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Abstract

Local clustering aims at extracting a local structure
inside a graph without the necessity of knowing the
entire graph structure. As the local structure is usu-
ally small in size compared to the entire graph, one
can think of it as a compressive sensing problem
where the indices of target cluster can be thought as
a sparse solution to a linear system. In this paper,
we apply this idea based on two pioneering works
under the same framework and propose a new semi-
supervised local clustering approach using only few
labeled nodes. Our approach improves the exist-
ing works by making the initial cut to be the en-
tire graph and hence overcomes a major limitation
of the existing works, which is the low quality of
initial cut. Extensive experimental results on var-
ious datasets demonstrate the effectiveness of our
approach.

1 Introduction
Being able to learn from data by investigating its underly-
ing pattern, and separate data into different groups or clusters
based on their latent similarity and differences is one of the
main interests in machine learning and artificial intelligence.
There are many clustering phenomena across disciplines such
as social science, health science, and engineering. Through
the past few decades, traditional clustering problem has been
studied a lot and many algorithms have been developed, such
as k-means clustering [MacQueen, 1967], hierarchical clus-
tering [Nielsen, 2016], and density based clustering [Ester et
al., 1996]. For graph structured data or the data which can be
converted into a graph structure by applying some techniques
(e.g. K-NN auxiliary graph), it is natural to consider the task
as a graph clustering problem.

Traditional graph clustering problem assumes the underly-
ing data structure as a graph where data points are the nodes
and the connections between data points are the edges. It
assigns each node into a unique cluster, assuming there are
no multi-class assignments. For nodes with high connection
density, they are considered in the same cluster, and for nodes
with low connection density, they are considered in differ-
ent clusters. Since the task is to learn the clustering patterns

by investigating the underlying graph structure, it is an unsu-
pervised learning task. Many unsupervised graph clustering
algorithms have been developed through decades. For ex-
ample, spectral clustering [Ng et al., 2001], which is based
on the eigen-decomposition of Laplacian matrices of either
weighted or unweighted graphs. Based on this, many vari-
ants of spectral clustering algorithms have been proposed,
such as [Zelnik-Manor and Perona, 2004] and [Huang et
al., 2012]. Another category is the graph partition based
method such as finding the optimal cut [Dhillon et al., 2004;
Ding et al., 2001]. It is worthy noting that spectral cluster-
ing and graph partition have the same essence, see [Luxburg,
2007]. Spectral clustering has become one of the popu-
lar modern clustering algorithms since it enjoys the advan-
tage of exploring the intrinsic data structures. It is simple
to implement, and it often outperforms the traditional algo-
rithm such as k-means. However, one of the main draw-
backs of spectral clustering is its high computational cost,
so it is usually not applicable to large datasets. Mean-
while, the spectral clustering method does not perform well
on the auxiliary graphs which are generated from certain
shapes of numerical data, e.g., elongated band shape data
and moon shape data. In addition, many other cluster-
ing methods have been developed, such as the low rank
and sparse representations based methods [Liu et al., 2012;
Huang et al., 2015], deep embedding based methods [Xie et
al., 2016], and graph neural network based methods [Hui et
al., 2015; Tsitsulin et al., 2020]. Besides the unsupervised
way, some semi-supervised graph clustering methods have
also been proposed [Kulis et al., 2005; Kang et al., 2021;
Ren et al., 2019].

These clustering algorithms, whether unsupervised or
semi-supervised, are all global clustering algorithms, which
means that the algorithms output all the clusters simulta-
neously. However, it is often to people’s interests in only
finding a single target cluster which contains the given la-
bels, without worried too much about how the remaining
part of graph will be clustered. Such an idea is very use-
ful in detecting small-scale structure in a large-scale graph.
This type of problem is referred to as local clustering or
local cluster extraction. Most of the current local cluster-
ing algorithms aim at finding the best cut from the graph,
for example, [Veldt et al., 2019; Fountoulakis et al., 2020;
Orecchia and Zhu, 2014]. It is worth pointing out that
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[Fountoulakis et al., 2018] have kindly put several meth-
ods of local graph clustering into software, including both
the spectral methods [Andersen et al., 2006; Fountoulakis
et al., 2019] and flow-based methods [Lang and Rao, 2004;
Veldt et al., 2016; Wang et al., 2017]. More recently, new
approaches for making the cut of graph based on the idea
of compressive sensing are proposed in [Lai and Mckenzie,
2020] and [Lai and Shen, 2023], where they took a novel per-
spective by considering the way of finding the optimal cut as
an improvement from an initial cut via finding a sparse solu-
tion to a linear system. However, the performances of their
approaches will heavily depend on the quality of initial cut.

In this paper, based on the idea of compressive sensing,
we propose a semi-supervised local clustering method using
only few labeled nodes from the target cluster, with theoret-
ical guarantees. Our approach improves the existing works
by making the initial cut to be the entire graph and hence
overcomes the issue that missing vertices of the target clus-
ter from the initial cut are not recoverable in the later stage.
Extensive experiments are conducted on various benchmark
datasets to show our approach outperforms its counterparts
[Lai and Mckenzie, 2020; Lai and Shen, 2023]. Results also
show that our approach is favorable than many other state-of-
the-art semi-supervised clustering algorithms.

2 Preliminaries
2.1 Graph Notations and Concepts
We adopt the standard notations for graph G = (V,E), where
V is the set of all vertices and E is the set of all edges. In
the case that the size of graph equals to n, we identify V =
{1, 2, · · · , n} = [n]. For a graph G with k non-overlapping
underlying clusters C1, C2, · · · , Ck, we use ni to indicate the
size of Ci where i = 1, 2, · · · , k. Without loss of generality,
let us assume n1 ≤ n2 ≤ · · · ≤ nk. Furthermore, we use
matrix A to denote the adjacency matrix of graph G, and use
D to denote the diagonal matrix where each diagonal entry in
D is the degree of the corresponding vertex. In addition, we
define the notion called graph Laplacian.
Definition 1. The unnormalized graph Laplacian of graph G
is defined as L = D − A. The symmetric graph Laplacian
of graph G is defined as Lsym := I − D−1/2AD−1/2 and
the random walk graph Laplacian is defined as Lrw := I −
D−1A.

For the scope of our problem, we will only focus on Lrw

for the rest of discussion and we will use L to denote Lrw

for the concise of notation. Recall the following fundamen-
tal result from spectral graph theory. We omit the proof by
referring to [Chung, 1997] and [Luxburg, 2007].
Lemma 1. Let G be an undirected graph with non-negative
weights. The multiplicity k of the eigenvalue zero of L equals
to the number of connected components C1, C2, · · · , Ck in
G, and the indicator vectors 1C1

, · · · , 1Ck
∈ Rn on these

components span the kernel of L.
For a graph G with underlying structure which separates

vertices into different clusters, we can write G = Gin∪Gout,
where Gin = (V,Ein) and Gout = (V,Eout). Here Ein is
the set of all intra-connection edges within the same cluster,

Symbols Interpretations

G A general graph of interest
|G| Size of G
V Set of vertices of graph G
|V | Size of V
C1 Target Cluster
Γ Set of Seeds
T Removal set from V
E Set of edges of graph G
Ein Subset of E which consists only intra-connection edges
Eout Subset of E which consists only inter-connection edges
Gin Subgraph of G on V with edge set Ein

Gout Subgraph of G on V with edge set Eout

A Adjacency matrix of graph G
Ain Adjacency matrix of graph Gin

Aout Adjacency matrix of graph Gout

L Random walk graph Laplacian of G
Lin Random walk graph Laplacian of Gin

Lout Random walk graph Laplacian of Gout

LC submatrix of L with column indices C ⊂ V
Lin
C submatrix of Lin with column indices C ⊂ V

|M | Entrywised absolute value operation on matrix M
∥M∥2 ∥ · ∥2 norm of matrix M
|v| Entrywised absolute value operation on vector v
∥v∥2 ∥ · ∥2 norm of vector v.
1C Indicator vector on subset C ⊂ V
△ Set symmetric difference
Ker Kernel of the linear map induced by a matrix
Span Spanning set of a set of vectors
Ls(v) {i ∈ [n] : vi among s largest-in-magnitude entries in v}

Table 1: Table of Notations

Eout is the set of all inter-connection edges between different
clusters. We use Ain and Aout to denote the adjacency matri-
ces associated with Gin and Gout respectively, and use Lin

and Lout to denote the Laplacian matrices associated with
Gin and Gout respectively. From their definitions, we can
easily see Lin is in a block diagonal form if the vertices are
sorted according to their memberships. It is worthwhile to
point out that A = Ain + Aout but L ̸= Lin + Lout in gen-
eral.

Remark 1. We introduce these notations in order for the con-
venience of our discussion in the later sections. Note that in
reality we will have no assurance about which cluster each
individual vertex belongs to, so we have no access to Ain

and Lin. What we have access to are A and L.

Furthermore, for a set S, we use |S| to denote its size. For a
matrix M or vector v, we use |M | or |v| to denote the matrix
or vector where each of its entry is replaced by the absolute
value. For a matrix M and a set S ⊂ V , we use MS to
denote the submatrix of M where the columns of MS consist
of only the indices in S. For convenience, we summarize the
notations being used throughout this paper in Table 1.

2.2 Compressive Sensing
Recall that ∥·∥0 counts the number of nonzero components in
a vector. The idea of compressive sensing comes from solving
the optimization problem:

min ∥x∥0 s.t. ∥Φx− y∥2 ≤ ϵ, (1)
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where Φ ∈ Rm×n is called sensing matrix, y ∈ Rn is called
measurement vector. The goal is to recover the sparse solu-
tion x ∈ Rn under some constraints. It can be reformulated
as solving:

argmin ∥Φx− y∥2 s.t. ∥x∥0 ≤ s. (2)

Its idea was first introduced by Dohono [Donoh, 2006]
and Candès, Romberg, Tao [Candès et al., 2006]. Since
then, many algorithms have been developed to solve (1) or
(2), including the greedy based approaches such as orthog-
onal matching pursuit (OMP) [Tropp, 2004] and its vari-
ants, quasi-orthogonal matching pursuit (QOMP) [Feng et al.,
2022], thresholding based approaches such as iterative hard
thresholding [Blumensath and Davies, 2009], compressive
sensing matching pursuit (CoSAMP) [Needell and Tropp,
2009], and subspace pursuit [Dai and Milenkovic, 2009], etc,.
Note that (1) is NP-hard because of the appearance of zero
norm. Therefore it is sometimes convenient to solve its ℓ1
convex relaxation:

min ∥x∥1 s.t. ∥Φx− y∥2 ≤ ϵ. (3)

Algorithms such as LASSO [Tibshirani, 1996], CVX [Grant
et al., 2020], and reweighted ℓ1-minimization [Candès et al.,
2008] fall into this category. We do not analyze further here.
The monograph [Lai and Wang, 2021] gives a comprehensive
summary of these algorithms.

It is worthwhile to mention one of the key concepts in com-
pressive sensing, Restricted Isometry Property (RIP), which
guarantees a good recovery of the solution to (1).
Definition 2. Let Φ ∈ Rm×n, 1 ≤ s ≤ n be an integer.
Suppose there exists a constant δs ∈ (0, 1) such that

(1− δs)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δs)∥x∥22 (4)

for all x ∈ Rn with ∥x∥0 ≤ s. Then the matrix Φ is said
to have the Restricted Isometry Property (RIP). The small-
est constant δs which makes (4) hold is called the Restricted
Isometry Constant (RIC).

Another very important aspect which makes compressive
sensing very useful is its robustness to noise. Suppose we try
to solve the linear system y = Φx given the measurement y
and sensing matrix Φ. It is possible that we only have access
to a noise version of Φ, say Φ̃ = Φ + ϵ1, and also only have
access to a noise version of y, say ỹ = y + ϵ2. Therefore,
instead of solving y = Φx, what we solve in reality is ỹ =
Φ̃x̃. However, if ϵ1, ϵ2 are both small in some sense, and
the sensing matrix Φ satisfies certain conditions, then we will
have x̃ ≈ x. There are plenty of ways to solve x̃ given Φ̃
and ỹ, what we will be focusing on is subspace pursuit [Dai
and Milenkovic, 2009]. Theorem 2.5 in [Lai and Mckenzie,
2020] and Corollary 1 in [Li, 2016] gives a result about how
close x̃ and x can be based on the conditions of Φ̃, Φ, ỹ, y,
which we will apply later in our theoretical analysis part.

2.3 Problem Statement
For convenience, let us assume the target cluster is the first
cluster C1 for the rest of discussion. Now let us formally
state the local clustering task that we are interested in:

Suppose G = (V,E) is a graph with underlying cluster
C1, · · · , Ck where V = ∪n

i=1Ci, Ci ∩ Cj = ∅ for 1 ≤ i, j ≤
k, i ̸= j. Given a set of labeled vertices Γ ⊂ C1, which we
call them seeds, assuming the size of Γ is small relative to the
size of C1. The goal is to extract all the vertices in the target
cluster C1.

3 Local Clustering via Compressive Sensing
The local clustering task can be considered as a compressive
sensing problem in the following way. Suppose the vertices
have been sorted according to their memberships, i.e., the first
n1 rows and columns in Lin corresponds to all the vertices
in C1, the last nk rows and columns corresponds to all the
vertices in Ck, etc,.

Let Lin
−1 be the matrix obtained from Lin by deleting the

first column from C1. For this particular graph, all the clusters
have size three, the symbol ∗ equals to −1/2, and all the other
entries in the off-diagonal blocks equal to zero.

Lin
−1 =



∗ ∗
1 ∗
∗ 1

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

. . .
1 ∗ ∗
∗ 1 ∗
∗ ∗ 1


(5)

Let yin be the row sum vector of Lin
−1. Then the desired

solution to the compressive sensing problem
min ∥x∥0 s.t. Lin

−1x = yin (6)
is x∗ = (1, 1, 0, · · · , 0)′. The significance of this formula-
tion is that the nonzero components in x∗ correspond to the
indices of vertices which belong to the target cluster C1. This
gives us the intuitive idea of how to apply compressive sens-
ing for solving local clustering problem.

As noted in Remark 1, we usually do not have access to
Lin or Lin

−1, what we do have access to are L and L−1. We
can relax the exact equality condition to approximately equal
to, so the problem becomes

min ∥x∥0 s.t. L−1x ≈ y, (7)
where y is the row sum vector of L−1. Let x# be the solu-
tion to (7). Suppose the graph has a good underlying clusters
structure, in other words, the entries in the off-diagonal block
of L−1 have very small magnitude, i.e., L−1 ≈ Lin

−1. Then
we should have y ≈ yin, and hence the difference between
x# and x∗ should be small in certain sense. We can then use
some cutoff number R ∈ (0, 1) to separate the coordinates
of x# and therefore extract the target cluster from the entire
graph.

3.1 Main Algorithm
In general, we can remove more than just one column. That
is, we remove a set T ⊂ V in a somewhat smart way, with
the hope that T ⊂ C1, and then we solve

min ∥x∥0 s.t. ∥LV \Tx− y∥2 ≤ ϵ. (8)
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Algorithm 1 Compressive Sensing of Local Cluster Extrac-
tion (CS-LCE)
Input: Adjacency matrix A, and a small set of seeds Γ ⊂ C1

Parameter: Estimated size n̂1 ≈ |C1|, random walk thresh-
old parameter ϵ ∈ (0, 1), random walk depth t ∈ Z+, sparsity
parameter γ ∈ [0.1, 0.5], rejection parameter R ∈ [0.1, 0.9]
Output: The target cluster C1

1: Compute P = AD−1, v0 = D1Γ, and L = I −D−1A.
2: Compute v(t) = P tv(0).
3: Define Ω = L(1+ϵ)n̂1

(v(t)).
4: Let T be the set of column indices of γ · |Ω| smallest

components of the vector |L⊤
Ω | · |L1Ω|.

5: Set y := L1V \T . Let x# be the solution to

argmin
x∈R|V |−|T |

{∥LV \Tx− y∥2 : ∥x∥0 ≤ (1− γ)n̂1} (10)

obtained by using O(log n) iterations of Subspace Pur-
suit [Dai and Milenkovic, 2009].

6: Let W# = {i : x#
i > R} .

7: return C#
1 = W# ∪ T .

Or equivalently, we solve

argmin
x∈R|V |−|T |

{∥LV \Tx− y∥2 : ∥x∥0 ≤ s} (9)

where vector y is the row sum vector of LV \T and s is the
sparsity constraint.

Naively, if the size of Γ is not too small, then we can just
choose T = Γ. However, for the scope of our problem, the
size of Γ is assumed to be small relative to the size of C1,
therefore this choice does not work well in practice. Instead,
we select T based on a heuristic criterion (as described in
step 4) on a candidate set Ω which is obtained from a random
walk originates from Γ. We also find that the size of T does
not matter too much based on our exploration in the experi-
ments. The idea is summarized in Algorithm 1 as CS-LCE.
We give a more detailed explanation about several aspects of
the algorithm in Remark 2 and Remark 3. More generally, we
can apply CS-LCE iteratively to extract all the clusters one at
a time.

We would like to point out the major differences between
CS-LCE with its counterparts CP+RWT in [Lai and Mcken-
zie, 2020] and LSC in [Lai and Shen, 2023]. The key dif-
ference is that the latter two methods only be able to extract
target cluster from the initial cut Ω, since it is assumed that
C1 ⊂ Ω in these two methods before extracting all the ver-
tices in C1, and once Ω fails to contain any vertex in C1, there
is no chance for CP+RWT or LSC to recover those vertices in
the later stage. However, such an assumption is not needed in
CS-LCE. Since the sensing matrix in CS-LCE is associated
with all the vertices corresponding to V \ T , it is very proba-
ble for CS-LCE to still be able to find the vertices which are
in C1 but not in Ω.
Remark 2. The purpose of Ω is solely for obtaining the set
T , and the vector y is computed by adding up all the columns
with indices in the set V \T . This is another key difference be-
tween CS-LCE and CP+RWT [Lai and Mckenzie, 2020] and

LSC [Lai and Shen, 2023], whereas the latter two methods
directly use Ω to obtain y.
Remark 3. The rationale for choosing an iterative approach
such as Subspace Pursuit over other sophisticated optimiza-
tion algorithms for solving (10) comes from the nature of our
task. Since the task is clustering, all we need is a relative
good estimated solution instead of the exact solution, then
we can use a cutoff number R in Algorithm 1 to separate the
aimed cluster from the remaining of the graph. Due to the na-
ture of an iterative approach, the convergence is usually fast
at the beginning and slow in the end, so we can stop early
in the iteration to save the computational cost once the esti-
mated solution is roughly “close enough” to the true solution.

3.2 Theoretical Analysis
For convenience, let us fix γ = 0.4 for the rest of discussion.
We want to make sure the output C#

1 from Algorithm 1 is as
close to the true cluster C1 as possible. In order to investigate
more towards this aspect, let us use x∗ to denote the solution
to the unperturbed problem:

x∗ := argmin
x∈R|V |−|T |

{∥Lin
V \Tx− yin∥2 : ∥x∥0 ≤ 0.6n1} (11)

where yin = Lin1V \T . Let x# be the solution to (10), the
perturbed problem, with γ = 0.4.

Let us first establish the correctness of having x∗ equals to
an indicator vector as the solution to (11), and then conclude
that x# ≈ x∗ if L ≈ Lin in a certain sense. Once this is
established, we will be able to conclude C#

1 ≈ C1. These re-
sults are summarized in the following as a series of theorems
and lemma.
Theorem 1. Suppose T ⊂ C1. Then x∗ = 1C1\T ∈
R|V |−|T | is the unique solution to (11).

Proof. Note that for yin = Lin1V \T , we can rewrite it as
yin = Lin

V \T1 where 1 ∈ R|V |−|T |. It is straightforward to
check x∗ = 1C1\T is a solution to (11). The rest is to show it
is unique.

Suppose otherwise, then since Lin
V \T1C1\T = yin, we

want to find x ∈ R|V |−|T | and x ̸= 1C1\T such that
Lin
V \T (x − 1) = 0. Without loss of generality, let us assume

the columns of L are permuted such that it is in the block
diagonal form, i.e.,

Lin
V \T =


Lin
C1\T

Lin
C2

. . .
Lin
Cn

 .

Let us now show that Lin
C1\T is of full column rank, i.e.,

the columns of Lin
C1\T is linearly independent. We first ob-

serve the following fact. By Lemma 1, each of Lin
Ci

has
λ = 0 as an eigenvalue with multiplicity one, and the cor-
responding eigenspace is spanned by 1Ci . Now suppose by
contradiction that the columns of Lin

C1\T are linearly depen-
dent, so there exists v ̸= 0 such that Lin

C1\Tv = 0, or
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Lin
C1\Tv + Lin

T · 0 = 0. This means that u = (v,0) is an
eigenvector associated to eigenvalue zero, which contradicts
the fact that the eigenspace is spanned by 1Ci . Therefore
Lin
C1\T is of full column rank.
Since Lin

C1\T is of full column rank, and Ker(Lin
Ci
) =

Span{1Ci
} for i ≥ 2. We conclude that x − 1 ∈

Ker(Lin
V \T ) = Span{1C2

, · · · ,1Cn
}. Therefore in order

to satisfy ∥x∥0 ≤ 0.6n1, it is easy to see x = 1 − 1C2 −
1C3 − · · · − 1Ck

= 1C1\T , which results in a contradiction
by our assumption.

The next theorem shows that x∗ and x# are close to each
other if L and Lin are close.
Theorem 2. Let M := L− Lin. Suppose T ⊂ C1, ∥M∥2 =
o(n−1/2) and δ1.8n1

(L) = o(1). Then

∥x# − x∗∥2
∥x∗∥2

= o(1). (12)

Proof. Recall that x# is the output to (10) after O(log n) it-
erations of Subspace Pursuit. By our assumption on M , we
have
∥y − yin∥2 = ∥L1V \T − Lin1V \T ∥2 = ∥(L− Lin)1V \T ∥2

≤ ∥M∥2∥1V \T ∥2 ≤ o(n−1/2) ·
√
n = o(1).

Then applying Theorem 2.5 in [Lai and Mckenzie, 2020], we
get the desired result.

Lemma 2. Consider K ⊂ [n], any v ∈ Rn, and W# =
{i : vi > R}. If ∥1K − v∥2 ≤ D, then |K△W#| ≤

D2

min{(1−R)2,R2} .

Proof. Let U# = [n] \W#, we can write v = vU# + vW#

where vU# and vW# are the components of v supported on
U# and W# respectively. Then we have
∥1K − v∥22 = ∥1K − vU# − vW#∥22

= ∥1K\W# − vU#∥22 + ∥vW#\T ∥22
+ ∥1K∩W# − vK∩W#∥22
≥ ∥1K\W# − vU#∥22 + ∥vW#\T ∥22
≥ (1−R)2 · |K \W#|+R2 · |W# \K|
≥ min{(1−R)2, R2}(|K \W#|+ |W# \K|)
= min{(1−R)2, R2}|K△W#|.

Therefore ∥1K − v∥2 ≤ D implies |K△W#| ≤
D2

min{(1−R)2,R2} as desired.

Theorem 3. Suppose T ⊂ C1. Then

|C1△C#
1 |

|C1|
≤ o(1) (13)

Proof. It is equivalent to show |C1△C#
1 | ≤ o(n1). Note that

x∗ = 1C1\T . By Theorem 2, we get ∥1C1\T − x#∥2 ≤
o(∥1C1\T ∥2) = o(

√
n1). We then apply Lemma 2 with K =

C1 \ T , W# = C#
1 , and v = x# to get |(C1 \ T )△C#

1 | ≤
o(n1). Therefore |C1△C#

1 | ≤ o(n1).

Figure 1: Performances on Symmetric Stochastic Block Model. Top:
Average Jaccard Index. Bottom: Logarithm of Average Run Time.

4 Experiments
In this section, we evaluate Algorithm 1 on various synthetic
and real datasets and compare its performance with several
baselines. For all experiments, we perform 100 individual
runs. Additional details about the experiments are provided in
the supplement. We make the supplement and code available
at: https://github.com/zzzzms/LocalClustering.

Datasets. We use simulated stochastic block model, sim-
ulated geometric data with three particular shapes, network
data on political blogs[Adamic and Glance, 2005], OptDig-
its1, AT&T Database of Faces2, MNIST3, and USPS4 as our
benchmark datasets.

Baselines and Settings. We adopt the LSC [Lai and
Shen, 2023], CP+RWT [Lai and Mckenzie, 2020], HK-
Grow [Kloster and Gleich, 2014], PPR [Andersen et al.,
2007], ESSC [Wilson et al., 2014], LBSA [Shi et al., 2019],
and several other modern semi-supervised clustering algo-
rithms as our baseline methods. For our experiments of
stochastic block model, the only target cluster is the most
dominant cluster, i.e., the cluster with the highest connec-
tion probability. For all other experiments, all of the clusters
are considered as our target clusters, and we apply CS-LCE
iteratively to extract all of them. We use Jaccard index to
measure the performance of one cluster tasks and use mean

1https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+
handwritten+digits

2https://git-disl.github.io/GTDLBench/datasets/att face dataset/
3http://yann.lecun.com/exdb/mnist/
4https://git-disl.github.io/GTDLBench/datasets/usps dataset/
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Figure 2: Performances on Non-symmetric Stochastic Block Model.
Top: Average Jaccard Index. Bottom: Logarithm of Average Run
Time.

Figure 3: Visualizations of Geometric Data. From Left to Right:
Three Lines, Three Circles, and Three Moons.

accuracy across all clusters to measure the performance of
multiple clusters tasks.

4.1 Simulated Data
Symmetric Stochastic Block Model. The stochastic block
model is a generative model for random graphs with certain
edge densities within and between underlying clusters. The
edges within clusters are denser than the edges between clus-
ters. In the case of each cluster has the same size and the
intra- and inter-connection probability are the same among
all vertices, we have the symmetric stochastic block model
SSBM(n, k, p, q). The parameter n is the size of the graph,
k is the number of clusters, p is the probability of intra-
connectivity, and q is the probability of inter-connectivity.
In our experiments, we fix k = 3 and vary n among
600, 1200, 1800, 2400, 3000. We choose p = 5 log n/n, q =
log n/n. With five labeled vertices as seeds, we achieve the
performances shown in Figure 1. We can see CS-LCE out-
performs all other baselines with a reasonable running time.
Non-symmetric Stochastic Block Model. In a more gen-
eral stochastic block model SBM(n, k, P ), where n and
k are the same as symmetric case. The matrix P indi-

Datasets 3 Lines 3 Circles 3 Moons

LSC 89.0 (5.53) 96.2 (3.71) 85.3 (1.88)
CP+RWT 82.1 (9.06) 96.1 (5.09) 85.4 (1.33)
CS-LCE 92.4 (8.13) 97.6 (4.69) 96.8 (0.89)

Table 2: Mean Accuracy and SD on Geometric Data (%)

Label Ratios 10 % 20 % 30 %

LSC 94.8 (3.32) 97.8 (1.18) 98.2 (0.77)
CP+RWT 93.7 (3.34) 97.8 (1.44) 98.3 (0.43)

SC 95.8 (0.00) 95.8 (0.00) 95.8 (0.00)
CS-LCE 98.0 (1.90) 99.1 (0.79) 99.3 (0.59)

Table 3: Mean Accuracy and SD on AT&T Data (%)

cates the connection probability within each individual clus-
ter and between different clusters. It is worthwhile to note
that the information theoretical bound for exact cluster re-
covery in SBM are given in [Abbe, 2018] and [Abbe and
Sandon, 2015]. In our experiments, we fix k = 3, and the
size of clusters are chosen as n = (n1, 2n1, 5n1) where n1

is chosen from {200, 400, 600, 800, 1000}. We set the con-
nection probability matrix P = [p, q, q; q, p, q; q, q, p] where
p = log2(8n1)/(8n1) and q = 5 log(8n1)/(8n1). With
five labeled vertices as seeds, the clustering performances are
shown in Figure 2.

Geometric Data. We also simulated three high dimen-
sional datasets in Euclidean space where the projections of
the clusters onto two dimensional plane look like three lines,
three circles, or three moons. See Figure 3 for an illustra-
tion of them. These datasets are often used as benchmark for
data clustering and they are also described in [Mckenzie and
Damelin, 2019] with slightly different parameters. Because
of the shape of underlying clusters, traditional k-means clus-
tering or spectral clustering fail on these contrived datasets.
In our experiments, for each dataset, we randomly select 10
seeds for each of the cluster. The mean accuracy and stan-
dard deviation of CS-LCE compared with LSC [Lai and Shen,
2023] and CP+RWT [Lai and Mckenzie, 2020] are given in
Table 2. A more detailed description of this simulated dataset
is given in the supplement.

4.2 Human Face Images
The AT&T Database of Faces contains gray-scale images for
40 different people of pixel size 92 × 112. Images of each
person are taken under 10 different conditions, by varying
the three perspectives of faces, lighting conditions, and facial
expressions. We use part of this dataset by randomly select-
ing 10 people such that each individual is associated with 10
pictures of themselves. The selected dataset and desired re-
covery are shown in Figure 4.

The mean accuracy and standard deviation of CS-LCE
compared with LSC [Lai and Shen, 2023], CP+RWT [Lai
and Mckenzie, 2020], and spectral clustering (SC) are sum-
marized in Table 3. Note that spectral clustering method is
unsupervised, hence its accuracy does not affected by the la-
bel ratios.
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Figure 4: Left: Randomly Permuted AT&T Faces. Right: Desired
Recovery of all Clusters.

Figure 5: Average Jaccard Index on OptDigits.

4.3 Network Data
“The political blogosphere and the 2004 US Election”
[Adamic and Glance, 2005] dataset contains a list of politi-
cal blogs that were classified as liberal or conservative with
links between blogs. An illustration of this dataset is attached
in the supplement. The state-of-the-art result on this dataset
is given in [Abbe and Sandon, 2015]. Their simplified algo-
rithm gave a successful classification 37 times out of 40 trials,
and each of the successful trials correctly classified all but 56
to 67 of the 1,222 vertices in the graph main component.

In our experiments, given one labeled seed, CS-LCE suc-
ceeds 35 trials out of a total of 40 trials. Among these 35
successful trials, the average number of misclassified node in
the graph main component is 49, which is comparable to the
state-of-the-art result. We note that LSC [Lai and Shen, 2023]
also succeeds 35 out of 40 trials, but the average number of
misclassified node equals to 55. We also note that CP+RWT
[Lai and Mckenzie, 2020] fails on this dataset.

4.4 Digits Data
OptDigits. This dataset contains grayscale images of hand-
written digits from 0 to 9 of size 8 × 8. There are a total
of 5, 620 images and each cluster has approximately 560 im-
ages. The average Jaccard index of CS-LCE compared with
several other algorithms are shown in Figure 5. we exclude
PPR and ESSC in the comparison as they either too slow to
run or the accuracy is too low.
MNIST and USPS. The MNIST dataset consists of 70, 000
grayscale images of the handwritten digits 0-9 of size 28×28

Label Ratios 0.05 % 0.10 % 0.15 %

LSC 77.0 (3.47) 83.6 (2.76) 88.8 (2.52)
CP+RWT 74.1 (3.13) 79.7 (2.43) 85.0 (2.37)
CS-LCE 85.3 (2.67) 89.8 (1.91) 93.2 (1.76)

Table 4: Mean Accuracy and SD on MNIST (%)

Label Ratios 0.2 % 0.3% 0.4%

LSC 72.3 (3.54) 77.1 (3.42) 80.4 (3.20)
CP+RWT 68.9 (3.17) 73.3 (2.76) 76.6 (2.59)
CS-LCE 76.8 (3.37) 80.1 (3.14) 84.1 (2.53)

Table 5: Mean Accuracy and SD on USPS (%)

MNIST USPS

KM-cst [Basu et al., 2004] 54.27 68.18
AE+KM [MacQueen, 1967] 74.09 70.28

AE+KM-cst [Basu et al., 2004] 75.98 71.87
DEC [Xie et al., 2016] 84.94 75.81

IDEC [Guo et al., 2017] 83.85 75.86
SDEC [Ren et al., 2019] 86.11 76.39

CS-LCE (Ours) 96.02 82.10

Table 6: Mean Accuracy on MNIST and USPS (%)

with approximately 7, 000 images of each digit. The USPS
data set contains 9298 grayscale images, obtained from the
scanning of handwritten digits from envelopes by the U.S.
postal service. We test CS-LCE, LCS, CP+RWT, and several
other modern semi-supervised methods on these two datasets,
the results are show in Table 4, Table 5 and Table 6. It is worth
pointing out that in Table 4 and Table 5, we have only very
few labeled data for our tasks. If one uses a neural network
method to train for classification of images, then it usually
needs more labeled data for training. In Table 6, we compare
CS-LCE with several other constraint clustering algorithms.
In each constrained clustering algorithms, the total number
of pairwise constraints are set to equal to the total data points.
Therefore in order to have a fair comparison, we choose a
certain amount of labeled data in CS-LCE such that the total
pairwise constraints are the same.

5 Conclusions

In this work, we proposed a semi-supervised local clustering
approach based on compressive sensing. Our approach im-
proves the disadvantages in prior work under the same frame-
work, and it is shown to be asymptotically correct under cer-
tain assumptions of graph structure. Extensive Experiments
on various datasets have validated its effectiveness. We hope
this work will draw people’s interests and bring attentions to
this new perspective of local clustering. Potential research
directions in the future could be done on developing a more
calibrated way of choosing the removal set and investigating
how to incorporate compressive sensing into some modern
architectures such as deep neural networks.
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