the only way
we obtain source information is by doing knowledge distill-
ing between the source model and the target model. In the
original Source-Free setting, we can alleviate domain shifts
by updating the source model gradually, keeping the trans-
ferrable parameters while replacing the untransferrable ones.
However, in the Black-box scenario, only the source model’s
outputs are exposed, i.e., the source information cannot be
disentangled as target-relevant and target-irrelevant parts as
Source-Free does. The overfitting on the source domain in
Black-Box is much stronger than that in Source-free, which
greatly undermines the target models’ performance. [Liang
et al., 2022] observes this problem and uses conventional
MixUp [Zhang et al., 2018] as regularization for better gener-
alization. However, there exist problems with regularization
methods like MixUp or CutMix [Yun et al., 2019] because
they are conducted on both input and label levels. In the tar-
get adaptation process, we do not have accurate labels but the
pseudo labels as substitutes and the linear behaviors learned
from these noisy pseudo-labels due to domain shifts could
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have negative impacts on the generalization and degrade the
model’s performance (details in Table 4).

Based on the discussions above, we develop a new and
effective data augmentation method for domain adaptation
named Phase MixUp, which regularizes ML model training
only from the input aspect. Apart from inhibiting poten-
tial noises from pseudo-labels, our Phase MixUp can high-
light task-relevant objects and avoid negative impacts from
background information as well. Conventional MixUp di-
rectly blends one image’s pixels into another image [Wu
et al., 2020; Liang et al., 2022]. But this kind of combi-
nation is too simple to highlight the objects that we want
to classify, especially when the image owns complex back-
ground and style information. For example, the top of Fig.
1 shows the conventional MixUp between the “television”
image and the “hammer” image. The “hammer” image has
a very strong dark shadow that outweighs another object
“television” when µ = 0.50. Besides, when µ = 0.75,
the “television” is completely unseen. In such cases, back-
ground elements like dark shadow will have a negative im-
pact on conventional MixUp as they distract the attention of
core objects and the model tends to connect the “hammer”
with the shadow instead. Frequency decomposition proves to
be a useful tool to disentangle object information and back-
ground information from an image [Yang and Soatto, 2020;
Liu et al., 2021], since amplitude spectra contain most back-
ground information, while phase spectra are related to object
information. Therefore, we propose Phase MixUp (Fig. 2b)
to capture the key objects and reduce background interference
at the same time, as the bottom of Fig. 1 shows. By mixing
their phase spectra, we can focus more on the two core ob-
jects “television” and “hammer” and weaken background in-
formation like the shadow. Even under a more extreme case
like µ = 0.75, the “television” still exists in the mixed image
of Phase MixUp. The augmented image will attend further
training to enhance the target model’s class consistency.

What’s more, despite the fact that input- and label-level
regularizations have received enough attention in domain
adaptation, regularization from the network aspect is over-
looked. Specifically, in the Black-Box setting, only the source
model’s outputs are accessible, which leads to more severe
overfitting of target networks on source information. Be-
cause target networks have to learn from the outputs pro-
duced by source models without detailed calibrations on net-
work weights as the Source-Free setting does. Therefore, a
network-level regularization technique on target networks is
necessary. To this end, we propose a novel method for domain
adaptation called Subnetwork Distillation, which aims to reg-
ularize the full target network with the help of its subnetwork
and calibrate the full target networks gradually. We slim the
widths of the target network to get its subnetwork, which has
a smaller scale than the full network, hence less likely over-
fitting to the source domain. By transferring knowledge from
the target subnetwork to the full target network, the original
full network captures diverse representations from the target
domain with a better generalization ability.

Our contributions are summarized in three aspects:
• We propose Phase MixUp as a new input-level regulariza-

tion scheme that helps the model enhance class consistency

with more task-relevant object information, thus obtaining
more robust representations for the target domain.

• We introduce a novel network-level regularization tech-
nique called Subnetwork Distillation that assists the target
model to learn diverse representations and transfers knowl-
edge from the model’s partial structures to avoid overfitting
on Black-Box source models.

• We conduct extensive experimental results on several
benchmark datasets with both Single-Source and Multi-
Source settings, showing that our approach achieves state-
of-the-art performance compared with the latest methods
for Black-Box domain adaptation.

2 Related Work
Domain Adaptation. Metric-based and GAN-based ap-
proaches are the two major routes in single-source domain
adaptation. The metric-based methods measure the discrep-
ancy between the source and target domain explicitly. [Long
et al., 2015] uses maximum mean discrepancy, while [Tzeng
et al., 2014] applies deep domain confusion. Recent work
like [Deng et al., 2021] jointly makes clustering and dis-
crimination for alignment together with contrastive learning.
The GAN-based methods originate from [Goodfellow et al.,
2014] and build a min-max game for two players related to
the source and target domains. [Ganin and Lempitsky, 2015]
adopts domain to confuse the two players, while [Saito et
al., 2018] uses classifier discrepancy as the objective, and
[Tang et al., 2020] reveals that discriminative clustering on
target will benefit the adaptation. However, the general do-
main adaptation setting needs access to source data, which
raises concerns about data privacy and security, so Source-
Free adaptation is proposed.

Source-Free Domain Adaptation. Based on the work of
[Li et al., 2020; Liang et al., 2020], Source-Free has be-
come the mainstream paradigm for alleviating concerns about
data privacy and security in domain adaptation. There
are two technique routes under the source-free setting:
self-supervision and virtual source transfer. For the self-
supervised methods, [Liang et al., 2020] is the most repre-
sentative one, which introduces information maximization to
assist adaptation. [Xia et al., 2021] treats the problem from a
discriminative perspective and adds a specific representation
learning module to help the generalization, and [Chen et al.,
2022] proposes the online pseudo label refinement. As for
virtual source methods, most of them build GANs to gener-
ate virtual source data. [Kurmi et al., 2021] uses conditional
GAN to generate new samples, while [Hou and Zheng, 2021]
provides interesting visualizations for unseen knowledge and
[Li et al., 2020] applies collaborative GAN to achieve better
generations. But Source-Free is still at risk of data leakage
due to adversarial attacks to visible model weights, and that
leads to a more strict setting – Black-Box domain adaptation.

Black-Box Domain Adaptation is a subset problem of
Source-Free domain adaptation and is also a very novel topic.
It is more strict than Source-Free because the models trained
on source will be put into a black box and only the outputs of
these models can be used during model adaptation. [Zhang
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Figure 2: (a) Overview of our proposed framework. (b) The process of Phase MixUp (Best viewed in color). In (a), the arrows marked
with “1” are related to the knowledge distillation described in Sec. 3.1, while the ones marked with “2” illustrate the process of input-level
regularization (Sec. 3.2), and those with “3” involve in the network-level regularization (Sec. 3.3).

et al., 2021] first states this setting completely and empha-
sizes the purification of noisy labels in the adaptation. [Liang
et al., 2022] introduces knowledge distillation to the black-
box problem, which largely improves the performance. All
the details are the same as the Source-Free setting except that
the source model strictly follows the Black-Box rule as its
weights are completely invisible while outputs are accessible.

3 Methodology
Our proposed method RAIN tackles the Black-Box domain
adaptation from the perspective of regularization (both input-
level and network-level). The overall framework is presented
in Fig. 2a. In the following subsections, we elaborate on the
key components of the framework.

3.1 Preliminary
For a typical domain adaptation problem, we have a source
domain dataset S = {(xs

i , y
s
i )}

ns
i=1 with ns labeled sam-

ples. The target domain dataset T = {xt
i}

nt
i=1 includes

nt unlabeled samples, which shares the same label space
D = {1, 2, · · · ,K} with source but lie in different distribu-
tions, where K is the number of classes. The goal of domain
adaptation is to seek the best target model ft with the help of
source model as fs.

For the Black-Box paradigm, the learning starts
with the supervised learning on source as Ls =
−E(xs

i ,y
s
i )∈S

∑
k∈D lsi log fs(x

s
i ) with label smoothing

[Muller et al., 2019]: lsi = α/K + (1 − α)ysi , where α is
smoothing parameter empirically set to 0.1. Moreover, the
source model’s details are completely unseen except for the
model’s outputs. In this case, knowledge distillation [Hinton
et al., 2015] is applied to transfer from source to target:

Lkd = DKL(ŷ
t
i ||ft(xt

i)), (1)
where DKL(·) denotes Kullback-Leibler (KL) Divergence
and ŷti is the pseudo-label. Now we explain how to obtain ŷti .
Assume that q = argmax fs(x

t
i), then we deduce the smooth

pseudo label lti = α′/K + (1− α′)q, where α′ is smoothing

parameter empirically set to 0.1. Based on this, the pseudo la-
bel ŷti can be represented as ŷti = ηlti + (1− η)ft(x

t
i), where

η is a momentum hyperparameter set as 0.6.

3.2 Enhancing Input Regularization via Phase
MixUp

Conventional MixUp is a very popular input- and label-level
regularization technique in domain adaptation [Wu et al.,
2020; Liang et al., 2022], whose goal is to enhance class-wise
consistency and linear behavior, thus helping the model learn
better representations on target domain. Nevertheless, there
exist noises in the pseudo-labels applied to MixUp, which are
harmful to the adaptation process, and that’s why we propose
an input-level (only) regularization method here. Next de-
tails of the proposed Phase MixUp process are presented. We
begin by introducing the standard format of the Fourier trans-
form. Assume a target sample xt

i ∈ RC×H×W , where C,
H and W correspond to channel numbers, height and width.
We transfer it from spatial space to frequency space and then
decompose its frequency spectrum as amplitude and phase:

F t
i =

H−1∑
h=0

W−1∑
w=0

xt
i exp[−j2π(

h

H
u+

w

W
v)] = At

i exp (Pt
i ). (2)

Here we ensure the one-to-one correspondence between
channels of different spaces. Here xt

i is a spatial image rep-
resentation based on image pixel (h,w), and F t

i is a fre-
quency image representation based on frequency spectrum
unit (u, v). At

i is the amplitude spectrum and Pt
i is the

phase spectrum of the target sample xt
i. According to [Yang

and Soatto, 2020; Liu et al., 2021], the amplitude spec-
trum reflects the low-level distributions like the style, and the
high-level semantics like object shape is stored in the phase
spectrum. Since our task here is domain adaptation for ob-
ject recognition, we hope the mixup procedure focuses more
on the key objects rather than the background information.
Hence, we interpolate between phase spectra as:

Pt
mix = µPt

j + (1− µ)Pt
i , (3)
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Figure 3: The training process of Subnetwork Distillation (Best
viewed in color.) The orange arrows associate with the full target
network adaptation and the pink arrows correspond to the target sub-
network adaptation. During the optimization of JS Divergence and
Gradient Dissimilarity, the model obtains knowledge of diverse tar-
get representations that benefit the generalization.

where Pt
j is the phase spectrum from a randomly-selected tar-

get sample xt
j as F(xt

j) = At
j exp (Pt

j), and µ is sampled
from a Beta distribution as Beta(0.3, 0.3). After that, the
Phase MixUp augmented sample produced by inverse Fourier
Transform is:

xt
mix = F−1(At

i,Pt
mix)

=
1

HW

H−1∑
u=0

W−1∑
v=0

At
i exp (Pt

mix) exp[−j2π(
u

H
h+

v

W
w)].

(4)
The Phase MixUp procedure is depicted in Fig. 2b. After
obtaining the synthesized sample, we can enhance class con-
sistency by comparing the outputs of the original and synthe-
sized samples. Here ℓ1-norm is utilized to compute the Phase
MixUp loss as:

Lpm = Ext
i∈T

∥∥ft(xt
i)− ft(x

t
mix)

∥∥
ℓ1
. (5)

Phase MixUp is different from conventional MixUp. First,
our Phase MixUp is conducted on the phase spectra related
to core objects, not the whole image. Moreover, conventional
MixUp operates on both input- and label-level, while Phase
MixUp is an input-level augmentation.

3.3 Encouraging Network Regularization via
Subnetwork Distillation

During the procedure of knowledge transfer from source
models to target models with knowledge distillation (Eq. 1),
overfitting on source information is an obvious side effect.
Especially in the Black-Box setting, only the source model’s
outputs are visible while the source model’s weights are com-
pletely unseen. In other words, the careful calibration of the
target network’s weights in the Source-Free setting cannot be
achieved here. Hence, it is necessary to propose a specific
network-based regularization method.To this end, we pro-
pose the Subnetwork Distillation approach to domain adap-
tation, which utilizes the self-knowledge transfer from the
target subnetwork to the full target network with distinctive
knowledge. We hope this structure can assist the model to
obtain more target information from diverse representations

far from the support of source, thus overcoming overfitting on
source. We denote the full target network’s weights as Wfull

and the target subnetwork as Wsub. If the complete network
can be represented as Wfull = W0:1, then by slimming the
network width with a ratio α ∈ (0, 1], the subnetwork can
be generated as Wsub = W0:α, i.e., a subnetwork with W0:α

means selecting the first α × 100% weights of each layer of
the full network. Therefore, the network’s output with width
α is denoted as ft(x

t
i;W0:α). The Subnetwork Distillation

objective is defined as

Lsd = DJS(ft(x
t
mix;Wsub)||ft(xt

mix;Wfull)). (6)

After getting these outputs from the subnetwork with smaller
widths, we compare them with the original network’s outputs
using Jensen–Shannon (JS) divergence, shown in Fig. 3. To
prevent the adverse influence on the inference with original
images and full networks, here we use the images operated
after Phase MixUp, which can also add perturbations to the
regularization for more robust representations.

Now we provide a theoretical analysis to illustrate why the
JS divergence can benefit the adaptation process. Assume
that Phase MixUp is a mapping function fPM : x → z, and
the following neural network is fnetwork : z → y. Here we
have three types of networks, the source network fs, the full
target network ft, and the target subnetwork fsub. Besides,
we make two assumptions that are intuitive to understand:
Assumption 1. Based on observed latent variables z and
an empirical predictor p̂, − log p̂(y|z) can be bounded by C,
which is a constant.
Assumption 2. The target subnetwork is superior to the
source network on the target datasets. Mathematically,

ps(y, z) log p̂(y|z) ≤ psub(y, z) log p̂(y|z). (7)

What’s more, there is a lemma that assists our main con-
clusion Theorem 1:
Lemma 1. The source loss and target loss are bounded by
joint distributions and empirical predictions as:

ls ≤ Eps(y,z)[− log p̂(y|z)], lt ≤ Ept(y,z)[− log p̂(y|z)].
(8)

On the basis of the proposed assumptions and lemma, we
conclude the bound for the target loss as:
Theorem 1. The target loss can be bounded by source loss
and the JS divergence between the outputs of the full target
network and target subnetwork as:

lt ≤ ls + C
√

2DJS(pt(y, z)||psub(y, z)), (9)

DJS(pt(y, z)||psub(y, z)) corresponds to Eq. 6, which
proves that the optimization of the JS divergence can bene-
fit the adaptation process on the target domain.

There exist two extremes that hinder our goal. One is at
the beginning of adaptation, when the subnetwork is very dif-
ferent from the full network, but it owns much greater errors
than the full network, and the knowledge transfer is nega-
tive to the adaptation. The other is at the end of adaptation,
subnetwork is very similar to the full network so that not
enough knowledge can be transferred from the subnetwork
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to the full network. In such a case, the Subnetwork Distil-
lation is meaningless. Provided that the gradient of the full
network is gfull = ∂Lsd

∂Wfull
, and the gradient of the subnet-

work is gsub = ∂Lsd

∂Wsub
, then we propose a weighted gradient

discrepancy loss to balance this two extremes:

Lwg = (1 + exp (−Entropy(ft(x
t
i;Wsub))))

gTfullgsub

∥gfull∥2 ∥gsub∥2
.

(10)
Here the left term is the weight and the right term is the co-
sine similarity between gsub and gfull. By minimizing the
right term, the discrepancy between two gradients is enlarged,
which provides a disturbance and guarantees that the full net-
work and subnetwork learn divergent knowledge. The left
term offers constraints on the gradient dissimilarity so that if
the subnetwork doesn’t learn distributions that are confident
enough, a smaller weight will be assigned, and vice versa.

3.4 Overall Objectives
Based on the above discussion, we conclude the final objec-
tive for Black-Box domain adaptation:

Lbb = Lkd + βLpm + γLsd + θLwg, (11)

where β, γ, and θ are the trade-off hyperparameters for cor-
responding loss functions.

4 Experiments
Datasets. We use four popular benchmark datasets for
evaluation. Office-31 [Saenko et al., 2010] has three domains
as Amazon, Webcam, and DSLR with 31 classes and 4,652
images. Image-CLEF [Long et al., 2017] is a relatively
small dataset with three domains, and each domain includes
12 classes and 600 images. Office-Home [Venkateswara et
al., 2017] is a medium-size dataset, containing four domains
as Art, Clipart, Product, and Real World. Each domain in-
cludes 65 classes and the total number of images is 15,500.
VisDA-C [Peng et al., 2017] is the most challenging dataset
among the four, with 152,000 synthesized images serving as
the source domain and 55,000 real images serving as the tar-
get domain, each with 12 classes.

Model Architecture. We adopt ResNet-50 [He et al., 2016]
as the backbone for Office-31 and Office-Home, and ResNet-
101 for VisDA-C. To facilitate fair comparisons, we follow
the protocols from DINE [Liang et al., 2022], replacing the
last layer of the target network with a pipeline as a fully-
connected layer, batch normalization layer, fully-connected
layer, and weight normalization layer. As for the pretrained
source model, ResNet and Vision Transformer (ViT) [Doso-
vitskiy et al., 2020] are applied.

Implementation. We set the batch size to 64 and adopt
SGD [Ruder, 2016] as the optimizer, with a momentum of
0.9 and a weight decay of 1e-3. For Office-31 and Office-
Home, the learning rate is set as 1e-3 for the convolutional
layers and 1e-2 for the rest. For VisDA-C, we choose 1e-4
for the convolutional layers and 1e-3 for the rest. The learn-
ing rate scheduler is the same as [Liang et al., 2020], i.e., a
polynomial annealing strategy. Label smoothing [Muller et

al., 2019] is used on the leverage of source client, with 100
epochs for all the tasks. For the training procedure on target
client, we train 30 epochs for all the tasks. In the evaluation
stage, all results are obtained by averaging three random runs.
For the hyper-parameters in Eq. 11, we set β = 1.2, γ = 0.6,
and θ = 0.3. PyTorch [Paszke et al., 2019] is used for the im-
plementation. For the proposed Subnetwork Distillation (Sec.
3.3), the subnetwork width is set as 0.84×.When it comes to
inference, we only use the full target network. Training is
conducted on an NVIDIA RTX A5000 GPU.

Baselines. Several state-of-the-art baselines are selected for
comparison. For Single-Source adaptation, we compare our
method with NLL-OT [YM. et al., 2020], NLL-KL [Zhang et
al., 2021], HD-SHOT [Liang et al., 2020], SD-SHOT [Liang
et al., 2020], DINE [Liang et al., 2022], and DINE-full [Liang
et al., 2022]. For Multi-Source adaptation, we compare with
SD-DECISION [Ahmed et al., 2021], DINE w/o Fine-Tune
(FT) [Liang et al., 2022], DINE [Liang et al., 2022], and
DINE-full [Liang et al., 2022].

4.1 Results
We compare our method (RAIN) with existing Single-Source
and Multi-Source approaches, and the results are shown in
Table 1 and Table 2 separately.

For Single-Source adaptation, our model achieves state-of-
the-art performances on average in three datasets. Compared
with the second-best results, our method yields improvements
of 1.8%/1.1% in Office-31, 2.4%/0.9% in Office-Home, and
5.4%/1.6% in VisDA-C. And in most tasks, our approach
outperforms all the listed baselines. For Multi-Source adap-
tation, our model also obtains state-of-the-art results in three
datasets, yielding average improvements of 1.4%/1.1% in
Office-31, 1.3%/0.7% in Image-CLEF, and 1.4%/1.8% in
Office-Home. Besides, in all the tasks of Multi-Source adap-
tation, RAIN outperforms all the listed baselines.

4.2 Analysis
Ablation Study. We study the contributions of three pro-
posed losses in our approach and the results are shown in Ta-
ble 3. Three representative tasks from different datasets are
selected for both Single-Source and Multi-Source adaptation.
Based on the three losses and their dependency (e.g., Lwg re-
lies on the value of Lsd), six situations are listed. From Table
3, we observe that all the components play a role in improv-
ing the model’s performance. Besides, it demonstrates that
simply using Lsd cannot ensure the efficacy of the distillation
from the subnetwork to full network, as the increases are all
less than 1%. However, when Lsd works together with Lwg ,
the boost is significant enough as no less than 2.3% in all tasks
here. This indicates that maintaining the gradient discrepancy
of the full target network and target subnetwork is really im-
portant, as it ensures that the target subnetwork learns differ-
ent knowledge, thus guaranteeing the distillation process in
Lsd to be meaningful. As the proposed Phase MixUp can be
considered as a general data augmentation scheme, we further
validate its superiority by comparing it with the existing state-
of-the-art augmentation methods including MixUp [Zhang et
al., 2018], RandAugment [Shorten and Khoshgoftaar, 2019]
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(a) Office-31 A→ D A→ W D→ A D→ W W→ A W→ D Avg.
Source-only 79.9/88.2 76.6/89.2 56.4/74.5 92.8/97.2 60.9/77.2 98.5/99.3 77.5/87.6

NLL-OT 88.8/91.3 85.5/91.4 64.6/76.4 95.1/97.2 66.7/78.2 98.7/99.4 83.2/89.0
NLL-KL 89.4/91.7 86.8/91.8 65.1/76.3 94.8/97.2 67.1/78.4 98.7/99.0 83.6/89.1

HD-SHOT 86.5/88.9 83.1/99.9 66.1/75.3 95.1/97.7 68.9/77.7 98.1/99.5 83.0/88.3
SD-SHOT 89.2/91.6 83.7/92.8 67.9/77.8 95.3/98.7 71.1/78.5 97.1/99.7 84.1/89.8

DINE 91.6/94.2 86.8/94.6 72.2/80.7 96.2/98.8 73.3/81.5 98.6/99.5 86.4/91.6
DINE-full 91.7/95.5 87.5/94.8 72.9/81.2 96.3/98.5 73.7/82.0 98.5/99.7 86.7/91.9

RAIN 96.2±0.20
93.8±0.20/

95.7±0.10
88.8±0.10/

83.6±0.07
75.5±0.14/

98.6±0.10
96.8±0.10/

84.1±0.21
76.7±0.14/

99.7±0.20
99.5±0.10/

93.0±0.10
88.5±0.10/

(b) Office-Home Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg.
Source-only 44.1/54.5 66.9/83.2 74.2/87.2 54.5/78.0 63.3/83.8 66.1/86.1 52.8/74.5 41.2/49.7 73.2/87.4 66.1/78.6 46.7/52.6 77.5/86.2 60.6/75.1

NLL-OT 49.1/58.8 71.7/84.4 77.3/87.6 60.2/78.2 68.7/84.7 73.1/86.7 57.0/76.0 46.5/54.0 76.8/88.0 67.1/79.7 52.3/57.2 79.5/87.2 64.9/76.9
NLL-KL 49.0/59.5 71.5/84.3 77.1/87.6 59.0/77.4 68.7/84.8 72.9/86.8 56.4/75.1 46.9/54.9 76.6/88.0 66.2/79.0 52.3/57.9 79.1/87.2 64.6/76.9

HD-SHOT 48.6/57.2 72.8/84.2 77.0/87.3 60.7/78.4 70.0/84.9 73.2/86.4 56.6/74.8 47.0/56.0 76.7/87.6 67.5/78.9 52.6/57.5 80.2/87.0 65.3/76.7
SD-SHOT 50.1/59.4 75.0/85.2 78.8/87.8 63.2/79.6 72.9/86.6 76.4/87.1 60.0/76.4 48.0/58.3 79.4/87.8 69.2/80.0 54.2/59.5 81.6/87.9 67.4/78.0

DINE 52.2/64.9 78.4/87.4 81.3/88.8 65.3/80.5 76.6/89.6 78.7/87.8 62.7/79.0 49.6/62.9 82.2/89.1 69.8/81.5 55.8/64.6 84.2/90.0 69.7/80.5
DINE-full 54.2/64.4 77.9/87.9 81.6/89.0 65.9/80.9 77.7/89.6 79.9/88.7 64.1/79.6 50.5/62.5 82.1/89.4 71.1/81.7 58.0/65.2 84.3/89.7 70.6/80.7

RAIN 66.3±0.12
57.0±0.06/

88.8±0.12
79.7±0.08/

90.1±0.08
82.8±0.04/

82.0±0.04
67.9±0.04/

89.5±0.12
79.5±0.06/

89.2±0.04
81.2±0.04/

80.7±0.08
67.7±0.04/

62.9±0.12
53.2±0.08/

90.6±0.12
84.6±0.12/

82.9±0.08
73.3±0.04/

65.8±0.06
59.6±0.06/

89.8±0.04
85.6±0.08/

81.6±0.16
73.0±0.08/

(c) VisDA-C plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
Source-only 64.3/97.0 24.6/56.2 47.9/81.0 75.3/74.4 69.6/91.8 8.5/52.0 79.0/92.5 31.6/10.1 64.4/73.4 31.0/92.7 81.4/97.0 9.2/17.5 48.9/69.6

NLL-OT 82.6/97.8 84.1/90.8 76.2/81.9 44.8/49.7 90.8/95.7 39.1/93.5 76.7/85.2 72.0/45.4 82.6/88.9 81.2/96.6 82.7/91.2 50.6/54.4 72.0/80.9
NLL-KL 82.7/97.6 83.4/91.1 76.7/82.1 44.9/49.2 90.9/95.8 38.5/93.5 78.4/86.2 71.6/44.6 82.4/89.0 80.3/96.4 82.9/91.4 50.4/54.8 71.9/81.0

HD-SHOT 75.8/96.7 85.8/91.7 78.0/81.8 43.1/48.4 92.0/95.1 41.0/98.5 79.9/83.1 78.1/60.1 84.2/92.2 86.4/87.7 81.0/88.4 65.5/65.3 74.2/82.4
SD-SHOT 79.1/96.3 85.8/91.1 77.2/80.3 43.4/46.4 91.6/93.9 41.0/98.2 80.0/81.5 78.3/58.6 84.7/90.9 86.8/85.5 81.1/88.0 65.1/63.8 74.5/81.2

DINE 81.4/96.6 86.7/91.9 77.9/83.1 55.1/58.2 92.2/95.3 34.6/97.8 80.8/85.0 79.9/73.6 87.3/91.9 87.9/94.9 84.3/92.2 58.7/60.7 75.6/85.1
DINE-full 95.3/96.6 85.9/91.9 80.1/82.9 53.4/57.9 93.0/95.4 37.7/97.8 80.7/84.5 79.2/73.1 86.3/91.7 89.9/95.1 85.7/92.0 60.4/60.9 77.3/85.0

RAIN 97.7±0.09
96.6±0.09/

92.8±0.09
86.8±0.09/

86.2±0.12
83.0±0.06/

72.3±0.08
70.9±0.04/

96.5±0.04
94.5±0.08/

98.0±0.10
81.8±0.10/

86.2±0.12
84.2±0.06/

83.2±0.09
83.6±0.09/

92.1±0.16
90.9±0.08/

96.9±0.08
89.5±0.08/

93.3±0.06
89.4±0.06/

60.7±0.08
64.0±0.08/

86.6±0.09
82.7±0.09/

Table 1: Single-Source Domain Adaptation Accuracy (%) on (a) Office-31, (b) Office-Home, and (c) VisDA-C. In each cell, the value before
the forward slash / origins from ResNet-based source model, and the one after / relies on ViT-based source model.

Dataset Office-31 Image-CLEF Office-Home
Method →A →D →W Avg. →C →I →P Avg. →Ar →Cl →Pr →Rw Avg.

No Adapt. 64.5/77.2 82.3/88.2 80.7/89.2 75.8/84.9 92.1/95.3 87.4/90.2 72.4/72.0 84.0/85.9 54.9/74.5 49.9/54.5 69.6/83.2 76.7/87.2 62.8/74.8
SD-DECISION 66.6/80.0 87.3/90.4 85.7/95.9 80.0/88.8 93.5/95.0 89.6/91.8 74.1/76.6 85.7/87.8 62.5/77.2 51.9/55.8 72.3/85.3 80.4/88.8 66.8/76.8
DINE w/o FT 69.2/80.7 98.6/98.4 96.9/97.1 88.3/92.1 96.2/97.2 91.4/96.6 78.3/80.9 88.6/91.6 70.8/82.4 57.1/61.0 80.9/88.6 82.1/90.8 72.7/80.7

DINE 76.8/82.4 99.2/99.2 98.4/98.4 91.5/93.4 98.0/97.8 93.4/96.6 80.2/81.3 90.5/91.9 74.8/83.6 64.1/67.0 85.0/90.9 84.6/91.9 77.1/83.3
DINE-full 77.1/81.4 99.2/99.0 98.2/98.5 91.5/93.0 97.8/97.8 93.0/96.4 79.7/81.4 90.2/91.9 74.9/83.4 62.6/65.2 84.6/90.3 84.7/91.5 76.7/82.6

RAIN 84.5±0.14
79.8±0.14/

99.2±0.20
99.8±0.20/

98.6±0.10
99.0±0.10/

94.1±0.10
92.9±0.10/

98.0±0.17
98.4±0.17/

96.6±0.17
94.2±0.17/

83.2±0.17
82.0±0.17/

92.6±0.17
91.5±0.17/

84.0±0.08
76.0±0.08/

68.5±0.12
65.6±0.12/

92.0±0.12
85.8±0.12/

93.0±0.08
84.8±0.08/

84.4±0.16
78.1±0.16/

Table 2: Multi-Source Domain Adaptation Accuracy (%) on Office-31, Image-CLEF, and Office-Home. In each cell, the value before the
forward slash / origins from ResNet-based source model, and the one after / relies on ViT-based source model.

and CutMix [Yun et al., 2019]. All these techniques are com-
bined with different Black-Box adaptation approaches. The
comparison results of Single-Source and Multi-Source adap-
tation are listed in Table 4. It is evident that Phase MixUp
consistently outperforms all the other three techniques, and it
plays a positive role in all situations.

Parameter Study. There are three hyperparameters in our
overall objective (Eqs. 11) as β, γ, and θ that weight the im-
portance of Lpm, Lsr, and Lwg . We select the task Ar→Cl
from Office-Home and conduct parameter analysis in Fig. 4a,
Fig. 4b, and Fig. 4c. For β, we choose relatively large values
with an interval of 0.3, while for γ and θ the values are smaller
with an interval of 0.15 and 0.05 respectively. From this fig-

ure, we can observe that the best values for β are near 1.2 and
1.5. For γ, 0.60 to 0.75 is a suitable range, and 0.25 to 0.30 is
ideal for θ. What’s more, we can see that the model’s perfor-
mance remains stable and competitive in the range of values
we tested. We also provide a detailed analysis of the subnet-
work width in Subnetwork Distillation based on both Single-
Source and Multi-Source settings with the tasks Ar→Rw and
→A separately, as shown in Fig. 4d. We see that the best
choice for the Single-Source task is between 0.84 and 0.88,
while it is between 0.80 and 0.84 for the Multi-Source task.
Our choice of using 0.84 is reasonable.

Qualitative Visualization. We use t-SNE [Van der Maaten
and Hinton, 2008] to visualize the features produced by
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(a) (b) (d)(c)

Figure 4: Parameter Analysis (best viewed in color.): (a) Analysis on β in Eq. 11; (b) Analysis on γ in Eq. 11; (c) Analysis on θ in Eq. 11;
(d) Analysis on subnetwork width ratios. (a), (b), and (c) are conducted on the task Ar→ Cl, while (d) is based on Ar→ Rw and →A.

(a) (b) (c) (d)

Figure 5: Feature Visualization. (best viewed in color.): (a) Single-Source before adaptation; (b) Single-Source after adaptation; (c) Multi-
Source before adaptation; (d) Multi-Source after adaptation. We select task A (red dots)→ D (blue dots) for Single-Source and D (red dots)
& W (green dots) → A (blue dots) for Multi-Source.

Single-Source A→ D Ar→ Rw Syn→ Real
w/o Lpm & Lsd & Lwg (baseline) 90.2 79.3 76.0
w/ Lpm 91.6 (↑1.4) 80.4 (↑1.1) 77.7 (↑1.7)
w/ Lsd 90.8 (↑0.6) 79.7 (↑0.4) 77.0 (↑1.0)
w/ Lpm & Lsd 91.9 (↑1.7) 81.0 (↑1.7) 78.9 (↑2.9)
w/ Lsd & Lwg 93.1 (↑2.9) 81.6 (↑2.3) 81.7 (↑5.7)
RAIN (Lpm + Lsd + Lwg) 93.8 (↑3.6) 82.8 (↑3.5) 82.7 (↑6.7)

Multi-Source →A →P →Ar
w/o Lpm & Lsd & Lwg (baseline) 74.9 78.6 72.1
w/ Lpm 76.5 (↑1.6) 80.2 (↑1.6) 73.3 (↑1.2)
w/ Lsd 75.4 (↑0.5) 79.4 (↑0.8) 73.0 (↑0.9)
w/ Lpm & Lsd 77.7 (↑2.8) 80.8 (↑2.2) 74.5 (↑2.4)
w/ Lsd & Lwg 78.0 (↑3.1) 81.2 (↑2.6) 74.6 (↑2.5)
RAIN (Lpm + Lsd + Lwg) 79.8 (↑4.9) 82.0 (↑3.4) 76.0 (↑4.1)

Table 3: Ablation Study of Losses on Selected Tasks

source-pretrained models (i.e. No-Adapt) and our models
(i.e. Fully-Adapted), and the results are shown in Fig. 5,
where the left part is about Single-Source and the right part
is about Multi-Source. Fig. 5a and Fig. 5c are results before
adaptation, while Fig. 5b and Fig. 5d are results after adap-
tation. All of these features are produced by Resnet-based
source models and target models. From them, we can ob-
serve that after adaptation, the data points with varied colors
(i.e., from different domains) form multiple clear clusters and
are no longer in chaos, which demonstrates the effectiveness
of our proposed method RAIN.

5 Conclusion
In this paper, we propose a method named RegulArization
on Input and Network (RAIN) for Black-Box domain adap-

Single-Source A→ D Ar→ Cl Syn→ Real
SD-SHOT 89.2 50.1 74.5

SD-SHOT w/ MixUp 89.5 (+0.3) 50.1 (+0.0) 73.6 (-0.9)
SD-SHOT w/ CutMix 89.0 (-0.2) 49.8 (-0.3) 74.2 (-0.3)

SD-SHOT w/ RandAugment 89.4 (+0.2) 50.3 (+0.2) 74.7 (+0.2)
SD-SHOT w/ Phase MixUp 90.8 (+1.6) 50.7 (+0.6) 75.2 (+0.7)

DINE-full w/o MixUp 90.9 52.9 76.3
DINE-full (w/ MixUp by default) 91.7 (+0.8) 54.2 (+1.3) 77.3 (+1.0)

DINE-full w/ CutMix 91.4 (+0.5) 53.8 (+0.8) 77.1 (+0.8)
DINE-full w/ RandAugment 92.0 (+1.1) 54.4 (+1.5) 77.3 (+1.0)
DINE-full w/ Phase MixUp 92.8 (+1.9) 55.0 (+2.1) 77.6 (+1.3)

Multi-Source →A →P →Ar
SD-DECISION 66.6 74.1 62.5

SD-DECISION w/ MixUp 66.5 (-0.1) 74.3 (+0.2) 62.0 (-0.5)
SD-DECISION w/ CutMix 67.2 (+0.6) 74.7 (+0.6) 62.2 (-0.3)

SD-DECISION w/ RandAugment 68.6 (+2.0) 74.8 (+0.7) 63.0 (+0.5)
SD-DECISION w/ Phase MixUp 69.9 (+3.3) 75.6 (+1.5) 64.5 (+2.0)

DINE-full w/o MixUp 75.3 78.8 73.0
DINE-full (w/ MixUp by default) 77.1 (+1.8) 79.7 (+0.9) 74.9 (+1.9)

DINE-full w/ CutMix 75.0 (-0.3) 77.4 (-1.4) 73.5 (+0.5)
DINE-full w/ RandAugment 78.1 (+2.8) 80.6 (+1.8) 74.5 (+1.5)
DINE-full w/ Phase MixUp 78.8 (+3.5) 81.3 (+2.5) 75.6 (+2.6)

Table 4: Ablation Study of Augmentation Methods

tation. We propose a new data augmentation technique called
Phase MixUp to regularize the data input, thus encouraging
class consistency for better target representations. We also
propose Subnetwork Distillation as a network-level regular-
ization technique to transfer knowledge from the target sub-
network to the full target network, hence learning diverse tar-
get representations and calibrating the full network. Com-
prehensive experiments on several datasets testify RAIN’s ef-
ficacy in both Single-Source and Multi-Source settings, to-
gether with detailed quantitative and qualitative analysis.
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