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Abstract
In this paper, we introduce Neural Probabilis-
tic Soft Logic (NeuPSL), a novel neuro-symbolic
(NeSy) framework that unites state-of-the-art sym-
bolic reasoning with the low-level perception of
deep neural networks. To model the boundary
between neural and symbolic representations, we
propose a family of energy-based models, NeSy
Energy-Based Models, and show that they are gen-
eral enough to include NeuPSL and many other
NeSy approaches. Using this framework, we
show how to seamlessly integrate neural and sym-
bolic parameter learning and inference in NeuPSL.
Through an extensive empirical evaluation, we
demonstrate the benefits of using NeSy methods,
achieving upwards of 30% improvement over in-
dependent neural network models. On a well-
established NeSy task, MNIST-Addition, NeuPSL
demonstrates its joint reasoning capabilities by out-
performing existing NeSy approaches by up to
10% in low-data settings. Furthermore, NeuPSL
achieves a 5% boost in performance over state-of-
the-art NeSy methods in a canonical citation net-
work task with up to a 40 times speed up.

1 Introduction
The field of artificial intelligence (AI) has long sought a sym-
biotic union of neural and symbolic methods. Neural-based
methods excel at low-level perception and learn from large
training data sets but struggle with interpretability and gen-
eralizing in low-data settings. Meanwhile, symbolic methods
can effectively use domain knowledge, context, and common
sense to reason with limited data but have difficulty represent-
ing complex low-level patterns. Recently, neuro-symbolic
computing (NeSy) [Besold et al., 2017; d’Avila Garcez et al.,
2019; De Raedt et al., 2020] has emerged as a promising new
research area with the goal of developing systems that inte-
grate neural and symbolic methods in a mutually beneficial
manner.

A neural and symbolic union has the potential to yield two
highly desirable capabilities - the ability to perform struc-
tured prediction (joint inference) across related examples that
possess complex low-level features and the ability to jointly

learn (joint learning) and adapt parameters over neural and
symbolic models simultaneously. For instance, predicting the
result of competitions between teams using historical perfor-
mance statistics in a tournament bracket requires methods to
perform joint inference to reason over low-level trends and
avoid inconsistencies such as two first-place finishes. Unfor-
tunately, joint inference problems quickly grow in complexity
as the output space typically increases combinatorially. For
example, in the tournament setting, as the number of entries
increases, the number of potential solutions grows exponen-
tially (O(2n)). An open challenge in the NeSy community is
scaling joint inference and reasoning.

This paper introduces Neural Probabilistic Soft Logic (Ne-
uPSL), a novel NeSy method that integrates deep neural net-
works with a symbolic method designed for fast joint learning
and inference. NeuPSL extends probabilistic soft logic (PSL)
[Bach et al., 2017], a state-of-the-art and scalable probabilis-
tic programming framework that can reason statistically (us-
ing probabilistic inference) and logically (using soft rules).
PSL has been shown to excel in a wide variety of tasks, in-
cluding natural language processing [Beltagy et al., 2014;
Deng and Wiebe, 2015; Liu et al., 2016; Rospocher, 2018],
data mining [Alshukaili et al., 2016; Kimmig et al., 2019],
recommender systems [Kouki et al., 2015], knowledge graph
discovery [Pujara et al., 2013], fairness modeling [Farnadi et
al., 2019; Dickens et al., 2020], and causal reasoning [Srid-
har et al., 2018]. The key innovation of NeuPSL is a new
class of predicates that rely on neural network output for
their values. This change fundamentally alters the learning
and joint inference problems by requiring efficient integrated
symbolic and neural parameter learning. The appeal of this
extension is that it allows for the semantics and implemen-
tation of the symbolic language to remain the same as PSL,
while also incorporating the added benefit of low-level neu-
ral perception. To gain a deeper understanding of optimiz-
ing the symbolic and neural parameters, we propose a versa-
tile mathematical framework, Neuro-Symbolic Energy-Based
Models (NeSy-EBMs), that enables many NeSy systems to
utilize established Energy-Based Model learning losses and
algorithms. Utilizing this theory and leveraging the unique
relaxation properties of PSL, we show that a gradient over
these neural predicates can be calculated and passed back to
common back-propagation engines such as PyTorch or Ten-
sorflow, allowing for scalable end-to-end gradient training.
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Our key contributions include: 1) We define Neuro-
Symbolic Energy-Based Models (NeSy-EBMs), a family of
energy-based models, and show how they provide a founda-
tion for describing, understanding and comparing NeSy sys-
tems. 2) We introduce NeuPSL, describe how it fits into the
NeSy ecosystem and supports scalable joint inference, and
show how it can be trained end-to-end using a joint energy-
based learning loss. 3) We perform extensive evaluations
over two image classification tasks and two citation network
datasets. Our results show NeuPSL consistently outperforms
existing approaches on joint inference tasks and can more ef-
ficiently leverage structure, particularly in low-data settings.

2 Related Work
Neuro-symbolic computing (NeSy) is an active area of re-
search that aims to incorporate logic-based reasoning with
neural networks [d’Avila Garcez et al., 2002; Bader and Hit-
zler, 2005; d’Avila Garcez et al., 2009; Serafini and d’Avila
Garcez, 2016; Besold et al., 2017; Donadello et al., 2017;
Yang et al., 2017; Evans and Grefenstette, 2018; Manhaeve et
al., 2021; d’Avila Garcez et al., 2019; De Raedt et al., 2020;
Lamb et al., 2020; Badreddine et al., 2022]. The advantages
of NeSy systems include interpretability, robustness, and the
ability to integrate various sub-problem solutions (such as
perception, reasoning, and decision-making). For a thorough
introduction to NeSy literature, we refer the reader to the
excellent surveys by Besold et al. (2017) and De Raedt et
al. (2020). In this section, we identify key NeSy research
categories and provide a brief description of each.

Differentiable frameworks of logical reasoning: Meth-
ods in this category use neural networks’ universal function
approximation properties to emulate logical reasoning inside
networks. Examples include: Rocktäschel and Riedel (2017),
Bošnjak et al. (2017), Evans and Grefenstette (2018), and Co-
hen et al. (2020).

Constrained Output: These approaches enforce con-
straints or regularizations on the output of neural networks.
Examples include: Hu et al. (2016), Diligenti et al. (2017),
Donadello et al. (2017), Mehta et al. (2018), Xu et al. (2018),
and Nandwani et al. (2019).

Executable logic programs: These approaches use neural
models to build executable logical programs. Examples in-
clude Liang et al. (2017) and Mao et al. (2019). We highlight
Logic Tensor Networks (LTNs) [Badreddine et al., 2022], as
we include this approach in our empirical evaluation. LTNs
connect neural predictions into functions representing sym-
bolic relations with real-valued or fuzzy logic semantics.

Neural networks as predicates: This line of work inte-
grates neural networks and probabilistic reasoning by intro-
ducing neural networks as predicates in the logical formulae.
This technique provides a very general and flexible frame-
work for NeSy reasoning and allows for the use of multiple
networks as well as the full incorporation of constraints and
relational information. Examples include DASL [Sikka et al.,
2020], NeurASP [Yang et al., 2020], Nuts&Bolts [Sachan et
al., 2018], DeepProbLog (DPL) [Manhaeve et al., 2021], and
our proposed method (Neural Probabilistic Soft Logic). DPL

combines general-purpose neural networks with the proba-
bilistic modeling of ProbLog [De Raedt et al., 2007] in a way
that allows for learning and inference over complex tasks,
such as program induction. We include DPL in our empir-
ical evaluation.

3 Neuro-Symbolic Energy-Based Models
With the success and growth of NeSy research, there is an in-
creasing need for a common formalization of NeSy systems
to accelerate the research and understanding of the field. We
fill this need with a general mathematical framework, Neuro-
Symbolic Energy-Based Models (NeSy-EBMs). NeSy-EBMs
encompass previous approaches and establishes the founda-
tion of our approach. Energy-Based Models (EBMs) [Le-
Cun et al., 2006] measure the compatibility of a collection
of observed (or input) variables x ∈ X and target (or out-
put) variables y ∈ Y with a scalar-valued energy function:
E : Y × X → R. Low energy states of the variables repre-
sent high compatibility. Prediction or inference in EBMs is
performed by finding the lowest energy state of the variables
y given x. Energy functions are parameterized by variables
w ∈ W , and learning is the task of finding a parameter set-
ting that associates low energy to correct solutions.

Building on the well-known EBM framework, NeSy-
EBMs are a family of EBMs that integrate neural architec-
tures with explicit encodings of symbolic relations. The input
variables are organized into neural, xnn ∈ Xnn, and sym-
bolic, xsy ∈ Xsy , vectors. Furthermore, the parameters of
the energy function, w, are partitioned into neural weights,
wnn ∈ Wnn, and symbolic weights, wsy ∈ Wsy . Formally,
Definition 1 (NeSy-EBM). Let y ∈ Y and xsy ∈ Xsy

be vectors of variables with symbolic interpretations. Let
gnn be neural networks with neural weights wnn ∈ Wnn

and inputs xnn ∈ Xnn. A symbolic potential is a function
of y, xsy , and gnn(·) parameterized by symbolic weights
wsy ∈ Wsy: ψ(y,xsy,wsy,gnn(xnn,wnn)) ∈ R. A
NeSy-EBM energy function is a mapping of a vector of
m symbolic potential outputs, Ψ(y,xsy,wsy,xnn,wnn) =
[ψi(y,xsy,wsy,gnn(xnn,wnn))]

m
i=1, to a real value:

E(Ψ(y,xsy,wsy,xnn,wnn)) ∈ R.
NeSy-EBMs are differentiated from one another by the

instantiation process, the form of the symbolic potentials,
and the definition of the energy function. In appendix, we
formally show how two NeSy systems DeepProbLog (DPL)
[Manhaeve et al., 2018] and Logic Tensor Networks (LTNs)
[Badreddine et al., 2022] fit into the NeSy-EBM framework.
In summary, DPL uses neural network outputs to specify
event probabilities that are used in logical formulae defin-
ing probabilistic dependencies. The definition of the DPL
symbolic potentials and energy function are tied to the infer-
ence task; a different definition of the symbolic potential and
energy function is used to implement marginal versus MAP
inference. For marginal, the most common DPL inference,
symbolic potentials are functions of marginal probabilities,
and the energy function is a joint distribution that is the sum
of the symbolic potentials. LTNs instantiate a model which
forwards neural network predictions into functions represent-
ing symbolic relations with real-valued or fuzzy logic seman-
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tics. The fuzzy logic functions are symbolic potentials that
are aggregated to define the energy function. The following
section will introduce how our approach, NeuPSL, is instanti-
ated as a NeSy-EBM. Using this common framework, under-
standing and theoretical advances can be made across NeSy
approaches.

3.1 Joint Reasoning in NeSy-EBMs
We highlight two important categories of NeSy-EBM en-
ergy functions: joint and independent. Formally, an energy
function that is additively separable over the output variables
y is an independent energy function, i.e., corresponding to
each of the ny components of the output variable y there ex-
ists functions ny functionsE1(y[1],xsy,wsy,g(xnn,wnn)),
· · · , Eny (y[ny],xsy,wsy,g(xnn,wnn)) such that

E(·) =
ny∑
i=1

Ei(y[i],xsy,wsy,g(xnn,wnn)).

While a function that is not separable over output variables
y is a joint energy function. This categorization allows for
an important distinction during inference and learning. In-
dependent energy functions simplify inference and learning
as finding an energy minimizer, y∗, can be distributed across
the independent functions Ei. In other words, the predicted
value for a variable y[i] has no influence over that of y[j]
where j ̸= i and can therefore be predicted separately, i.e., in-
dependently. However, independent energy functions cannot
leverage some joint information that may be used to improve
predictions. See appendix for further details.

4 Neural Probabilistic Soft Logic
Having laid the NeSy-EBM groundwork, we now introduce
Neural Probabilistic Soft Logic (NeuPSL), a novel NeSy-
EBM framework that extends the probabilistic soft logic
(PSL) framework [Bach et al., 2017]. At its core, NeuPSL
leverages the power of neural networks’ low-level percep-
tion by seamlessly integrating their outputs with a collec-
tion of symbolic potentials generated through a PSL program.
Figure 1 provides a graphical representation of this process.
The symbolic potentials and neural networks together define
a deep hinge-loss Markov random field (Deep-HL-MRF), a
tractable probabilistic graphical model that supports scalable
convex joint inference. This section provides a comprehen-
sive description of how NeuPSL instantiates its symbolic po-
tentials and how the symbolic potentials are combined to
define an energy function, while the following section de-
tails NeuPSL’s end-to-end neural-symbolic inference, learn-
ing, and joint reasoning processes.

NeuPSL instantiates the symbolic potentials of its energy
function using the PSL language where dependencies be-
tween relations and attributes of entities in a domain, de-
fined as atoms, are encoded with weighted first-order logi-
cal clauses and linear arithmetic inequalities referred to as
rules. To illustrate, consider a setting in which a neural net-
work is used to classify the species of an animal in an image.
Further, suppose there exists external information suggesting
when two images may contain the same entity. The infor-
mation linking the images may come from various sources,

such as the images’ caption or metadata indicating the images
were captured by the same device within a short period of
time. NeuPSL represents the neural network’s animal classi-
fication of an image (Image1) as a species (Species) with
the atom NEURAL(Image1,Species) and the probability
that two images (Image1 and Image2) contain the same en-
tity with the atom SAMEENTITY(Image1,Image2). Ad-
ditionally, we represent NeuPSL’s classification of Image2

with CLASS(Image2,Species). The following weighted
logical rule in NeuPSL represents the notion that two images
identified as the same entity may also be of the same species:

w : NEURAL(Image1,Species)

∧ SAMEENTITY(Image1,Image2)

→ CLASS(Image2,Species) (1)

The parameter w is the weight of the rule, and it quantifies
its relative importance in the model. Note these rules can ei-
ther be hard or soft constraints. Atoms and weighted rules are
templates for creating symbolic potentials or soft constraints.
To create these symbolic potentials, atoms and rules are in-
stantiated with observed data and neural predictions. Atoms
instantiated with elements from the data are referred to as
ground atoms. Then, valid combinations of ground atoms
substituted in the rules create ground rules. To illustrate, sup-
pose that there are two images {Id1, Id2} and three species
classes {Cat,Dog, Frog}. Using the above data for cats
would result in the following ground rules (analogous ground
rules would be created for dogs and frogs):

w : NEURAL(Id1, Cat)∧SAMEENTITY(Id1, Id2)

→ CLASS(Id2, Cat)

w : NEURAL(Id2, Cat)∧SAMEENTITY(Id2, Id1)

→ CLASS(Id1, Cat)

Ground atoms are mapped to either an observed variable,
xsy,i, target variable, yi, or a neural function with inputs
xnn and parameters wnn,i: gnn,i(xnn,wnn,i). Then, vari-
ables are aggregated into the vectors xsy = [xsyi

]nx
i=1 and

y = [yi]
ny

i=1 and neural outputs are aggregated into the vector
gnn = [gnn,i]

ng

i=1. Ground rules are either logical (e.g., Equa-
tion 1) or arithmetic defined over xsy , y, and gnn. These
ground rules create one or more potentials ϕ(·) ∈ R, where
logical rules are relaxed using Łukasiewicz continuous val-
ued logical semantics [Klir and Yuan, 1995]. Each potential
ϕ(·) is associated with a weight wpsl inherited from its in-
stantiating rule. The potentials and weights from the instanti-
ation process are used to define a member of a tractable class
of graphical models, deep hinge-loss Markov random fields
(Deep-HL-MRF):
Definition 2 (Deep Hinge-Loss Markov Random Field). Let
y ∈ [0, 1]ny and xsy ∈ [0, 1]nx be vectors of [0, 1] valued
variables. Let gnn = [gnn,i]

ng

i=1 be functions with corre-
sponding parameters wnn = [wnn,i]

ng

i=1 and inputs xnn. A
deep hinge-loss potential is a function of the form

ϕ(y,xsy,xnn,wnn) = max(l(y,xsy,gnn(xnn,wnn)), 0)
α

(2)
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Figure 1: NeuPSL inference and learning pipeline.

where l(·) is a linear function and α ∈ {1, 2}. Let T =
[ti]

r
i=1 denote an ordered partition of a set of m deep hinge-

loss potentials: {ϕ1, · · · , ϕm}. For each partition ti de-
fine Φi(y,xsy,xnn,wnn) :=

∑
j∈ti

ϕi(y,xsy,xnn,wnn)

and let Φ(y,xsy,xnn,wnn) := [Φi(y,xsy,xnn,wnn)]
r
i=1.

Further, let wpsl = [wpsl,i]
r
i=1 be a vector of non-negative

weights corresponding to the partition T . Then, a deep
hinge-loss energy function is
E(y,xsy,xnn,wnn,wpsl) = wT

pslΦ(y,xsy,xnn,wnn)

(3)

Further, let c = [ci]
q
i=1 be a vector of q linear con-

straints in standard form, defining the feasible set Ω =
{y,xsy | ci(y,xsy) ≤ 0, ∀i ∈ {0, · · · , q}}. Then a deep
hinge-loss Markov random field, P , with random variables
y conditioned on xsy and xnn is a probability density of the
form

P (y|xsy,xnn) =

{
exp(−E(·))∫

y|y,xsy∈Ω
exp(−E(·))dy (y,xsy) ∈ Ω

0 o.w.

Deep-HL-MRFs naturally fit into the NeSy-EBM frame-
work. The symbolic potentials of deep-HL-MRFs are the ag-
gregated and scaled deep hinge-loss potentials:

ψNeuPSL(y,xsy,wpsl,gnn(xnn,wnn))

= wpslΦ(y,xsy,xnn,wnn) (4)
Then the energy function is the sum of symbolic potentials:

ENeuPSL(y,xsy,xnn,wnn,wpsl)

=
r∑

i=1

ψNeuPSL,i(y,xsy,wpsl,gnn(xnn,wnn)) (5)

5 NeuPSL Inference and Learning
There is a clear connection between neural and symbolic in-
ference in NeuPSL that allows any neural architecture to in-
teract with symbolic reasoning in a simple and expressive
manner. The NeuPSL neural-symbolic interface and infer-
ence pipeline is shown in Figure 1. Neural inference is com-
puting the output of the neural networks given the input xnn,
i.e., computing gnn,i(xnn,wnn,i) for all i. NeuPSL symbolic
inference minimizes the energy function over y:

y∗ = argmin
y|(y,xsy)∈Ω

E(y,xsy,xnn,wnn,wpsl) (6)

Note that the hinge-loss potentials are convex in y and hence,
with the common constraint enforcing symbolic parameters
to be non-negative, i.e., wpsl > 0, the energy function is
convex in y. Any scalable convex optimizer can be applied
to solve (6). NeuPSL uses the alternating direction method of
multipliers [Boyd et al., 2010].

NeuPSL learning is the task of finding both neural and
symbolic parameters, i.e., rule weights, that assign low en-
ergy to correct values of the output variables and higher ener-
gies to incorrect values. Learning objectives are functionals
mapping an energy function and a set of training examples
S = {(yi,xsy,i,xnn,i) : i = 1, · · · , P} to a real-valued
loss. As the energy function for NeuPSL is parameterized by
the neural weights wnn and symbolic weights wpsl, we ex-
press the learning objective as a function of wnn, wpsl, and
S: L(S,wnn,wpsl). Learning objectives follow the standard
empirical risk minimization framework and are therefore sep-
arable over the training examples in S as a sum of per-sample
loss functions Li(yi,xi,xnn,i,wnn,wpsl). Concisely, Ne-
uPSL learning is the following minimization:

argmin
wnn,wpsl

L(wnn,wpsl,S)

= argmin
wnn,wpsl

P∑
i=1

Li(yi,xsy,i,xnn,i,wnn,wpsl)

In the learning setting, variables yi from the training set S
are partitioned into vectors yi,t and zi. The variables yi,t

represent variables for which there is a corresponding truth
value, while zi represent latent variables. Without loss of
generality, we write yi = (yi,t, zi).

There are multiple losses that one could motivate for opti-
mizing the parameters of an EBM. Common losses, including
the loss we present in this work, use the following terms:
z∗i = argmin

z|((yi,t,z),xsy,i)∈Ω

E((yi,t, z),xsy,i,xnn,i,wnn,wpsl)

y∗
i = argmin

y|(y,xsy,i)∈Ω

E(y,xsy,i,xnn,i,wnn,wpsl)

In words, z∗i and y∗
i are the lowest energy states given

(yi,t,xsy,i,xnn,i) and (xsy,i,xnn,i), respectively. A special
case of learning is when the per-sample losses are not func-
tions of z∗i and y∗

i , and more specifically, the losses do not
require any subproblem optimization. We refer to this situ-
ation as constraint learning. Constraint learning reduces the
time required per iteration at the cost of expressivity.
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All interesting learning losses for NeuPSL are a composi-
tion of the energy function. Thus, a gradient-based learning
algorithm will require the following partial derivatives: 1

∂E(·)
∂wpsl[i]

= Φi(y,xsy,xnn,wnn)

∂E(·)
∂wnn[i]

= wT
psl∇wnn[i]Φ(y,xsy,xnn,wnn)

Continuing with the derivative chain rule and noting the po-
tential can be squared (α = 2) or linear (α = 1), the potential
partial derivative with respect to wnn[i] is the piece-wise de-
fined function:1

∂ϕ(·)
∂wnn[i]

=

{
∂

∂gnn[i]
ϕ(·) · ∂

∂wnn[i]
gnn[i](·) α = 1

2 · ϕ(·) · ∂
∂gnn[i]

ϕ(·) · ∂
∂wnn[i]

gnn[i](·) α = 2

∂ϕ(·)
∂gnn[i]

=

{
0 ϕ(·) = 0

∂
∂gnn[i]

l(y,xsy,gnn(xnn,wnn)) ϕ(·) > 0

Since l(y,xsy,gnn(xnn,wnn)) is a linear function, the par-
tial gradient with respect to gnn[i] is trivial. With the partial
derivatives presented here, standard backpropagation-based
algorithms for computing gradients can be applied for both
neural and symbolic parameter learning.
Energy Loss: A variety of differentiable loss functions can
be chosen for L. For simplicity, in this work, we present
the energy loss. The energy loss parameter learning scheme
directly minimizes the energy of the training samples, i.e., the
per-sample losses are:
Li(yi,xsy,i,xnn,i,wnn,wpsl)

= E((yi,t, z
∗
i ),xsy,i,xnn,i,wnn,wpsl)

Notice that inference over the latent variables is necessary for
gradient and objective value computations. However, a com-
plete prediction from NeuPSL, i.e., inference over all compo-
nents of y, is unnecessary. Therefore the parameter learning
problem is as follows:

argmin
wnn,wpsl

P∑
i=1

min
z∈Ω

wT
pslΦ((yi,t, z),xsy,i,xnn,i,wnn)

With L2 regularization, the NeuPSL energy function is
strongly convex in all components of yi. Thus, by Dan-
skin (1966), the gradient of the energy loss, Li(·), with re-
spect to wpsl at yi,xi,xnn,iwnn is:

∇wpsl
Li(yi,xsy,i,wnn,wpsl)

= Φ((yi,t, z
∗
i ),xsy,i,xnn,i,wnn)

Then the per-sample energy loss partial derivative with re-
spect to wnn[j] at yi,xsy,i,xnn,i,wpsl is:

∂Li(yi,xsy,i,xnn,i,wnn,wpsl)

∂wnn[j]

=
R∑

r=1

wpsl[r]
∑
q∈τr

∂ϕq((yi,t, z
∗
i ),xsy,i,xnn,i,wnn)

∂wnn[j]

1Note arguments of the energy function and sym-
bolic potentials are dropped for simplicity, i.e., E(·) =
E(y,xsy,i,xnn,i,wnn,wpsl), ϕ(·) = ϕ(y,xsy,xnn,wnn),
and gnn[i](·) = gnn[i](xnn,wnn).

Details on the learning algorithms and accounting for degen-
erate solutions of the energy loss are included in supplemen-
tary materials.

6 Experimental Evaluation
We evaluate NeuPSL’s prediction performance and inference
time on three tasks to demonstrate the significance of joint
symbolic inference and learning. NeuPSL, implemented us-
ing the open-source PSL software package, can be integrated
with any neural network library (here, we used TensorFlow).2
Our investigation addresses the following questions: Q1)
Can neuro-symbolic methods provide a boost over conven-
tional purely data-driven neural models? Q2) Can we effec-
tively leverage structural relationships across training exam-
ples through joint reasoning? Q3) How does NeuPSL com-
pare with other neuro-symbolic methods in terms of time ef-
ficiency on large scale problems?

6.1 MNIST Addition
The first set of experiments are conducted on a variation of
MNIST Addition, a widely used NeSy evaluation task [Man-
haeve et al., 2018]. The task involves determining the sum of
two lists of MNIST images. For example, a MNIST-Add1
addition is (

[ ]
+

[ ]
= 8), and a MNIST-Add2 addition

is (
[

,
]
+

[
,

]
= 41). The challenge stems from the

lack of labels for the MNIST images in the addition equation.
Only the final sum of the equation is given, leaving the task of
identifying the individual digits and determining their values
up to the model being used.

While NeuPSL proves to be successful in the original
MNIST-Add setting (appendix for further details), here we
are interested in exploring the power of joint inference and
learning capabilities in NeSy systems. We introduce a vari-
ant of the MNIST-Add task in which digits are reused across
multiple addition examples, i.e., we introduce overlap. Fig-
ure 2 demonstrates the process of introducing overlap and
how joint models narrow the space of possible labels when
MNIST images are re-used. For instance, in the scenario pre-
sented in Figure 2, the same MNIST image of a zero is uti-
lized in two separate additions. To comply with both addition
constraints, the potential label space is restricted and can no
longer include options such as two or three, as they would vi-
olate one of the addition rules. In contrast, a model perform-
ing independent reasoning would have no way of enforcing
this constraint across examples.

In the overlap variant of MNIST-Add, we focus on low-
data settings to understand whether NeSy systems’ joint rea-
soning can effectively leverage additional structure to over-
come a lack of data. To create overlap, we begin with a set of
n unique MNIST images from which we re-sample to create
(n+m)/2 MNIST-Add1 and (n+m)/4 MNIST-Add2 ad-
ditions. We vary the amount of overlap withm ∈ {0, n/2, n}
and compare performance with n ∈ {40, 60, 80}. Results

2Implementation details, hyperparameters, network architec-
tures, hardware, and NeuPSL models, are described in the Ap-
pendix.

Code and Data: https://github.com/linqs/neupsl-ijcai23
Appendix: https://arxiv.org/abs/2205.14268
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Figure 2: Example of overlapping MNIST images in MNIST-Add1. On the left, distinct images are used for each zero. On the right, the
same image is used for both zeros.

Figure 3: Average test set accuracy and standard deviation on MNIST-Add datasets with varying amounts of overlap.

are reported over ten test sets of 1, 000 MNIST images with
overlap proportional to the respective train set.

Figure 3 summarizes average performance for varying
overlap settings. Each panel varies the number of additions
for a set number of unique MNIST images. For example,
the upper left panel presents the results obtained for MNIST-
Add1 with 40 unique images used to generate 20, 30, and
40 additions. Initially, there is not enough structure from the
additions with no overlap for symbolic inference to discern
the correct digit labels for training the neural models. Then,
despite the number of unique MNIST images remaining the
same, as the number of additions increases, DPL and Ne-
uPSL improve their prediction performance by leveraging the
added joint information (Q2). In all cases, NeuPSL performs
best and uses the added structure most efficiently. LTNs and
the CNN baseline benefit the least from joint information, a
consequence of both learning and inference being performed
independently across batches of additions (Q1).

6.2 Visual Sudoku Classification
Inspired by the Visual Sudoku problem proposed by Wang et
al. (2019), Augustine et al. (2022) introduced a novel NeSy
task, Visual-Sudoku-Classification. In this task, 4x4 Su-
doku puzzles are constructed using unlabeled MNIST im-
ages. The model must identify whether a puzzle is correct,
i.e., no duplicate digits in any row, column, or square. There-
fore this task does not require learning the underlying label

for images but rather whether an entire puzzle is valid. For
instance,

[ ]
does not need to belong to a ”3” class, instead[ ]

and
[ ]

need to be labeled as different symbols. Simi-
lar to MNIST-Add we explore an overlap variant in low-data
settings, with overlapping MNIST images across puzzles.

We compare NeuPSL with two baselines, CNN-Visual and
CNN-Digit. The first, CNN-Visual, takes the pixels for a Su-
doku puzzle as input and outputs the probability the puzzle
is valid. The second, CNN-Digit, is provided the (unfair) ad-
vantage of all sixteen image labels as input. We use this to
verify whether a neural model can learn Sudoku rules. Scal-
ably developing LTN and DPL models in this new setting is
not straightforward due to the large dimensionality of the out-
put space. A non-expert implementation of a visual sudoku
model in DPL and LTN may result in suboptimal reports on
model performance and are therefore not included.

Figure 4 shows the accuracy of NeuPSL and CNN mod-
els on Visual-Sudoku-Classification with varying amounts
of overlap. CNN-Visual and CNN-Digit struggle to leverage
the problem structure and fail to generalize even the high-
est data and overlap setting with 256 MNIST images across
64 puzzles. However, NeuPSL achieves 70% accuracy using
roughly 64 MNIST images across 16 puzzles, again showing
it efficiently leverages joint information across training exam-
ples (Q1 and Q2). This is a particularly impressive result as
the neural network in the NeuPSL model was trained to be a
93% 4-digit distinguisher without digit labels.
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Figure 4: Average test set accuracy and standard deviation on Visual-Sudoku-Classification with varying amounts of overlap.

Method Citeseer Cora
(Accuracy) (Seconds) (Accuracy) (Seconds)

NeuralPSL 57.76 ± 1.71 - 57.12 ± 2.13 -
LPPSL 50.88 ± 1.18 - 73.32 ± 2.39 -

DeepProbLog timeout timeout timeout timeout
DeepStochLog 61.30 ± 1.44 34.42 ± 0.87 69.96 ± 1.47 165.28 ± 4.49

GCN 67.50 ± 0.57 3.10 ± 0.04 79.52 ± 1.13 1.31 ± 0.01
NeuPSLLP 67.34 ± 1.17 3.98 ± 0.05 76.80 ± 2.27 4.00 ± 0.31

NeuPSLLP+FP 68.48 ± 1.22 4.23 ± 0.05 81.22 ± 0.79 4.07 ± 0.14

Table 1: Test set accuracy and inference runtime in seconds on two citation network datasets.

6.3 Citation Network Node Classification
In our final experiment, we evaluate the performance of Ne-
uPSL on two widely studied citation network node classifica-
tion datasets: Citeseer and Cora [Sen et al., 2008]. In these
datasets, symbolic models have the potential to improve pre-
dictions by leveraging the homophilic structure of the cita-
tion network, i.e., two papers connected in the network are
more likely to have the same label. This setting differs from
Visual-Sudoku-Classification and MNIST-Add as the sym-
bolic relations are not always true. Moreover, the symbolic
relations can be defined over a general and potentially large
number of nodes in the network, i.e., a node can be connected
to any number of neighbors.

We propose two NeuPSL models for citation network
node classification. Both models integrate a neural network
that uses a paper’s features to provide an initial classifica-
tion, which is then adjusted via symbolic reasoning. The
first model, NeuPSLLP (Label Propagation), directly uses
the bag-of-words feature vector, while the second model,
NeuPSLLP+FP (Label + Feature Propagation), first performs
the feature construction procedure as described in Wu et
al. (2019) to obtain a richer representation to provide to the
neural model. We examine the runtime and model perfor-
mance of NeSy methods NeuPSLLP , NeuPSLLP+FP , DPL
and its scalable extension, DeepStochLog [Winters et al.,
2022], and a Graph Convolutional Network (GCN) [Kipf and
Welling, 2017]. Additionally, we include the performance of
two baselines, LPPSL and NeuralPSL. These baselines rep-
resent the distinct symbolic and neural components used in
the NeuPSLLP model but perform only neural or symbolic
reasoning, not both. We averaged the results over ten ran-
domly sampled splits using 5% of the nodes for training, 5%
of the nodes for validation, and 1000 nodes for testing.

Table 1 shows DeepStochLog, GCN, and NeuPSL
all outperform the independent baselines (Q1), with
NeuPSLLP+FP performing the best. These results demon-
strate the power of using NeSy systems to effectively leverage
structure to improve prediction performance. Additionally,
NeuPSL is capable of scaling its joint inference process to
larger structures, achieving higher accuracy with an 8 and 40
times speed up over DeepStochLog in Citeseer and Cora, re-
spectively (Q3). Surprisingly, NeuPSL also achieves a higher
prediction performance than even a GCN model while using
significantly fewer trainable parameters.

7 Conclusion
In this paper, we introduced NeuPSL, a novel NeSy frame-
work that integrates neural architectures and a tractable class
of graphical models for jointly reasoning over symbolic rela-
tions and showed its utility across a range of neuro-symbolic
tasks. There are many avenues for future work, including
exploring different learning objectives, such as ones that bal-
ance traditional neural and energy-based losses and new ap-
plication domains. Each of these is likely to provide new
challenges and insights.

Acknowledgments
This work was partially supported by the National Science
Foundation grant CCF-2023495 and a Google Faculty Re-
search Award.

Contribution Statement
Connor Pryor and Charles Dickens contributed equally to this
work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4151



References
[Alshukaili et al., 2016] Duhai Alshukaili, Alvarao Fernan-

dees, and Norman Paton. Structuring linked data search
results using probabilistic soft logic. In ISWC, 2016.

[Augustine et al., 2022] Eriq Augustine, Connor Pryor,
Charles Dickens, Jay Pujara, William Yang Wang, and
Lise Getoor. Visual sudoku puzzle classification: A suite
of collective neuro-symbolic tasks. In International Work-
shop on Neural-Symbolic Learning and Reasoning (NeSy),
2022.

[Bach et al., 2017] Stephen Bach, Matthias Broecheler, Bert
Huang, and Lise Getoor. Hinge-loss Markov random fields
and probabilistic soft logic. JMLR, 18(1):1–67, 2017.

[Bader and Hitzler, 2005] Sebastian Bader and Pascal Hit-
zler. Dimensions of neural-symbolic integration - A struc-
tured survey. arXiv preprint cs/0511042, 2005.

[Badreddine et al., 2022] Samy Badreddine, Artur d’Avila
Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. AI, 303(4):103649, 2022.

[Beltagy et al., 2014] Islam Beltagy, Katrin Erk, and Ray-
mond Mooney. Probabilistic soft logic for semantic textual
similarity. In ACL, 2014.

[Besold et al., 2017] Tarek R. Besold, Artur S. d’Avila
Garcez, Sebastian Bader, Howard Bowman, Pedro M.
Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luı́s C.
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son Naradowsky, and Sebastian Riedel. Programming with
a differentiable forth interpreter. In ICML, 2017.

[Boyd et al., 2010] Stephen Boyd, Neal Parikh, Eric Chu,
Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends in Ma-
chine Learning, 3(1):1–122, 2010.

[Cohen et al., 2020] William W. Cohen, Fan Yang, and
Kathryn Mazaitis. Tensorlog: A probabilistic database
implemented using deep-learning infrastructure. JAIR,
67:285–325, 2020.

[Danskin, 1966] John Danskin. The theory of max-min,
with applications. SIAM Journal on Applied Mathemat-
ics, 14(4):641–664, 1966.

[d’Avila Garcez et al., 2002] Artur S. d’Avila Garcez,
Krysia Broda, and Dov M. Gabbay. Neural-Symbolic
Learning Systems: Foundations and Applications.
Springer, 2002.

[d’Avila Garcez et al., 2009] Artur S. d’Avila Garcez,
Luı́s C. Lamb, and Dov M. Gabbay. Neural-Symbolic
Cognitive Reasoning. Springer, 2009.

[d’Avila Garcez et al., 2019] Artur d’Avila Garcez, Marco
Gori, Luı́s C. Lamb, Luciano Serafini, Michael Spranger,

and Son N. Tran. Neural-symbolic computing: An ef-
fective methodology for principled integration of ma-
chine learning and reasoning. Journal of Applied Logics,
6(4):611–632, 2019.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig,
and Hannu Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In IJCAI, 2007.

[De Raedt et al., 2020] Luc De Raedt, Sebastijan Dumančić,
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