
Improving Heterogeneous Model Reuse by Density Estimation
Anke Tang 1,2 , Yong Luo 1,2∗ , Han Hu 3 , Fengxiang He 4 ,

Kehua Su 1∗ , Bo Du 1,2 , Yixin Chen 5 , Dacheng Tao 6

1 School of Computer Science, National Engineering Research Center for Multimedia Software, Institute
of Artificial Intelligence and Hubei Key Laboratory of Multimedia and Network Communication

Engineering, Wuhan University, China
2 Hubei Luojia Laboratory, Wuhan, China

3 School of Information and Electronics, Beijing Institute of Technology, China
4 JD Explore Academy, JD.com, Inc., China

5 Department of CSE, Washington University in St. Louis, USA
6 The University of Sydney, Australia

{anketang, luoyong}@whu.edu.cn, hhu@bit.edu.cn, fengxiang.f.he@gmail.com,
{skh, dubo}@whu.edu.cn, chen@cse.wustl.edu, dacheng.tao@gmail.com

Abstract
This paper studies multiparty learning, aiming to
learn a model using the private data of different
participants. Model reuse is a promising solu-
tion for multiparty learning, assuming that a local
model has been trained for each party. Consider-
ing the potential sample selection bias among dif-
ferent parties, some heterogeneous model reuse ap-
proaches have been developed. However, although
pre-trained local classifiers are utilized in these ap-
proaches, the characteristics of the local data are
not well exploited. This motivates us to estimate
the density of local data and design an auxiliary
model together with the local classifiers for reuse.
To address the scenarios where some local models
are not well pre-trained, we further design a multi-
party cross-entropy loss for calibration. Upon ex-
isting works, we address a challenging problem of
heterogeneous model reuse from a decision theory
perspective and take advantage of recent advances
in density estimation. Experimental results on both
synthetic and benchmark data demonstrate the su-
periority of the proposed method.

1 Introduction
In recent years, leveraging centralized large-scale data by
deep learning has achieved remarkable success in various ap-
plication domains. However, there are many scenarios where
different participants separately collect data, and data sharing
is prohibited due to the privacy legislation and high transmis-
sion cost. For example, in some specific applications, such
as medicine and autonomous driving, learnable data is inher-
ently privacy-related and decentralized, and each local dataset
is often insufficient to train a reliable prediction model [Sav-
age, 2017; Rajkomar et al., 2019]. Therefore, multiparty
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learning is proposed to learn a reliable model using separated
private datasets without sharing trainable samples [Pathak et
al., 2010].

Most of the existing multiparty learning systems focus on
training a shared global model to simultaneously achieve
satisfactory accuracy and protect data privacy. These sys-
tems usually assume that each party trains a homogeneous
local model, e.g., training neural networks with the same
architecture [Shokri and Shmatikov, 2015]. This makes
it possible to directly average model parameters or aggre-
gate gradient information [Warnat-Herresthal et al., 2021;
McMahan et al., 2016; Li et al., 2019]. Some other works
assume that each party has already trained a local model on
its local dataset, and then apply model reuse to learn a global
model [Pathak et al., 2010; Yang et al., 2017]. A typical ex-
ample is the heterogeneous model reuse (HMR) method pre-
sented in [Wu et al., 2019]. Since only the output predictions
of local models are utilized to derive a global model, the data
can be non-i.i.d distributed and the architectures of different
local models can vary among different parties. In addition,
training of the global model can be quite efficient and data
transmission cost can be significantly reduced.

There also exist some other model reuse approaches that
may be utilized for multiparty learning. For example, pre-
trained nonlinear auxiliary classifiers are adapted to new ob-
ject functions in [Li et al., 2012]. Alternatively, the simple
voting strategy can be adapted and improved to ensemble lo-
cal models [Zhou, 2012; Wu et al., 2019]. In addition to the
local models, a few works consider the design of specification
to assist model selection and weight assignment [Ding et al.,
2020; Wu et al., 2023]. However, some important character-
istics of the local data, such as the data density information
are simply ignored in these approaches.

This motivates us to propose a novel heterogeneous model
reuse method from a decision theory perspective that exploits
the density information of local data. In particular, in addi-
tion to the local model provided by each party, we estimate
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the probability density function of local data and design an
auxiliary generative probabilistic model for reuse.

The proposed model ensemble strategy is based on the
rules of Bayesian inference. By feeding the target samples
into the density estimators, we can obtain confidence scores
of the accompanying local classifier when performing predic-
tion for these samples. Focusing on the semantic outputs, the
heterogeneous local models are treated as black boxes and are
allowed to abstain from making a final decision if the confi-
dence is low for a certain sample in the prediction. Therefore,
aided by the density estimation, we can assign sample-level
weight to the prediction of the local classifier. Besides, when
some local models are insufficiently trained on local datasets,
we design a multiparty cross-entropy loss for calibration. The
designed loss automatically assigns a larger gradient to the lo-
cal model that provides a more significant density estimation,
and thus, enables it to obtain faster parameter updates.

To summarize, the main contributions of this paper are:

• we propose a novel model reuse approach for multiparty
learning, where the data density is explored to help the
reuse of biased models trained on local datasets to con-
struct a reliable global model;

• we design a multiparty cross-entropy loss, which can
further optimize deep global model in an end-to-end
manner.

We conduct experiments on both synthetic and benchmark
data for image classification tasks. The experimental results
demonstrate that our method is superior to some compet-
itive and recently proposed counterparts [Wu et al., 2019;
Wu et al., 2023]. Specifically, we achieve a significant 17.4%
improvement compared with [Wu et al., 2023] in the case of
three strict disjoint parties on the benchmark data. Besides,
the proposed calibration operation is proven to be effective
even when local models are random initialized without train-
ing.

2 Related Work
In this section, we briefly summarize related works on multi-
party learning and model reuse.

2.1 Multiparty Learning
Secure multiparty computation (SMC) [Yao, 1986; Lindell,
2005] naturally involves multiple parties. The goal of SMC
is to design a protocol, which is typically complicated, to
exchange messages without revealing private data and com-
pute a function on multiparty data. SMC requires commu-
nication between parties, leading to a huge amount of com-
munication overhead. The complicated computation proto-
cols are another practical challenge and may not be achieved
efficiently. Despite these shortcomings, the capabilities of
SMC still have a great potential for machine learning appli-
cations, enabling training and evaluation on the underlying
full dataset. There are several studies on machine learning
via SMC [Juvekar et al., 2018; Mohassel and Rindal, 2018;
Kumar et al., 2020]. In some cases, partial knowledge disclo-
sure may be considered acceptable and traded for efficiency.
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Figure 1: A comparison of our heterogeneous model reuse method
with HMR [Wu et al., 2019] and RKME [Wu et al., 2023]. In HMR,
multiple local models are simply combined and carefully calibrated
to construct a global model. RKME does not require calibration, but
some specifications that summarize local datasets are utilized for
complicated model selection in the deployment phase. We utilize
different types of specifications of local datasets in a different way,
and design cheap aggregation strategy for model ensemble, where
the calibration is optional due to satisfactory zero-shot test accuracy.

For example, a SMC framework [Knott et al., 2021] is pro-
posed to perform an efficient private evaluation of modern
machine-learning models under a semi-honest threat model.

Differential privacy [Dwork, 2008] and k-Anonymity
[Sweeney, 2002] are used in another line of work for mul-
tiparty learning. These methods try to add noise to the data or
obscure certain sensitive attributes until the third party can-
not distinguish the individual. The disadvantage is that there
is still heavy data transmission, which does not apply to large-
scale training. In addition to transmitting encrypted data,
there are studies on the encrypted transmission of parame-
ters and training gradients, such as federated learning [Yang
et al., 2019] and swarm learning [Warnat-Herresthal et al.,
2021]. Federated learning was first proposed by Google and
has been developed rapidly since then, wherein dedicated pa-
rameter servers are responsible for aggregating and distribut-
ing local training gradients. Besides, swarm learning is a
data privacy-preserving framework that utilizes blockchain
technology to decentralize machine learning-based systems.
However, these methods usually can only deal with homoge-
neous local models [Pathak et al., 2010; Rajkumar and Agar-
wal, 2012].

2.2 Model Reuse
Model reuse aims to learn a reliable model for target task
by reusing some related pre-trained models, often without
accessing their original data [Zhou, 2016]. Heterogeneous
model reuse (HMR) for multiparty learning [Wu et al., 2019]
is the closest work to ours. Based on the idea of learn-
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ware [Zhou, 2016], the black-box construction of a global
model from the heterogeneous local models is performed. In
HMR [Wu et al., 2019], a global model is built based on
the idea of Max-Model Predictor and then the model is care-
fully calibrated using a designed multiparty multiclass mar-
gin (MPMC-margin) loss. However, the accuracy is usually
unsatisfactory under the zero-shot setting (model ensemble
without any parameter or architecture calibration) due to the
lack of exploitation of prior information. In RKME [Wu et
al., 2023], each local classifier is assumed to be associated
with a reduced kernel mean embedding as model specifica-
tion, which largely improves the zero-shot test accuracy, but
complicated model selection is required. Our method makes
use of the data density specification (with privacy guarantee
presented in section 3.4), and a cheap model ensemble strat-
egy is adopted to achieve very promising performance, even
without calibration. Figure 1 is a comparison of our method
with HMR and RKME.

The major difference between model reuse and some other
related paradigms such as federated learning is that for the
latter, information is exchanged among different parties in
privacy-preserving ways during the training phase. While for
model reuse, the training process of different parties is inde-
pendent, and information is only exchanged and exploited in
the form of models during the deployment phase [Yang et al.,
2019; McMahan et al., 2017; Ding et al., 2020].

3 The Proposed Method
In this section, we first introduce the main notations and pre-
liminaries of heterogeneous model reuse for the multiparty
learning problem.

3.1 Notations and Preliminaries
We consider that there are N participants in a multiparty
learning system, and each participant i ∈ [N ] is known as
a party and has its own local dataset Si = {(x, y) ∈ X ×Yi}
containing data samples and corresponding labels, where the
labels are in Yi ⊆ Y . Here, data exist in the form of iso-
lated islands. Each party can only access its local dataset, so
the underlying global dataset S = ∪Ni=1Si cannot be directly
observed by any parties. The participants attempt to cooper-
ate in bridging the gap between model accuracy and training
data accessibility, and obtaining a reliable global model. The
whole model reuse progress is diagrammed as figure 1(d).

For a multiparty classification problem, each party i holds
its local classifier Fi : X → Yi which is trained on its local
dataset Si and the types of classifiers can vary among parties.
The first challenge of learning the global model arises from
the potential sample selection bias or covariate shift. A lo-
cal classifier may misclassify an unseen input sample into the
wrong class. In fact, a local classifier would never be able
to predict correctly if the local label space is not equal to the
full label space, i.e. when Fi can only estimate posterior class
probabilities p(Ck|x, Si) given x for class Ck ∈ Yi ( Y , we
simply assign zero to p(Ck|x, Si) for Ck ∈ Y \ Yi.

As for our method, in addition to the local classifier, each
party should also fit a local density estimator Gi : X → R
on Si in an unsupervised manner. The density estimator Gi

is a generative probability model that learns to approximate
the log-likelihood probability of the observations. As we shall
see in the following section, the log-likelihood and the dataset
prior constitute the transition matrix that transforms the local
class posterior probability to the global class posterior prob-
ability. Therefore, the density estimators participate in the
ensemble of local models in our model reuse framework to-
gether with the classifiers. Besides, since Gi only provides
the function of estimating the log-likelihood for given sam-
ples and does not need to generate samples, the privacy of the
local dataset is guaranteed.

3.2 Heterogeneous Model Reuse Aided by Density
Estimation

We tackle the multiparty learning problem by utilizing some
pre-trained local models to train a reliable global one. Before
combining local models, we shall dive into the decision the-
ory of the multiparty learning problem to gain some insight.
We denote the joint probability distribution on the underlying
global dataset as p(x,Ck), and local joint distribution as con-
ditional probability p(x,Ck|Si) given local dataset Si. The
underlying global dataset is inaccessible and hence a directly
estimation of p(x,Ck) is intractable. A possible solution is to
marginalize out Si to obtain p(x,Ck):

p(x,Ck) = ESi∼S [p(x,Ck|Si)] . (1)
For a classification task, we need to assign each observation
x to a certain class Ck. Such operation will divide the input
space X into adjacent decision regions {Rk}. Our ultimate
goal is to find the optimal decision policy f∗ ∈ X 7→ Y that
maximizes the probability of correct classification, i.e.,

P (correct) =
∑
k

∫
Rk

p(x, f∗(x)) dx. (2)

It is straightforward to see that we can maximize the prob-
ability of correct classification if and only if we assign each
x to the class with the most considerable joint probability,
since we can only assign x to one class at a time. Since the
upper bound of Eq. (2) is

∫
maxCk

p(x,Ck) dx [Bishop and
Nasrabadi, 2006], we have f∗ = argmaxCk

p(·, Ck). By fur-
ther expanding out p(x,Ck) using marginalization Eq. (1),
we can reformulate Eq. (2) as

Pmax =

∫ ∑
i

p(C∗k |x, Si)p(x|Si)p(Si) dx, (3)

where C∗k = argmaxCk
p(x,Ck). In this way, we con-

struct the global joint distribution by exploiting information
about prior dataset distribution p(Si), local density/likelihood
p(x|Si) and local class posterior p(Ck|x, Si). To gain further
insight into the global joint function, we multiply and divide
the global likelihood p(x) inner the right-hand integral, and
rewrite Eq. (3) equivalently as∫

p(x)

(∑
i

p(C∗k |x, Si)
p(x|Si)p(Si)

p(x)

)
︸ ︷︷ ︸

p(Ck|x)

dx (4)

=

∫
p(x)

(∑
i

p(C∗k |x, Si)λi

)
dx, (5)
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where
∑N
i=1 λi = 1 and λi = p(Si|x) according to Bayes’

theorem. Compared with the original joint function Eq. (2),
we now represent the global posterior probability p(Ck|x) as
a weighted sum of local posteriors. Evidently, when there is
only one party, λ1 = 1, this joint representation degenerates
to the familiar standard classification case, i.e., assigning x to
class argmaxCk

p(Ck|x).
When the dimension of input space X is small, estima-

tion of the density p(x|Si) is trivial, and some popular and
vanilla density estimation techniques, such as Gaussian mix-
ture and kernel density estimators, from the classical unsuper-
vised learning community can be directly adopted. However,
when the input dimension is high, such as in the case of image
classification, landscape of the log-likelihood function Gi(x)
for approximating the density can be extremely sharp due to
the sparse sample distribution and thus intractable in practice.
We address this issue by extracting a sizeable common factor
inner the summation, and rewriting the integrand in Eq. (3)
equivalently as

p(x|Sj)
∑
i

p(C∗k |x, Si)p(Si)elog p(x|Si)−log p(x|Sj), (6)

where j = argmaxj log p(x|Sj). In this way, we normalize
the likelihood estimation to a reasonable interval [0, 1] with-
out loss of information.

We then ensemble the local models according to Eq. (6),
as illustrated in Figure 1(c), where p(Si) is proportional to
the size of local dataset and sum up to 1, so that p(Si) =
|Si|/

∑
j |Sj |. Moreover, the class posterior p(Ck|x, Si) and

density p(x|Si) can be approximated by the discriminate
model Fi and generative model Gi, respectively. Finally, the
global model can make a final decision, dropping the com-
mon factor p(x|Sj), and the final decision policy can be writ-
ten in a compact form by matrices as:

argmax
C

〈
F(C)(·), ‖S‖1 � exp

(
G(·)− Ḡ(·)

)〉
, (7)

where Ḡ = argmaxiGi(·) and � is the Hadamard product.
Hereafter, we denote this inner product as the decision objec-
tive function J(C) for simplicity. The main procedure of our
model reuse algorithm is summarized in Algorithm 1.

The following claim shows that our global model can be
considered as a more general version of the max-model pre-
dictor defined in [Wu et al., 2019].
Claim 1. Let λi = δiargmaxi p(x|Si)

, Eq.(5) would degenerate
to a max-model predictor.

Proof. If we assign λi to δiargmaxi p(x|Si)
, then according to

Eq. (5), we have

P =

∫
p(x)p(C∗k |x, argmax

Si

p(x|Si)) dx. (8)

Recall the definition of C∗k and by dropping the common fac-
tor p(x), the decision policy Eq. (8) can be characterized as
argmaxCk

maxSi
p(Ck|x, Si).

By sharing selected samples among parties, HMR [Wu et
al., 2019] makes p(·|Si) get closer to each other in the Hilbert
space so that p(Ck|x, argmaxSi

p(x|Si))→ p(Ck|x).

Algorithm 1 Heterogeneous Model Reuse aided by Density
Estimation (without Calibration).
Input:

• Local classifiers F1,F2, . . . ,FN
. e.g. CART, SVM, MLP, CNN

• Local log-likelihood estimators G1,G2, . . . ,GN

. e.g. Kernel Density, Real-NVP, VAE
• Sizes of local datasets |S1|, |S2|, . . . , |SN |
• Query samples x1, x2, . . . , xm

Output: Labels of classification
1: for j = 1, 2, . . . , N do
2: initialize dataset prior probability by normalization:

pj := |Sj |/
∑
i |Si|

3: for i = 1, 2, . . . ,m do
4: for each class k calculate local posterior probability,

fill zeros for missing entries:
Gijk := F

(Ck)
j (xi) or 0

5: calculate local log-likelihood:
Fij := Gj(xi)

6: end for
7: end for
8: for i = 1, 2, . . . ,m do
9: calculate objective function for each class k:

Jik :=
∑
j pjFijk exp(Gijk −maxj Gijk)

10: make decision for query sample xi:
Ci := argmaxk Jik

11: end for
12: return C = C1, C2, . . . , Cm

3.3 Multiparty Cross-Entropy Loss
In this subsection, we design a novel multiparty cross-entropy
loss (MPCE loss), which enables us to calibrate the classi-
fiers in the compositional deep global model in an end-to-end
manner. We use θ and µ to denote the sets of classifiers’ and
generative models’ parameters respectively, and we aim to
find optimal θ so that we approximate the actual class pos-
terior function well. A popular way to measure the distance
between two probabilities is to compute the Kullback-Leibler
(KL) divergence between them. With a slight abuse of no-
tation, we characterize the KL divergence between true class
posterior and approximated class posterior as

KL(p‖pθ) =
∑
C∈C

p(C|x) log
p(C|x)

pθ(C|x)
(9)

= EC∼p [log p(C|x)]− EC∼p [log pθ(C|x)] . (10)

The first term in Eq. (10) is fixed and associated with the
dataset. Besides, as for a classification task, p(·|x) is a Kro-
necker delta function of class C, so this expectation term is 0.
We define the MPCE loss as the second term in Eq. (10), that
is

Lmpce(ŷ, y) = −EC∼p [log pθ(C|x)] (11)

= −
∑
k

δyk log pθ(Ck|x), (12)
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where δ is the Kronecker delta function, δyk is 1 if k and y
are equal, and 0 otherwise. By utilizing the global posterior
presented in Eq. (4), we can further expand out the loss to get

Lmpce(ŷ, y) = − log

{∑
i

pθ(Cy|x, Si)
pµ(x|Si)p(Si)

p(x)

}
.

(13)

Claim 2. For single party case, the MPCE loss degenerates
to the standard cross-entropy loss.

Proof. Evidently, when there is only one party, we have
p(x|Si)p(Si) = p(x, Si) = p(x).

Next, We follow the same argument about the high dimen-
sional situation and apply the normalization trick presented
in Eq. (6), to obtain

Lmpce(ŷ, y) =
{
−Ḡµ(x) + log p(x)

}
− log

〈
F

(Cy)
θ (x), ‖S‖1 � exp

(
Gµ(x)− Ḡµ(x)

)〉
.

(14)

Notice that in Eq. (14), the last term in the log operation is the
same as that in Eq. (7), minimizing the negative-log MPCE
loss will maximize the policy objective function. At step
t, we can update the model parameters [θ, µ]> using −ηgt,
where η is the learning rate hyperparameter and gt is the gra-
dient defined as

gt =
[
∇θLmpce(ŷ, y)

∑
∀iy∈Yi

∇µL(i)
gen(x)

]>
. (15)

Here, L(i)
gen is some unsupervised loss (such as negative log-

likelihood for normalizing flows) of the i-th density estimator.
This can be conducted in a differential privacy manner by
clipping and adding noise to gt

gt = gt/max{1, ‖gt‖2/C}+N (0, σ2C2I). (16)

By optimizing the MPCE loss, the gradient information is
back-propagated along a path weighted by the density esti-
mation. The party that provides more significant density esti-
mation for calibration would obtain larger gradients and faster
parameter updates.

3.4 Privacy Guarantee
In this paper, the data density is utilized as model specifica-
tion, and this may lead to privacy issue. However, since we
can conduct density estimation in a differential privacy man-
ner, the privacy can be well protected.

In particular, differential privacy [Dwork et al., 2006;
Dwork, 2011; Dwork et al., 2014], which is defined as fol-
lows, has become a standard for privacy analysis.

Definition 1 ([Dwork et al., 2006]). A randomized algorithm
M : D 7→ R satisfies (ε, δ)−differential privacy (DP) if and
only if for any two adjacent input datasets D,D′ that differ
in a single entry and for any subset of outputs S ⊂ R it holds
that

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ. (17)

(a) Train samples (b) p(x|S1) (c) Ours-0: 99.1%

(d) HMR-0: 42.4% (e) HMR-5: 71.2% (f) HMR-30: 98.9%

Figure 2: Visualization results of 2D toy example. (a) The five-
class 2D dataset. (b) The estimated density by party 1. (c) Decision
boundary and accuracy of our method without calibration (iteration
0) on the testing data. (d-f) Decision boundary and test accuracy of
HMR at iteration 0, 5 and 30.

It has been demonstrated that density estimators can be
trained in a differential privacy manner to approximate ar-
bitrary, high-dimensional distributions based on the DP-SGD
algorithm [Abadi et al., 2016; Waites and Cummings, 2021].
Therefore, the proposed model aggregation strategy is guar-
anteed to be (ε, δ)-differentially private when local models
are pre-trained in a differential privacy manner, where ε and δ
are the training privacy budget and training privacy tolerance
hyperparameters, respectively.

4 Experiments
In this section, we evaluate our proposed method using a two-
dimensional toy dataset and a popular benchmark dataset.
The basic experimental setup for our 2D toy and benchmark
experiments is similar to that adopted in [Wu et al., 2019].
Experiments on the benchmark data demonstrate our model
reuse algorithm and end-to-end calibration process on vari-
ous biased data distribution scenarios. The code is available
at https://github.com/tanganke/HMR.

4.1 Toy Experiment
We first visualize our proposed method with a toy example.
Here, we create a 2D toy dataset with 2000 points, each asso-
ciated with a label from 5 classes denoted by different colors.
The dataset is equally split into a training set and a test set, as
shown in Figure 2a.

There are three parties in this toy example, each equipped
with different local models. The three parties use logistic re-
gression, Gaussian kernel SVM, and gradient boosting de-
cision tree for classification, respectively. In addition, they
all use kernel density estimator with bandwidth set to 0.1 to
estimate the log-likelihood function. We implement the lo-
cal models using the scikit-learn package [Pedregosa et al.,
2011]. Each party can only access a subset of the complete
training set as the local dataset. The accessible samples are
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Setting A B C D Average
RKME 87.3± 1.4 80.4± 4.2 68.7± 3.2 70.6± 3.8 76.7
HMR-1 87.3± 0.4 54.2± 3.0 37.6± 2.3 56.0± 1.3 58.8

HMR-10 88.3± 0.6 66.0± 3.1 66.5± 4.3 59.4± 4.0 70.1
HMR-50 91.2± 0.3 85.1± 1.9 82.1± 0.9 77.6± 1.4 84.0

HMR-100 91.6± 0.1 87.4± 1.1 84.4± 0.6 82.1± 0.8 86.4
Ours 91.3± 0.2 88.4± 0.4 84.6± 0.3 84.7± 0.4 87.2

Table 1: Accuracy on benchmark data under four multiparty settings (avg.± std.%). Here HMR-X represents the HMR method that has been
calibrated for X rounds.

0 1 2 3 4 5 6 7 8 9

(a) A: 2 parties

0 1 2 3 4 5 6 7 8 9

(b) B: 3 parties

0 1 2 3 4 5 6 7 8 9

(c) C: 3 parties

0 1 2 3 4 5 6 7 8 9

(d) D: 7 parties

Figure 3: Four experiment settings with different sample selection
biases by dividing the training set of Fashion-MNIST. Each color
represents a local dataset associated with a party.

all the green and orange ones for party 1, all the red and blue
ones for party 2, and all the blue and purple ones for party 3.

We first train the classifiers in a supervised manner and the
kernel density estimators in an unsupervised manner on the
corresponding local dataset. Then we reuse these trained lo-
cal models according to Algorithm 1 to make final decisions
on test samples. Lastly, we analyze the zero-shot composi-
tion performance (without calibration) and compare with the
most related work HMR [Wu et al., 2019]. The results are
shown by Figure 2. From the results, we can see that the
zero-shot composition accuracy reaches 99.1%, and the deci-
sion boundary is shown in figure 2c. In contrast, the zero-shot
accuracy of HMR is only 42.4% and the performance is com-
parable to our method after 30 rounds of calibrations.

4.2 Benchmark Experiment
In this set of experiments, we aim to understand how well our
method compares to the state-of-the-art heterogeneous model
reuse approaches for multiparty learning and the strength
and weakness of our calibration procedure. Specifically, we
mainly compare our method with HMR [Wu et al., 2019] and
RKME [Wu et al., 2023].

• HMR uses a max-model predictor as the global model

together with a designed multiparty multiclass margin
loss function for further calibration.

• RKME trains local classifiers and computes the reduced
kernel mean embedding (RKME) specification in the up-
load phase, assigns weights to local classifiers based on
RKME specification, and trains a model selector for fu-
ture tasks in the deployment phase.

In addition to multiparty learning, we train a centralized
model on the entire training set for comparison.

We evaluate our method, HMR, and RKME on Fashion-
MNIST [Xiao et al., 2017], a popular benchmark dataset in
the machine learning community, containing 70, 000 28× 28
gray-scale fashion product images, each associated with a la-
bel from 10 classes. The complete training set is split into a
training set of 60, 000 examples and a test set of 10, 000 ex-
amples. To simulate the multiparty setting, we separate the
training set into different parties with biased sample distribu-
tion. The resulting four cases are shown as figure 3, and we
refer to [Wu et al., 2019] for a detailed description.

We set the training batch size to be 128, and the learning
rate of all local models to 1e-4 during the local training. The
learning rate is 1e-5 during the calibration step. All local clas-
sifiers have the same 3-layer convolutional network and all lo-
cal density estimators are the same 12-layer real non-volume
preserving (real NVP) flow network [Dinh et al., 2016]. The
real NVP network is a class of invertible functions and both
the forward and its inverse computations are quite efficient.
This enables exact and tractable density evaluation. As For
RKME, we set the reduced dimension size to 10, and the
number of generated samples to 200.

Firstly, we test the zero-shot composition accuracy of the
compared approaches, and if possible, evaluate the subse-
quent calibration performance. Due to the difference in the
calibration mechanism, for HMR, a new neuron is added at
the last layer of the classifiers to add reserved class output.
In contrast, for our method, the calibration is end-to-end, and
the structure of the classifiers is fixed. Therefore our method
is more simple to implement. HMR retrains each local model
on the augmented data set for one epoch during calibration.
As for our method, the calibration operation is performed di-
rectly on the global model. Only a batch of 64 data samples
is randomly selected from the training set to perform gradient
back-propagation. We run 20 times for each setting to mit-
igate randomness and display the standard deviation bands.
Experimental results including the centralized ones are visu-
alized in Figure 4, and reported in Table 1.

From Figure 4 and Table 1, we can see that for sufficient
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Figure 4: The test accuracy curves over calibration iterations (avg. ± std.). (a) overall performance of HMR (left) and our method (right)
under the four multiparty settings. (b-e) performance of different compared approaches under each multiparty setting, where RKME is a
constant value since it is inherently a method that cannot be subsequently calibrated.

(a) (b)

(c) (d)

Figure 5: A comparison of the Raw models and the ZeroShot mod-
els (avg.± std.). Here, the Raw models represent the global models
directly calibrated from random initialization without training, and
the ZeroShot models represent the zero-shot composition from suf-
ficient trained local models.

trained local models, our model reuse method achieves rela-
tively superior accuracy from the beginning and outperforms
all other model reuse counterparts. At the same time, sub-
sequent calibrations do not improve performance or, even
worse, slightly degrade performance. This may be because
that the local models are well trained, the further calibration
may lead to slight over-fitting. This demonstrates the effec-
tiveness of our method that exploring data density for reuse.

Then we demonstrate that our calibration procedure is in-
deed effective when the local models are not well trained. In
particular, we compare the test accuracy of the above zero-
shot composition with the global model directly calibrated
from random initialization without training (denoted as Raw).
We fit the raw global models on the full training set for 20
epochs with the learning rate set to be 1e-4 and runs 20 times
for each multiparty setting. The results are shown as figure 5.
We can observe from the results that during our calibration,
the Raw model consistently achieves higher performance and
eventually converges to the zero-shot composition accuracy.

5 Conclusions
In this paper, we propose a novel heterogeneous model reuse
method for multiparty learning, where an auxiliary density
estimator is designed to help the reuse. In practical deploy-
ment, the pre-trained locals model can be provided as web
query services, which is secure and privacy-friendly. Besides,
we propose a multiparty cross-entropy criteria to measure the
distance between the true global posterior and the approxi-
mation. Experimental results on both synthetic and bench-
mark data demonstrate the superiority of our method. From
the results, we mainly conclude that: 1) exploring more prior
knowledge on the private local data during the training phase
can lead to higher performance during the deployment phase;
2) substantial performance boost can be obtained by using the
designed simple and easy-to-implement calibration strategy.
To the best of our knowledge, this is the first work to directly
consider the multiparty learning problem from a decision the-
ory perspective.

In the future, we plan to investigate the feature space to
characterize and manipulate the knowledge learned from spe-
cific data. In addition to the popular image classification task,
the proposed method can also be applied to tasks in other
fields such as machine translation and speech recognition.
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