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Abstract

Linear Temporal Logic (LTL) is widely used to
specify high-level objectives for system policies,
and it is highly desirable for autonomous systems to
learn the optimal policy with respect to such spec-
ifications. However, learning the optimal policy
from LTL specifications is not trivial. We present a
model-free Reinforcement Learning (RL) approach
that efficiently learns an optimal policy for an un-
known stochastic system, modelled using Markov
Decision Processes (MDPs). We propose a novel
and more general product MDP, reward structure
and discounting mechanism that, when applied in
conjunction with off-the-shelf model-free RL al-
gorithms, efficiently learn the optimal policy that
maximizes the probability of satisfying a given
LTL specification with optimality guarantees. We
also provide improved theoretical results on choos-
ing the key parameters in RL to ensure optimality.
To directly evaluate the learned policy, we adopt
probabilistic model checker PRISM to compute the
probability of the policy satisfying such specifica-
tions. Several experiments on various tabular MDP
environments across different LTL tasks demon-
strate the improved sample efficiency and optimal
policy convergence.

1 Introduction
Linear Temporal Logic (LTL) is a temporal logic language
that can encode formulae regarding properties of an infi-
nite sequence of logic propositions. LTL is widely used for
the formal specification of high-level objectives for robotics
and multi-agent systems, and it is desirable for a system
or an agent in the system to learn policies with respect to
these high-level specifications. Such systems are modelled
as Markov Decision Processes (MDPs), where classic policy
synthesis techniques can be adopted if the states and transi-
tions of the MDP are known. However, when the transitions
are not known a priori, the optimal policy needs to be learned
through interactions with the MDP.

Model-free Reinforcement Learning [Sutton and Barto,
2018], a powerful method to train an agent to choose actions

in order to maximize rewards over time in an unknown envi-
ronment, is a perfect candidate for LTL specification policy
learning. However, it is not straightforward to utilize reward-
based RL to learn the optimal policy that maximizes the prob-
ability of satisfying LTL specifications [Alur et al., 2021] due
to the difficulty of deciding when, where, and how much re-
ward to give to the agent. To this end, most works adopt a
method to first transform the LTL specification into an au-
tomaton, then build a product MDP using the original envi-
ronment MDP and the automaton, on which model-free RL
algorithms are applied. However, one crucial obstacle still
remains, and that is how to properly define the reward that
leads an agent to the optimal satisfaction of LTL specification.
Several algorithms have been proposed [Hahn et al., 2019;
Bozkurt et al., 2019; Hasanbeig et al., 2019] for learning LTL
specifications, where, in order to ensure optimality, the key
parameters are chosen depending on assumptions or knowl-
edge of the environment MDP. These works normally only
prove the existence of the optimality guarantee parameters or
provide unnecessarily harsh bounds for them, which might
lead to inefficient learning. In addition, it is unclear how to
explicitly choose these parameters even with certain knowl-
edge of the environment MDP. Furthermore, the assumed
parameters are evaluated in experiments indirectly, either
through inspection of the value function or comparison of the
expected reward gained, making it difficult to tune the opti-
mality parameters for LTL learning in general MDPs.

In this work, we propose a novel and more general prod-
uct MDP, reward structure and discounting mechanism that,
by leveraging model-free reinforcement learning algorithms,
efficiently learns the optimal policy that maximizes the prob-
ability of satisfying the LTL specification with guarantees.
We demonstrate improved theoretical results on the optimal-
ity of our product MDP and the reward structure, with more
stringent analysis that yields better bounds on the optimality
parameters. Moreover, this analysis sheds light on how to
explicitly choose the optimality parameters based on the en-
vironment MDP. We also adopt counterfactual imagining that
exploits the known high-level LTL specification to further im-
prove the performance of our algorithm. Last but not least,
we propose to use the PRISM model checker [Kwiatkowska
et al., 2011] to directly evaluate the satisfaction probability
of the learned policies, providing a platform to directly com-
pare algorithms and tune key parameters. We conduct exper-
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iments on several common MDP environments with various
challenging LTL tasks, and demonstrate the improved sample
efficiency and convergence of our methods.

Our contributions include: (i) a novel product MDP design
that incorporates an accepting states counter with a gener-
alized reward structure; (ii) a novel reinforcement learning
algorithm that converges to the optimal policy for satisfy-
ing LTL specifications, with theoretical optimality guaran-
tees and theoretical analysis results on choosing the key pa-
rameters; (iii) the use of counterfactual imagining, a method
to exploit the known structure of the LTL specification by
creating imagination experiences through counterfactual rea-
soning; and (iv) direct evaluation of the proposed algorithms
through a novel integration of probabilistic model checkers
within the evaluation pipeline, with strong empirical results
demonstrating better sample efficiency and training conver-
gence.

1.1 Related Work
Most works on LTL learning with reward-based RL utilize
a product MDP: a product of the environment MDP and an
automaton translated from the LTL specification. Sadigh et
al. [2014] first used deterministic Rabin automata to create
this product with a discounted reward design to learn LTL,
while later works adopted a new automaton design, limit-
deterministic Büchi automata (LDBA) [Sickert et al., 2016].
Hahn et al. [2019] adopted a product MDP with LDBA and
augmented it with sink states to reduce the LTL satisfaction
problem into a limit-average reward problem with optimal-
ity guarantees. Hahn et al. [2020] later modified this ap-
proach by including two discount factors with similar opti-
mality guarantee results. Bozkurt et al. [2019] proposed a
discounted reward learning algorithm on the product MDP
with optimality guarantees, where the discount factor is cho-
sen based on certain assumptions about the unknown environ-
ment MDP. To the best of our knowledge, these approaches
are the only available to provide optimality guarantees for the
full infinite-horizon LTL learning. However, many methods
have nevertheless demonstrated empirical results for learning
LTL. Hasanbeig et al. [2020; 2019] proposed an accepting
frontier function as the reward for the product MDP, while
Cai et al. [2021] extended this reward frontier to continuous
control tasks.

Due to the difficulty of learning full LTL, many approaches
focus on learning restricted finite LTL variants. Giacomo et
al. [2013; 2019] proposed the LTLf variant and a correspond-
ing reinforcement learning algorithm; Littman et al. [2017]
formulated a learning algorithm for the GLTL variant; Ak-
saray et al. [2016] proposed to learn Signal Temporal Logic
and Li et al. [2016] a truncated LTL variant for robotics ap-
plications.

Another related line of work leverages automata to learn
non-Markovian rewards. Toro Icarte et al. [2022; 2018] de-
fined a reward machine automaton to represent high-level
non-Markovian rewards, while Camacho et al. [2019] intro-
duced a method to learn finite LTL specifications by trans-
forming them into reward machines. However, the expres-
siveness of reward machines is strictly weaker than that of
LTL. Lastly, there are works that exploit other high-level logic

specifications to facilitate learning [Andreas et al., 2016;
Jiang et al., 2021; Jothimurugan et al., 2020; Jothimurugan
et al., 2021], but they are less relevant to reinforcement learn-
ing from LTL.

2 Preliminaries
Before formulating our problem, we provide preliminary
background on Markov decision processes, linear temporal
logic, and reinforcement learning.

2.1 Markov Decision Processes
Definition 1 (Markov Decision Process [Littman, 2001]).
A Markov decision process (MDP) M is a tuple
(S, s0, A, T,AP , L, r, γ), where S is a finite set of states,
s0 ∈ S is the initial state, A is a finite set of actions,
T : S × A × S → [0, 1] is the probabilistic transition func-
tion, AP is the set of atomic propositions, L : S → 2AP is
the proposition labeling function, r : S × A × S → R is a
reward function and γ : S → (0, 1] is a discount function.
Let A(s) denote the set of available actions at state s, then,
for all s ∈ S, it holds that

∑
s′∈S T (s, a, s′) = 1 if a ∈ A(s)

and 0 otherwise.

An infinite path is a sequence of states σ = s0, s1, s2...,
where there exist ai+1 ∈ A(si) such that T (si, ai+1, si+1) >
0 for all i ≥ 0, and a finite path is a finite such sequence. We
denote the set of infinite and finite paths of the MDP M as
PathsM and FPathsM, respectively. We use σ[i] to denote
si, and σ[: i] and σ[i :] to denote the prefix and suffix of
the path, respectively. Furthermore, we assume self-loops: if
A(s) = ∅ for some state s, we let T (s, a, s) = 1 for some
a ∈ A and A(s) = a such that all finite paths can be extended
to an infinite one.

A finite-memory policy π for M is a function π :
FPathsM → D(A) such that supp(π(σ)) ⊆ A(σ[−1]),
where D(A) denotes a distribution over A, supp(d) denotes
the support of the distribution and σ[−1] is the last state of a
finite path σ. A policy π is memoryless if it only depends on
the current state, i.e., σ[−1] = σ′[−1] implies π(σ) = π(σ′),
and a policy is deterministic if π(σ) is a point distribution for
all σ ∈ FPathsM. For a deterministic memoryless policy,
we let π(s) represent π(σ) where σ[−1] = s.

Let PathsMπ ⊆ PathsM denote the subset of infinite
paths that follow policy π and we define the probability space
(PathsMπ ,FPathsMπ

,Pπ) over PathsMπ in the standard way.
Then, for any function f : PathsMπ → R, let Eπ[f ] be the
expectation of f over the infinite paths ofM following π.

A Markov chain (MC) induced by M and deterministic
memoryless policy π is a tuple Mπ = (S, s0, Tπ,AP , L),
where Tπ(s, s

′) = T (s, π(s), s′). A sink (bottom) strongly
connected component (BSCC) of a MC is a set of states
C ⊆ S such that, for all pairs s1, s2 ∈ C, there exists a path
from s1 to s2 following the transition function Tπ (strongly
connected), and there exists no state s′ ∈ S \ C such that
Tπ(s, s

′) > 0 for all s ∈ C (sink).
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2.2 Linear Temporal Logic
Linear Temporal Logic (LTL) provides a high-level descrip-
tion for specifications of a system. LTL is very expressive and
can describe specifications with infinite horizon.
Definition 2 ([Baier and Katoen, 2008]). An LTL formula
over atomic propositions AP is defined by the grammar:

φ ::= true | p | φ1 ∧ φ2 | ¬φ | X φ | φ1U φ2, p ∈ AP ,
where X represents next and U represents until. Other
Boolean and temporal operators are derived as follows: or:
φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2); implies: φ1 → φ2 = ¬φ1 ∨ φ2;
eventually: F φ = trueU φ; and always: G φ = ¬(F ¬φ).

The satisfaction of an LTL formula φ by an infinite path
σ ∈ PathsM is denoted by σ |= φ, and is defined by induc-
tion on the structure of φ:

σ satisfies φ if p ∈ L(σ[0]) for p ∈ AP ;
σ[1 :] |= φ for X φ;

∃i, σ[i] |= φ2 and ∀j < i, σ[j] |= φ1 for φ1U φ2,

with the satisfaction of Boolean operators defined by their
default meaning.

2.3 Reinforcement Learning
Reinforcement learning [Sutton and Barto, 2018] teaches an
agent in an unknown environment to select an action from
its action space, in order to maximize rewards over time. In
most cases the environment is modelled as an MDP M =
(S, s0, A, T,AP , L, r, γ). Given a deterministic memoryless
policy π, at each time step t, let the agent’s current state be st,
then the action a = π(st) is chosen and the next state st+1 ∼
T (st, a, ·) together with the immediate reward r(st, a, st+1)
is received from the environment. Then, starting at s ∈ S and
time step t, the expected discounted reward following π is

Gπ
t (s) = Eπ[

∞∑
i=t

(

i−1∏
j=t

γ(sj)) · r(si, ai, si+1) | st = s], (1)

where
∏t−1

j=t := 1. The agent’s goal is to learn the opti-
mal policy that maximizes the expected discounted reward.
Note that we defined a discount function instead of a constant
discount factor because it is essential for our proposed LTL
learning algorithm to discount the reward depending on the
current MDP state.

Q-learning [Watkins and Dayan, 1992] is a widely used ap-
proach for model-free RL. It utilizes the idea of the Q function
Qπ(s, a), which is the expected discounted reward of taking
action a at state s and following policy π after that. The Q
function for all optimal policies satisfies the Bellman opti-
mality equations:

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)
(
r(s, a, s′) (2)

+γ(s)max
a′∈A

Q∗(s′, a′)
)
∀a ∈ A, s ∈ S.

At each iteration of the Q-learning algorithm, the agent’s
experiences, i.e, the next state s′ and immediate reward
r(s, a, s′), are used to update the Q function:

Q(s, a)
α← r(s, a, s′) + γ(s)max

a′∈A
Q(s′, a′), (3)

where α is the learning rate and x
α← y represents x ← x +

α(y − x). In addition, the optimal policy can be recovered
from the optimal Q function Q∗(s, a) by selecting the action
a with the highest state-action pair value in each state s. Q-
learning converges to the optimal Q function in the limit given
that each state-action pair is visited infinitely often [Watkins
and Dayan, 1992], and thus learns the optimal policy.

3 Our Method
Our goal is to formulate a model-free reinforcement learn-
ing approach to efficiently learn the optimal policy that max-
imizes the probability of satisfying an LTL specification with
guarantees. We now give an overview of our method. We
first transform the LTL objective φ into a limit-deterministic
Büchi automaton. Then, we introduce a novel product MDP
and define a generalized reward structure on it. With this re-
ward structure, we propose a Q-learning algorithm that adopts
a collapsed Q function to learn the optimal policy with opti-
mality guarantees. Lastly, we enhance our algorithm with
counterfactual imagining that exploits the automaton struc-
ture to improve performance while maintaining optimality.

3.1 Problem Formulation
Given an MDP M = (S, s0, A, T,AP , L, r, γ) with un-
known states and transitions and an LTL objective φ, for any
policy π of the MDP M, let Pπ(s |= φ) denote the prob-
ability of paths from state s following π satisfying the LTL
formula φ:

Pπ(s |= φ) = Pπ{σ ∈ PathsMπ | σ[0] = s, σ |= φ}. (4)

Then, we would like to design a model-free RL algorithm
that learns a deterministic memoryless optimal policy πφ that
maximizes the probability ofM satisfying φ:

Pπφ(s |= φ) = max
π

Pπ(s |= φ) ∀s ∈ S. (5)

3.2 Limit-Deterministic Büchi Automata
We first transform the LTL specifications into automata. The
common choices of automata include deterministic Rabin au-
tomata and non-deterministic Büchi automata. In this work,
we adopt a Büchi automata variant called limit-deterministic
Büchi automata (LDBA) [Sickert et al., 2016].

Definition 3. A non-deterministic Büchi automaton is an au-
tomaton A = (AP ,Q, q0,∆,F), where AP is the set of
atomic propositions, Q is a finite set of states, q0 ∈ Q is
the initial state and F ⊆ Q is the set of accepting states.
Let Σ = 2AP ∪ {ϵ} be a finite alphabet, then the transition
function is given by ∆ : Q× Σ→ 2Q.

Definition 4 (LDBA). A Büchi automaton is limit-
deterministic if Q can be partitioned into a deterministic set
and a non-deterministic set, that is, Q = QN ∪ QD, where
QN ∩QD = ∅, such that

1. F ⊆ QD and q0 ∈ QN ;

2. |∆(q , ν)| ≤ 1 for all q ∈ QN and ν ̸= ϵ ∈ Σ;

3. ∆(q , ν) ⊆ QD and |∆(q , ν)| ≤ 1 for all q ∈ QD and
ν ∈ Σ;
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An LDBA is a Büchi automaton where the non-
determinism is limited in the initial component QN of the
automaton. An LDBA starts in a non-deterministic initial
component and then transitions into a deterministic accept-
ing component QD through ϵ-transitions after reaching an
accepting state, where all transitions after this point are deter-
ministic. We follow the formulation of Bozkurt et al. [2019]
to extend the alphabets with an ϵ-transition that handles all the
non-determinism, meaning only ϵ can transition the automa-
ton state to more then 1 states: |∆(q , ϵ)| > 1. This allows
the MDP to synchronise with the automaton, which we will
discuss in detail in Section 3.3.

An infinite word W ∈ Σω , where Σω is the set of all in-
finite words over the alphabet Σ, is accepted by a Büchi au-
tomaton A if there exists an infinite automaton run θ ∈ Qω

from q0, where θ[t + 1] ∈ ∆(θ[t],W[t]), ∀t ≥ 0, such that
inf(θ) ∩ F ̸= ∅, where inf(θ) is the set of automaton states
that are visited infinitely often in the run θ.

LDBAs are as expressive as the LTL language, and the sat-
isfaction of any given LTL specification φ can be evaluated
on the LDBA derived from φ. We use Rabinizer 4 [Křetı́nský
et al., 2018] to transform LTL formulae into LDBAs. In Fig-
ure 1 (left) we give an example of the LDBA derived from the
LTL formula “FG a & G !c”, where state 1 is the accepting
state. LDBAs are different from reward machines [Toro Icarte
et al., 2022] because they can express properties satisfiable by
infinite paths, which is strictly more expressive than reward
machines, and they have different accepting conditions.

3.3 Product MDP
In this section, we propose a novel product MDP of the en-
vironment MDP, an LDBA and an integer counter, where the
transitions for each component are synchronised. Contrary to
the standard product MDP used in the literature [Bozkurt et
al., 2019; Hahn et al., 2019; Hasanbeig et al., 2020], this
novel product MDP incorporates a counter that counts the
number of accepting states visited by paths starting at the ini-
tial state.

Definition 5 (Product MDP). Given an MDP M =
(S, s0, A, T,AP , L, r, γ), an LDBA A = (AP ,Q, q0,∆,F)
and K ∈ N, we construct the product MDP as follows:

M× =M×A× [0..K] = (S×, s×0 , A
×, T×,F×, r×, γ×),

where the product states S× = S×Q×[0..K], the initial state
s×0 = (s0, q0, 0), the product actions A× = A∪{ϵq | q ∈ Q},
the accepting set F× = S × F × [0..K], and the product
transitions T× : S× ×A× × S× → [0, 1], which are defined
as:

T×((s, q , n), a, (ŝ, q̂ , n)) (6)

=


T (s, a, ŝ) if a ∈ A and q̂ ∈ ∆(q , L(s)) \ F ;
1 if a = ϵq̂ , q̂ ∈ ∆(q , ϵ) and ŝ = s;

0 otherwise .

T×((s, q , n), a, (ŝ, q̂ ,min(n+ 1,K))) (7)

=

{
T (s, a, ŝ) if a ∈ A and q̂ ∈ ∆(q , L(s)) ∩ F ;
0 otherwise .

where all other transitions are equal to 0. The product reward
r× : S× ×A× × S× → R and the product discount function
γ× : S× → (0, 1] that are suitable for LTL learning are
defined later in Definition 6.

Furthermore, an infinite path σ ofM× satisfies the Büchi
condition φF if inf(σ) ∩ F× ̸= ∅. With a slight abuse of
notation we denote this condition in LTL language as σ |=
GF φF , meaning for all M ∈ N, there always exists s× ∈
F× that will be visited in σ[M :].

When an MDP action a ∈ A is taken in the product MDP
M×, the alphabet used to transition the LDBA is deduced
by applying the label function to the current environment
MDP state: L(s) ∈ 2AP . In this case, the LDBA tran-
sition δ(q , L(s)) is deterministic. Otherwise, if an ϵ-action
ϵq̂ ∈ {ϵq | q ∈ Q} is taken, LDBA is transitioned with an ϵ-
transition, and the non-determinism of δ(q, ϵ) is resolved by
transitioning the automaton state to q̂. The K counter value
is equal to 0 in the initial state, and each time an accepting
state is reached, the counter value increases by one until it is
capped at K.

Example 1. We motivate our product MDP structure of Def-
inition 5 through an example. In Figure 1 (right), we have a
grid environment where the agent can decide to go up, down,
left or right. The task is to visit states labeled “a” infinitely
often without visiting “c” as described by the LDBA in Fig-
ure 1 (left). The MDP starts at (1,0), with walls denoted by
solid gray squares. The states in the first row only allow ac-
tion right as denoted by the right pointing triangle, which
leads to a sink at (0,9). There is also a probabilistic gate at
(2,0) that transitions the agent randomly to go down or right,
and if the agent reaches (2,1), the accepting sink at (2,9) is
reachable. Therefore, the optimal policy is to go down from
the start and stay in (2,9) if the probabilistic gate at (2,0)
transitions the agent to the right. The probability of satisfy-
ing this task is the probability of the gate sending you to the
right. Intuitively, this environment has some initial accept-
ing states that are easy to explore, but lead to non-accepting
sinks, whereas the true optimal path requires more explo-
ration. If we set K = 10 in the product MDP for this task, we
can assign very small rewards for the initially visited accept-
ing states and gradually increase the reward as more accept-
ing states are visited to encourage exploration and guide the
agent to the optimal policy.

Next, we provide a theorem, which states that the product
MDP with Büchi condition φF is equivalent, in terms of the
optimal policy, to the original MDP with LTL specification φ.
The proof of this theorem is provided in Appendix A.11.

Theorem 1 (Satisfiability Equivalence). For any product
MDPM× that is induced from LTL formula φ, we have that

sup
π

Pπ(s0 |= φ) = sup
π×

Pπ×(s×0 |= GF φF ). (8)

Furthermore, a deterministic memoryless policy that maxi-
mizes the probability of satisfying the Büchi condition φF on
the product MDPM×, starting from the initial state, induces

1See Appendix in the full version of this paper on arXiv: https:
//arxiv.org/abs/2305.01381 [Shao and Kwiatkowska, 2023]
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Figure 1: An LDBA for “FG a & G !c” (left), and a probabilistic gate MDP (right) motivating the K counter (see Example 1).

a deterministic finite-memory optimal policy that maximizes
the probability of satisfying φ on the original MDPM from
the initial state.

Reward Structure for LTL Learning
We first define a generalized reward structure inM× for LTL
learning, and then prove the equivalence between acquiring
the highest expected discounted reward and achieving the
highest probability of satisfying φF under this reward struc-
ture.
Definition 6 (Reward Structure). Given a product MDPM×

and a policy π, the product reward function r× : S××A××
S× → R is suitable for LTL learning if

r×((s, q , n), a×, (s′, q ′, n′)) =

{
Rn if q ′ ∈ F ;
0 otherwise,

(9)

where Rn ∈ (0, U ] are constants for n ∈ [0..K] and U ∈
(0, 1] is an upper bound on the rewards. The rewards are
non-zero only for accepting automaton states, and depend on
the value of the K counter.

Then, given a discount factor γ ∈ (0, 1], we define the
product discount function γ× : S× → (0, 1] as

γ×(s×j ) =

{
1− r×j if r×j > 0;

γ otherwise,

and the expected discounted reward following policy π start-
ing at s× and time step t is

Gπ
t (s

×) = Eπ[
∞∑
i=t

(
i−1∏
j=t

γ×(s×j )) · r×(s
×
i , a

×
i , s

×
i+1) | s

×
t = s×].

(10)

The highest K value reached in a path (i.e., the number
of accepting states visited in the path) acts as a measure of
how promising that path is for satisfying φF . By exploit-
ing it, we can assign varying rewards to accepting states to
guide the agent, as discussed in the motivating example in
Section 3.3. Next, we provide a lemma stating the properties
of the product MDP regarding the satisfaction of the Büchi
condition φF .
Lemma 1. Given a product MDPM× with its correspond-
ing LTL formula φ and a policy π, we writeM×

π for the in-
duced Markov chain from π. Let B×

F denote the set of states

that belong to accepting BSCCs ofM×
π , and B×

∅ denote the
set of states that belong to rejecting BSCCs:

B×
F := {s× | s× ∈ B ∈ BSCC(M×

π ), B ∩ F× ̸= ∅}; (11)

B×
∅ := {s× | s× ∈ B ∈ BSCC(M×

π ), B ∩ F× = ∅}, (12)

where BSCC(M×
π ) is the set of all BSCCs ofM×

π . We fur-
ther define more general accepting and rejecting sets:

BF := {(s, q , n) | ∃n′ ∈ [0..K] : (s, q , n′) ∈ B×
F }; (13)

B∅ := {(s, q , n) | ∃n′ ∈ [0..K] : (s, q , n′) ∈ B×
∅}. (14)

We then have that Pπ(s
× |= GF φF ) = 1 ∀s× ∈ BF ,

Pπ(s
× |= GF φF ) = 0 ∀s× ∈ B∅ and B∅ ∩ F× = ∅.

Furthermore, BF and B∅ are sink sets, meaning once the set
is reached, no states outside the set can be reached.

The proof of this lemma is provided in Appendix A.2. Us-
ing this lemma, we can now state and proof the main theorem
of this paper.
Theorem 2 (Optimality Guarantee). Given an LTL formula
φ and a product MDP M×, there exists an upper bound
U ∈ (0, 1] for rewards and a discount factor γ ∈ (0, 1]
such that for all product rewards r× and product discount
functions γ× satisfying Definition 6, the optimal determin-
istic memoryless policy πr that maximizes the expected dis-
counted reward Gπr

0 (s×0 ) is also an optimal policy πφ that
maximizes the probability of satisfying the Büchi condition
Pπφ

(s×0 |= GF φF ) on the product MDPM×.

Proof sketch. We now present a sketch of the proof to provide
intuition for the main steps and the selection of key parame-
ters. The full proof is provided in Appendix A.3.

To ensure optimality, given a policy π with the product
MDPM× and the LTL formula φ, we want to demonstrate a
tight bound between the expected discounted reward follow-
ing π and the probability of π satisfying φ, such that maxi-
mizing one quantity is equivalent to maximizing the other.

At a high level, we want to select the two key parameters,
the reward upper bound U ∈ (0, 1] and the discount factor
γ ∈ (0, 1], to adequately bound: (i) the rewards given for
paths that eventually reach rejecting BSCCs (thus not satis-
fying the LTL specification); and (ii) the discount of rewards
received from rejecting states for paths that eventually reach
accepting BSCCs.
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Algorithm 1: KC Q-learning from LTL

Input: environment MDPM, LTL formula φ
1: translate φ into an LBDA A
2: construct product MDPM× usingM and A
3: initialize Q for each s and q pair
4: for l← 0 to max episode do
5: initialize (s, q , n)← (s0, q0, 0)
6: for t← 0 to max timestep do
7: get policy π derived from Q (e.g., ϵ-greedy)
8: take action a× ← π((s, q , n)) inM×

9: get next product state (s′, q ′, n′)
10: r ← r×((s, q , n), a×, (s′, q ′, n′))
11: γ ← γ′(s, q , n)
12: Q((s, q), a×) α← r+ γmaxa∈A× Q((s′, q ′), a)
13: update (s, q , n)← (s′, q ′, n′)
14: gets greedy policy πφ from Q
15: return induced policy onM by removing ϵ-actions

We informally denote by Cπ
∅ the expected number of visits

to accepting states before reaching a rejecting BSCC, and (i)
can be sufficiently bounded by selecting U = 1/Cπ

∅. Next,
we informally write Cπ

F for the expected number of rejecting
states visited before reaching an accepting BSCC, and denote
by Nπ the expected steps between visits of accepting states
in the accepting BSCC. Intuitively, for (ii), we bound the
amount of discount before reaching the accepting BSCC us-
ing Cπ

F , and we bound the discount after reaching the BSCC
using Nπ , yielding γ = 1− 1/(Cπ

∅ ∗Nπ + Cπ
F ).

In practice, using upper bounds of Cπ
∅, C

π
F and Nπ instead

also ensures optimality, and those bounds can be deduced
from assumptions about, or knowledge of, the MDP.

As shown in the proof sketch, selecting U = 1/Cπ
∅ and

γ = 1−1/(Cπ
∅ ∗Nπ+Cπ

F ) is sufficient to ensure optimality.
Using the example of the probabilistic gate MDP in Figure 1
(right), we have that Cπ

∅ ≈ Cπ
F ≤ 10 and Nπ = 1, so choos-

ing U = 0.1 and γ = 0.95 is sufficient to guarantee opti-
mality. For more general MDPs, under the common assump-
tion that the number of states |S| and the minimum non-zero
transition probability pmin := mins,a,s′{T (s, a, s′) > 0} are
known, Cπ

∅ and Cπ
F can be upper bounded by |S|/pmin, while

Nπ can be upper bounded by |S|.

3.4 LTL Learning With Q-Learning
Employing this product MDP M× and its reward structure,
we present Algorithm 1 (KC), a model-free Q-learning al-
gorithm for LTL specifications utilizing the K counter prod-
uct MDP. The product MDP is constructed on the fly as we
explore: for action a× ∈ A, observe the next environment
state s′ by taking action a× in environment state s. Then, we
compute the next automaton state q ′ using transition func-
tion ∆(q , L(s)) and counter n depending on whether n ≤ K
and q ′ ∈ F . If a× ∈ {ϵq | q ∈ Q}, update q ′ using the
ϵ-transition and leave environment state s and counter n un-
changed. However, directly adopting Q-learning on this prod-
uct MDP yields a Q function defined on the whole product

Algorithm 2: CF+KC Q-learning from LTL

Input: environment MDPM, LTL formula φ
1: translate φ into an LBDA A
2: construct product MDPM× usingM and A
3: initialize Q for each s and q pair
4: for l← 0 to max episode do
5: initialize (s, q , n)← (s0, q0, 0)
6: for t← 0 to max timestep do
7: get policy π derived from Q (e.g., ϵ-greedy)
8: get action a× ← π((s, q , n)) inM×

9: for q̄ ∈ Q do
10: get counterfactual imagination (s′, q̄ ′, n′)

by taking action a× at (s, q̄ , n)
11: r ← r×((s, q̄ , n), a×, (s′, q̄ ′, , n′))
12: γ ← γ′(s, q̄ , n)
13: Q((s, q̄), a×) α←

r + γmaxa∈A× Q((s′, q̄ ′), a)
14: obtain (s′, q ′, n′) using action a× at (s, q , n)
15: update (s, q , n)← (s′, q ′, n′)
16: gets greedy policy πφ from Q
17: return induced policy onM by removing ϵ-actions

state space S×, meaning the agent needs to learn the Q func-
tion for each K value. To improve efficiency, we propose
to define the Q function on the environment states S and au-
tomaton states Q only, and for a path σ of M×, the update
rule for the Q function at time step t is:

Qt+1((st, qt), a×t )
α← r×(s×t , a

×
t , s

×
t+1) (15)

+ γ′(s×t ) max
a×∈A×

Qt((st+1, qt+1), a
×),

where s×t = (st, qt, nt), a×t is the action taken at time step t,
s×t+1 = (st+1, qt+1, nt+1) is the next product state, and α is
the learning rate. We claim that, with this collapsed Q func-
tion, the algorithm returns the optimal policy for satisfying φ
because the optimal policy is independent from the K counter,
with the proof provided in Appendix A.4.
Theorem 3. Given an environment MDP M and an LTL
specification φ with appropriate discount factor γ and re-
ward function r× satisfying Theorem 2, Q-learning for LTL
described in Algorithm 1 converges to an optimal policy πφ

that maximizes the probability of satisfying φ onM.

3.5 Counterfactual Imagining
Additionally, we propose a method to exploit the structure of
the product MDP, specifically the LDBA, to facilitate learn-
ing. We use counterfactual reasoning to generate synthetic
imaginations: from one state in the environment MDP, imag-
ine we are at each of the automaton states while taking the
same actions.

If the agent is at product state (s, q , n) and an action
a× ∈ A is chosen, for each q̄ ∈ Q, the next state (s′, q̄ ′, n′)
by taking action a× from (s, q̄ , n) can be computed by first
taking the action in environment state, and then computing
the next automaton state q̄ ′ = ∆(q̄ , L(s)) and the next K
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Figure 2: The experimental results on various MDPs and tasks.

value n′. The reward for the agent is r×(s, q̄ , n̄), and we
can therefore update the Q function with this enriched set of
experiences. These experiences produced by counterfactual
imagining are still sampled from M× following the transi-
tion function T×, and hence, when used in conjunction with
any off-policy learning algorithms like Q-learning, the opti-
mality guarantees of the algorithm are preserved.

As shown in Algorithm 2 (CF-KC), counterfactual imag-
ining (CF) can be incorporated into our KC Q-learning algo-
rithm by altering a few lines (line 9-12 in Algorithm 2) of
code, and it can also be used in combination with other au-
tomata product MDP RL algorithms for LTL. Note that the
idea of counterfactual imagining is similar to that proposed
by Toro Icarte et al. [2022], but our approach has adopted
LDBAs in the product MDPs for LTL specification learning.

4 Experimental Results
We evaluate our algorithms on various MDP environments,
including the more realistic and challenging stochastic MDP
environments2. We propose a method to directly evaluate
the probability of satisfying LTL specifications by employ-
ing probabilistic model checker PRISM [Kwiatkowska et al.,
2011]. We build the induced MCMπ from the environment
MDP and the policy in PRISM format, and adopt PRISM to
compute the exact satisfaction probability of the given LTL
specification. We utilize tabular Q-learning as the core off-
policy learning method to implement our three algorithms:
Q-learning with K counter reward structure (KC), Q-learning
with K counter reward structure and counterfactual imagin-
ing (CF+KC), and Q-learning with only counterfactual imag-
ining (CF), in which we set K = 0. We compare the per-
formance of our methods against the methods proposed by
Bozkurt et al. [2019], Hahn et al. [2019] and Hasanbeig et
al. [2020]. Note that our KC algorithm, in the special case
that K = 0 with no counterfactual imagining, is algorithmi-
cally equivalent to Bozkurt et al. [2019] when setting their
parameter γB = 1 − U . Our methods differ from all other

2The implementation of our algorithms and experiments can be
found on GitHub: https://github.com/shaodaqian/rl-from-ltl

existing methods to the best of our knowledge. The details
and setup of the experiments are given in Appendix B.

We set the learning rate α = 0.1 and ϵ = 0.1 for explo-
ration. We also set a relatively loose upper bound on rewards
U = 0.1 and discount factor γ = 0.99 for all experiments to
ensure optimality. Note that the optimality of our algorithms
holds for a family of reward structures defined in Definition 6,
and for experiments we opt for a specific reward function that
linearly increases the reward for accepting states as the value
of K increases, namely rn = U ·n/K ∀n ∈ [0..K], to facili-
tate training and exploration. The Q function is optimistically
initialized by setting the Q value for all available state-action
pairs to 2U . All experiments are run 100 times, where we plot
the average satisfaction probability with half standard devia-
tion in the shaded area.

First, we conduct experiments on the probabilistic gate
MDP described in Example 1 with task “FG a & G !c”,
which means reaching only states labeled “a” in the future
while never reaching “c” labeled states. We set K = 10
for this task, and in Figure 2 (left), compared to the other
three methods, our method KC achieved better sample effi-
ciency and convergence and CF demonstrates better sample
efficiency while still lacking training stability. The best per-
formance is achieved by CF+KC, while other methods either
exhibit slower convergence (Bozkurt et al. [2019] and Hahn
et al. [2019]) or fail to converge (Hasanbeig et al. [2020]) due
to the lack of theoretical optimality guarantees.

The second MDP environment is the 8× 8 frozen lake en-
vironment from OpenAI Gym [Brockman et al., 2016]. This
environment consists of frozen lake tiles, where the agent has
1/3 chance of moving in the intended direction and 1/3 of go-
ing sideways each, with details provided in Appendix B.2.
The task is “(GF a |GF b) & G !h”, meaning to always reach
lake camp “a” or lake camp “b” while never falling into holes
“h”. We set K = 10 for this task, and in Figure 2 (middle),
we observe significantly better sample efficiency for all our
methods, especially for CF+KC and CF, which converge to
the optimal policy at around 150k training steps. The other
three methods, on the other hand, barely start to converge at
1200k training steps. CF performs especially well in this task
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Figure 3: Sensitivity analysis on key parameters.

because the choice of always reaching “a” or “b” can be con-
sidered simultaneously during each time step, reducing the
sample complexity to explore the environment.

Lastly, we experiment on a slight modification of the
more challenging office world environment proposed by Toro
Icarte et al. [2022], with details provided in Appendix B.3.
We include patches of icy surfaces in the office world, with
the task to either patrol in the corridor between “a” and “b”,
or write letters at “l” and then patrol between getting tea “t”
and workplace “w”, while never hitting obstacles “o”. K = 5
is set for this task for a steeper increase in reward, since the
long distance between patrolling states makes visiting many
accepting states in each episode time consuming. Figure 2
(right) presents again the performance benefit of our meth-
ods, with CF+KC performing the best and CF and KC second
and third, respectively. For this challenging task in a large
environment, the method of Hahn et al. [2019] requires the
highest number of training steps to converge.

Overall, the results demonstrate KC improves both sam-
ple efficiency and training stability, especially for challeng-
ing tasks. In addition, CF greatly improves sample efficiency,
which, combined with KC, achieves the best results.

4.1 Runtime Analysis and Sensitivity Analysis
It is worth mentioning that, for counterfactual imagining,
multiple updates to the Q function are performed at each step
in the environment. This increases the computational com-
plexity, but the additional inner loop updates on the Q func-
tion will only marginally affect the overall computation time
if the environment steps are computationally expensive. Tak-
ing the office world task as an example, the average time to
perform 6 million training steps are 170.9s, 206.3s and 236.1s
for KC, CF and CF+KC, respectively. However, the time un-
til convergence to the optimal policies are 96.8s, 70.2s and
27.5s for KC, CF and CF+KC, respectively.

For sensitivity analysis on the key parameters, we run ex-
periments on the probabilistic gate MDP task with different
parameters against the default values of U = 0.1, γ = 0.99
and K = 10. As shown in Figure 3, if U(= 0.5) is chosen
too high or γ(= 0.9) is chosen too low, the algorithm does not
converge to the optimal policy as expected. However, looser
parameters U = 0.01 and γ = 0.995 do not harm the per-
formance, which means that, even with limited knowledge of
the underlying MDP, our algorithm still performs well with

loose parameters. Optimality is not affected by the K value,
while the performance is only mildly affected by different K
values.

5 Conclusion
We presented a novel model-free reinforcement learning al-
gorithm to learn the optimal policy of satisfying LTL specifi-
cations in an unknown stochastic MDP with optimality guar-
antees. We proposed a novel product MDP, a generalized re-
ward structure and a RL algorithm that ensures convergence
to the optimal policy with the appropriate parameters. Fur-
thermore, we incorporated counterfactual imagining, which
exploits the LTL specification to create imagination experi-
ences. Lastly, utilizing PRISM [Kwiatkowska et al., 2011],
we directly evaluated the performance of our methods and
demonstrated superior performance on various MDP environ-
ments and LTL tasks.

Future works include exploring other specific reward func-
tions under our generalized reward structure framework, tack-
ling the open problem [Alur et al., 2021] of dropping all as-
sumptions regarding the underlying MDP, and extending the
theoretical framework to continuous states and action envi-
ronment MDPs, which might be addressed through an ab-
straction of the state space. In addition, utilizing potential-
based reward shaping [Ng et al., 1999][Devlin and Kudenko,
2012] to exploit the semantic class structures of LTL specifi-
cations and transferring similar temporal logic knowledge of
the agent [Xu and Topcu, 2019] between environments could
also be interesting.
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