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Abstract

Spiking Neural Networks (SNNs) are the promis-
ing models of neuromorphic vision recognition.
The mean square error (MSE) and cross-entropy
(CE) losses are widely applied to supervise the
training of SNNs on neuromorphic datasets. How-
ever, the relevance between the output spike counts
and predictions is not well modeled by the existing
loss functions. This paper proposes a Spike Coun-
t Maximization (SCM) training approach for the
SNN-based neuromorphic vision recognition mod-
el based on optimizing the output spike counts.
The SCM is achieved by structural risk minimiza-
tion (SRM) and a specially designed spike count-
ing loss. The spike counting loss counts the output
spikes of the SNN by using the `0-norm, and the
SRM maximizes the distance between the margin
boundaries of the classifier to ensure the general-
ization of the model. The SCM is non-smooth and
non-differentiable, and we design a two-stage algo-
rithm with fast convergence to solve the problem.
Experiment results demonstrate that the SCM per-
forms satisfactorily in most cases. Using the out-
put spikes for prediction, the accuracies of SCM are
2.12% ∼ 16.50% higher than the popular training
losses on the CIFAR10-DVS dataset. The code is
available at https://github.com/TJXTT/SCM-SNN.

1 Introduction
Spiking Neural Networks (SNNs) [Tavanaei et al., 2019;
Zhang et al., 2022] are bio-inspired models, and neuromor-
phic data [Amir et al., 2017; Li et al., 2017] is widely used for
low-power vision sensing. Since the SNN transmits the infor-
mation by the spike sequences, the feature maps of SNNs are
binary. This advantage makes the SNN-based neuromorphic
sensing techniques energy efficient on neuromorphic chips
[Pei et al., 2019; Rahiminejad et al., 2022]. However, be-
cause the spiking features of SNNs are non-differentiable al-
most everywhere, the training of SNNs is more difficult than
the Artificial Neural Networks (ANNs).

∗Corresponding Author

Two kinds of learning algorithms are widely used to train
SNN: a) ANN-to-SNN (ANN2SNN) conversion; b) Spike-
based BP training. The ANN2SNN [Bu et al., 2021;
Ding et al., 2021; Deng and Gu, 2021] converts a well-trained
ANN to its SNN version. Such a technique provides an effi-
cient way to obtain a SNN from a well-trained ANN. Howev-
er, the spatial-temporal context of the neuromorphic events is
not well modeled by the converted SNN, making ANN2SNN
mainly focus on the tasks of static images.

To improve the performance of the SNN-based neuromor-
phic vision tasks, the spike-based BP algorithms [Wu et al.,
2018; Wu et al., 2019b; Lee et al., 2020; Deng et al., 2022a]
that use the back-propagation (BP) are designed to direct train
the SNNs. The surrogate gradient of the spike-based BP en-
ables the gradient calculations of spikes w.r.t the membrane
potential so that the BP algorithms can directly be applied for
SNN training. Since the spike-based BP training captures the
spatial-temporal dynamics of SNNs, the SNN can learn the
context of the neuromorphic events. Many efficient BP-based
algorithms are proposed to train the SNNs for better perfor-
mance [Zheng et al., 2021; Li et al., 2021; Fang et al., 2021a;
Deng et al., 2022a; Feng et al., 2022]. However, many of
them use the mean square error (MSE) or cross-entropy (CE)
loss on the membrane potentials of the logit layer to mini-
mize the gap between the spatial-temporal outputs of SNN
and the target spike sequences/ground truth labels. The rel-
evance between spike counts and the correct predictions is
not well described since optimizing the logit outputs does not
always result in more output spike counts [Shrestha et al.,
2022]. Although the spiking neurons can be applied to the
output of the SNN to generate the spikes for recognition, the
training error is updated based on the surrogate gradient. That
is, the training process is to minimize the error between the
target and differentiable surrogate, which smoothes the dis-
creteness of the spiking output.

In this paper, we connect the output spike activities with
the classification of SNNs. We assume that the output of
SNN should activate as many spikes as possible for a cor-
rect prediction. Otherwise, the output neurons should be kept
at rest. This assumption satisfies the spike counting strategy
[Shrestha and Orchard, 2018]. On this basis, we address the
SNN training problem by maximizing the number of output
spikes for the correct predictions. Specifically, we design a
spike counting loss to map each time step’s decision output
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Figure 1: Overview of the spike counts maximization (SCM) training. The SCM aims to maximize spike counts for a correct prediction.

to a binary spike and achieve the training based on structural
risk minimization (SRM). The spike counting loss maximizes
the number of spikes through time, and the SRM guarantees
that each output spike is activated with sufficient confidence.

Our contributions can be summarized as follow:

• We propose the spike counting loss to handle the output
spikes of the SNN.

• We propose the spike count maximization (SCM) ap-
proach for neuromorphic vision recognition based on the
spike counting loss and structural risk minimization.

• We provide iterative solutions to the SCM and then de-
sign a two-stage SNN training algorithm.

Experiment results on the popular neuromorphic vision
datasets demonstrate that the performance of the SCM is
competitive with the popular training loss.

2 Background & Related Works
2.1 Neuromorphic Vision Recognition
The neuromorphic vision datasets are the event streams cap-
tured by the bio-inspired vision sensors. The Dynamic Vi-
sion Sensor (DVS) [Amir et al., 2017; Li et al., 2017;
Bi et al., 2019] is the most popular neuromorphic sensor.
It mimics the biological retina and generates a sparse even-
t when a pixel value changes magnitude by a pre-setting
threshold. The sparse event stream reduces the cost of en-
ergy and bandwidth for real-time transmission. In addi-
tion, the event stream’s high temporal resolution and dynam-
ic range can provide abundant features for pattern recogni-
tion tasks. However, the discontinuous and sparse events
make neuromorphic datasets much different from the CMOS-
based sensing images. Many ANN-based techniques are de-
signed for neuromorphic vision recognition [Bi et al., 2019;
Wu et al., 2021; Deng et al., 2021; Deng et al., 2022b;
Baldwin et al., 2022]. However, these methods’ good perfor-
mance relies on the many floating point operations and real-
value features, degenerating the energy efficiency on edge de-
vices or neuromorphic chips.

2.2 Spiking Neural Networks
As shown in Fig. 1, the SNNs encode the input data to the
spatial-temporal features. The spiking neuron is the basic
component of SNN, and the Leaky Integrate-and-Fire (LIF)
neuron is popular for SNN modeling. Given an input se-
quence {ot}Tt=1, the dynamic of the LIF neuron is

ut = τut−1(1− ot−1) + wot + b, (1)

ot =

{
1, if ut > Vth,
0, otherwise , (2)

where τ ∈ (0, 1) is a decay factor, ot denotes the spike and ut
is the membrane potential (MP) at t. w is the weight, and b is
the bias. The MP integrates the pre-synaptic inputs in a time
direction, and the post-synaptic spikes are generated when
the MP crosses Vth. After that, the MP is reset to 0. Different
from a ReLU-based ANN, the SNN has additional temporal
dynamics. In each time step, the activation values are binary
rather than a real value of the ReLU activation. The temporal
dynamics of SNN enable the processes of the event stream,
and the feature maps of every step are binaries. Therefore,
the SNNs have more computation-efficient than the ANN for
real-time neuromorphic vision recognition.

2.3 Loss Function for SNN Training
MP-based Loss
Supposing W ∈ Rd×C and b ∈ RC are the weights and
biases of the classifier of the SNN, the Cross-Entropy (CE)
and Mean Square Error (MSE) losses for the training of SNN
are :

LCE = − 1

N

N∑
i=1

yi log(
ew

>
yi

ōi+byi∑C
j=1 e

wj ōi+bj
), (3)

LMSE =
1

N

N∑
i=1

‖W>ōi + b− Iyi‖22, (4)

where wj ∈ W , bj ∈ b denote the class center and
bias of j, Iyi is a C dimensions one-hot vector of yi, and

ōi = 1
T

T∑
t=1
oti is the average value of the feature over
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time. Then, the weight of the SNN can be updated by uti-
lizing the spike-based gradient techniques [Wu et al., 2018;
Wu et al., 2019b]. The CE and MSE losses collect all deci-
sion outputs for prediction. To minimize the training error,
Eq. (3) maximizes the predicted probability of sample i, and
Eq. (4) is to fit the targets directly. [Deng et al., 2022a] de-
signs a Temporal Efficient Training (TET) loss that makes a
decision output on each step, which re-weights the gradient
of the synaptic weights to search for a flat local minimum.

Spike-based Loss
In neuromorphic hardware, the spiking outputs are more suit-
able than the MPs for the inference of SNN due to the bi-
narity of spikes. Maximizing the logit outputs can result in
more output spike counts, but it does not guarantee it al-
ways [Shrestha et al., 2022]. Some variants of Eq. (3) or
(4) map the logit outputs to the binary spikes for model train-
ing. The spike rate loss (SRL) [Shrestha and Orchard, 2018;
Kaiser et al., 2020] maps the logit values to the spike rate/-
counts to approximate the target spike rate r̂yi :

LSRL =
1

N

N∑
i=1

‖ 1

T

T∑
t=1

si(t)− r̂yi‖22, (5)

where si(t) denotes the output spike of sample i at t. Sim-
ilarly, the spike-based cross entropy [Wu et al., 2019a;
Meng et al., 2022] (SCE) applies the spiking neuron on the
logit layer and maximizes the entropy value:

LSCE = − 1

N

N∑
i=1

yi log(
e
∑T

t=1 syi,i(t)∑C
j=1 e

∑T
t=1 sj,i(t)

). (6)

Further, [Shrestha et al., 2022] proposes the SpikeMax loss,
which divides the simulation time into several intervals to cal-
culate the negative log-likelihood losses based on the proba-
bility interpretation of spikes.

Since the surrogate gradient optimizes the spike-based loss
functions, the training of the output layer is to fit the target by
the differentiable surrogate, smoothing the discrete spiking
outputs in the training process.

3 Methodology
In this section, we introduce the principle of spike count max-
imization. Our idea is to train the classifier of SNN by maxi-
mizing the output spike counts for a correct prediction. First,
we propose a spike counting loss to count the output spikes.
Then, we propose the SCM based on structural risk minimiza-
tion of this basis and provide its iterative solutions. Final-
ly, we extend the SCM for multi-classification and propose a
two-stage training algorithm.

3.1 Spike Counting Loss
We consider the binary classification problem. Supposing
{w, b|w ∈ Rd, b ∈ R} are the synaptic weights and bias of
the classifier, and {ot}Tt=1 with label y ∈ {−1,+1} is a se-
quence of spatial-temporal features. For each step, we model
the activation of the output neuron based on the hinge loss
with the `0-norm [Tang et al., 2018; Wang et al., 2022]:

h(w, b|ot, y) = ‖(Vth − f(w, b|ot, y))+‖0, t ∈ [1, T ], (7)

Figure 2: The illustration of h(w, b|ot, y).

where f(w, b|ot, y) = y(w>ot + b), ‖ · ‖0 is the `0-norm,
Vth > 0, and (·)+ maps the negative values to 0. Based on
Eq. (7) and Fig. 2, if f(w, b|ot, y) < Vth, the output neuron
is rest and h(w, b|ot, y) = 1. Otherwise, the neuron fires a
spike and h(w, b|ot, y) = 0.

Summarizing all h(w, b|ot, y) from t = 1 to T , we obtain
the following Spike Counting Loss (SCL):

H(w, b|{ot}Tt=1, y) =
T∑
t=1

‖(Vth − f(w, b|ot, y))+‖0. (8)

It is obvious that the value of SCL (Eq. (8)) is integer and
bounded by 0 and T . The smaller H(w, b|{ot}Tt=1, y), the
more spikes for a prediction are fired. Ideally, a correc-
t prediction should fire the spikes at every time step, that is,
H(w, b|{ot}Tt=1, y) = 0, and the spike activities of the nega-
tive samples should keep at rest.

Different from Eq. (3), the SCL constrains the prediction
of each step to satisfy y(w>ot + b) ≥ Vth rather than max-
imizing a predicted probability or directly fitting the target.
Compared to the existing spike-base loss functions, the value
of SCL is discreteness.

3.2 Spike Count Maximization
To ensure that SCL activates the output spikes with sufficient
confidence. We model the SNN’s training problem by com-
bining the structural risk minimization [Vapnik, 2000] with
Eq. (8).

min
w,b

γ
2 ‖w‖

2
2 +H(w, b|{ot}Tt=1, y). (9)

Fig. 3 gives an example of Eq. (9) on spatial-temporal data,
which has two dimension features and four inference steps.
The blue hyperplanes is the classifier, the gray planes are the
margin boundaries of the firing threshold y(w>o+ b) = Vth.
The training of regular term ‖w‖22 maximizes the margin
2Vth

‖w‖2 , which separates positive and negative samples with e-
nough confidence. H(·) minimizes the number of projections
located in the negative direction of Vth = y(w>o + b) (re-
fer to the data marked by the dashed circles in Fig. 3) and
is equivalent to maximize the number of features satisfying
y(w>ot + b) ≥ Vth, t ∈ [1, T ].
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Figure 3: An instance of Eq. (9) on spatial-temporal data with two
classes.

3.3 Iterative Solutions
Since the SCM is a optimization problem that relates to the
spike counts, Eq. (9) is a mixed integer programming (MIP)
problem. The popular gradient descent can not be applied for
the optimization of Eq. (9) since the `0 terms gradient is 0.
This section proposes the iterative solutions for Eq. (9).

Given a spatial-temporal feature set {{oti}Tt=1, yi}Ni=1 with
two classes yi ∈ {−1,+1}. The SCL becomes

H(w, b|{{oti}Tt=1, yi}Ni=1) =

T∑
t=1

N∑
i=1

‖(Vth − yi(w>oti + b))+‖0. (10)

Let z = [w>, b]> denotes the classifier, Xt =
[ot1,o

t
2, . . . ,o

t
N ], and Y be a diagonal matrix with

diag(Y ) = [y1, y2, . . . , yN ]. We can reform Eq. (10) to the
following equation

H(z|{Xt}Tt=1,Y ) =
T∑
t=1

‖(Vth −Atz)+‖0, (11)

whereAt = Y [(Xt)> 1]. Then, we use g(·) to denote the `0
term

g(Atz) = ‖(Vth −Atz)+‖0, (12)

and Eq. (9) is simplified as

min
z

γ

2
z>Dz +

T∑
t=1

g(Atz), (13)

where D is a diagonal matrix with diag(D) = [1>d , 0]>. It
is equivalent to the constraint problem:

min
z,ut

γ

2
z>Dz +

T∑
t=1

g(ut), s.t. ut = Atz. (14)

By replacing Atz with the potential ut and introducing the
equality constraint, the optimization of the `0-norm is inde-
pendent of z, and the objective function of Eq. (14) can be
relaxed to

L(z, {ut}Tt=1) =
γ

2
z>Dz +

T∑
t=1

g(ut)

+
T∑
t=1

ρ

2
‖ut −Atz +

β

ρ
‖22, (15)

where ρ > 0 and β > 0 are the penalty parameters. We can
minimize Eq. (15) to learn the classifier z.

Based on the above analysis, the training of Eq.(9) is de-
composed to optimize z and {ut}Tt=1. Since the optimization
ofut is non-differentiable, we minimize Eq. (15) by the block
coordinate descent [Tseng, 2001; Tang et al., 2018] and have
the following iterative scheme:

zk+1 = arg min
z
L(z, {(ut)k}Tt=1) +

λ

2
‖z − zk‖22,

(u1)k+1 = arg min
u1
L(zk+1,u1, {(ut)k}Tt=2),

... (16)

(uT )k+1 = arg min
uT
L(zk+1, {(ut)k+1}T−1

t=1 ,u
T ),

where k denotes the k-th training iteration and λ > 0 is a
small enough value.

We present the solutions of Eq. (16) in Theorem 1. Com-
pared with the surrogate gradient-based training of the exist-
ing spike-based loss functions, Theorem 1 learns the clas-
sifier by Eq. (17) and optimizes the output spikes based on
Eq. (18).
Theorem 1. The solutions of Eq. (16) are

zk+1 =(γD + ρ
T∑
t=1

(At)>At + λI)−1

(

T∑
t=1

(At)>β + ρ

T∑
t=1

(At)>(ut)k + λzk), (17)

(uti)
k+1 =



ati, ati > Vth,

Vth, Vth −
√

2
ρ < ati ≤ Vth,

{Vth, ati} , ati = Vth −
√

2
ρ ,

ati, ati < Vth −
√

2
ρ ,

(18)

where at = Atzk+1 − β
ρ , 1 ≤ i ≤ N, 1 ≤ t ≤ T .

We extend the SCM for multi-class classification by apply-
ing the “one-versus-all” strategy:

min
zc,ut

c

γ

2

C∑
c=1

z>c Dzc +
C∑
c=1

T∑
t=1

g(utc), (19)

where C denotes the class number, zc = [w>c bc]
>, and

At
c = Y c[(X

t)>1]. We solve each class’s (zc,u
t
c) based

on Theorem 1.
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Algorithm 1 Spike Count Maximization
Input: Training set {{xti}Tt=1, yi}Ni=1, number of class: C,
time steps: T , Layers of SNN: M , SNN training epoch &
loss function: E,L, and SCM iteration: K, parameters: ρ >
0, γ > 0, β ≥ 0.
Parameter: The SNN f(·) with parameters {Wm, bm}Mm=1,
Parameters for SCM: {zc, }Cc=1, {utc}Cc=1
Output: The trained SNN.

1: Stage 1: Train the SNN {Wm, bm}Mm=1 based on
Spike-based gradient algorithm

2: Collect the M − 1 layer’s features from the SNN:
3: for t = 1 to T do
4: for i = 1 to N do
5: oti = f({Wm, bm}M−1

m=1 |xti, yi).
6: end for
7: Xt = [ot1,o

t
2, . . . ,o

t
N ].

8: end for
9: Stage 2: Train the classifier zc by solving Eq. (19).

10: for k = 0 to K do
11: for c = 1 to C do
12: Update zc based on Eq. (17).
13: for t = 1 to T do
14: Update utc based on Eq. (18).
15: end for
16: end for
17: end for
18: Let W = [w1,w2, . . . ,wC ], b = [b1, b2, . . . , bC ]>,

where wc = zk+1
c(1:d)

, bc = zk+1
cd+1

, 1 ≤ c ≤ C.
19: Replace the decision layer of SNN with W and b:

WM = W , bM = b;
20: Return {Wm, bm}Mm=1.

To ensure the convergence of the model, the training
pipeline of the SCM is separated into two stages: Stage 1:
Pre-train the SNN; Stage 2: Train the classifier zc by solv-
ing Eq. (19). For Stage 1, we can apply the popular loss
functions to train the SNN. In Stage 2, we extract the spatial-
temporal features from the well-trained SNNs and train the
classifier by solving Eq. (19). We state the details of the SCM
in Algo. 1.

4 Experiments
This section estimates the SCM on the neuromorphic dataset-
s (DVS128-GESTURE, CIFAR10-DVS, and ASL-DVS). We
compare our SCM with the SNNs trained based on the popu-
lar loss functions and spike-based BP algorithms. Details of
the setting and results are presented in the following sections.

4.1 Experiment Setting
Tab.1 shows the neuromorphic datasets: DVS128-GESTURE
(DVS-G) [Amir et al., 2017], CIFAR10-DVS (C10-DVS) [Li
et al., 2017], and ASL-DVS [Bi et al., 2019] the DVS cap-
tures. Before training, we scale the frame size to 32× 32× 2.
Then, we set the time steps T of DVS-G, C10-DVS, and ASL-
DVS to 40, 20, and 20 by the event-to-frame process [Fang
et al., 2020], respectively. For C10-DVS, we randomly sep-
arate 90% of the samples for training and 10% for testing.

Dataset Frame Size Categories Samples
Train Set Test Set

DVS128-GESTURE 128× 128× 2 11 1,176 288
CIFAR10-DVS 128× 128× 2 10 10,000

ASL-DVS 120× 240× 2 24 211,392

Table 1: Details of the neuromorphic datasets.

For ASL-DVS, we randomly separate 80% of the samples for
training and 20% for testing. The Parametric LIF neurons
[Fang et al., 2021b] with Vth = 1 is applied for SNN mod-
eling. For a fair comparison, a ResNet-18 SNN [Fang et al.,
2020] (11.17M Params, Conv1:{3 × 3, 64, stride 1}, Con-
v3 1: {stride 1}) without the max-pooling layer is applied as
the backbone for all training approaches. All models share
the same training/testing set. We adopt the Adam optimizer
with a learning rate of 0.001 to train all models in Stage 1,
and the training epochs of DVS-G, C10-DVS, and ASL-DVS
are 30, 30, and 3. For Stage 2 training, we set the iterations to
10, β = 0.01, ρ = 1, and γ ranges from 0.001 to 1000 with
a step size of 10. The accuracy of all models is predicted by
two metrics: a) MP Acc and b) Spike Acc. The MP Acc
accumulates the MPs of the last layer for prediction, and the
Spike Acc makes predictions by all output spikes. All results
are averaged over 5 runs.

4.2 Performance
Comparison With Different Loss Functions
In this part, we compare the SCM with the SNNs supervised
by the MP-based loss functions: CE, MSE, and TET [Deng et
al., 2022a], and spike-based loss functions: SCE [Wu et al.,
2019a; Meng et al., 2022], SRL [Shrestha and Orchard, 2018;
Kaiser et al., 2020] with r̂yi = 1.0, and SpikeMax [Shrestha
et al., 2022]. We use the PiecewiseLeakyReLU function [Wu
et al., 2018; Wu et al., 2019b; Fang et al., 2020] as the surro-
gate gradient to train the SNNs. We initialize the MP-loss-
based models by a SNN that is pre-trained on CIFAR100.
Then, the spike-loss-based SNNs is initialized by the trained
MP-loss-based SNNs. The accuracy results are shown in
Tab. 2. Using output spikes for prediction degrades the per-
formance of CE, MSE, and TET-based SNNs. Although the
degeneration of the CE loss is lower than that of the MSE
and TET, the accuracies are 1.82% and 8.42% lower than the
MP Acc on C10-DVS and ASL-DVS, respectively. By ap-
plying the SCM to train the classifier of the CE-based SNNs,
the Spike Acc on DVS-G, C10-DVS, and ASL-DVS are im-
proved to 96.11%, 77.50%, and 99.23%, respectively.

The SCM improves the MP Acc of models trained with
MP-based loss functions, although it does not directly opti-
mize the MP. Both MP Acc and Spike Acc of the spike-based
losses outperform the MP-based losses in most cases. Nev-
ertheless, the performance of the MP-based SNNs with SCM
is competitive. For C10-DVS, the SNN with “MSE+SCM”
performs 1.34% better than the “SRL” on Spike Acc. The
SCM also improves the performance of the SCE, SRL, and
SpikeMax-based SNNs, with 0.07% ∼ 0.57%, 2.74% ∼
3.36%, and 0.15% ∼ 0.74% improvements over Spike Ac-
c on DVS-G, C10-DVS, and ASL-DVS, respectively.
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DVS128-GESTURE (T=40) CIFAR10-DVS (T=20) ASL-DVS (T=20)
Training Loss MP Acc (%) Spike Acc (%) MP Acc (%) Spike Acc (%) MP Acc (%) Spike Acc (%)

CE 95.28±0.80 95.07±0.40 75.74±0.89 73.92±1.96 96.68±4.51 88.26±3.99
CE+SCM 96.04±0.31 96.11±0.29 78.02±0.86 77.50±0.71 99.45±0.40 99.23±0.65

MSE 96.18±0.78 93.82±1.62 76.26±0.48 68.96±2.13 98.97±1.41 75.13±3.03
MSE+SCM 96.60±1.05 96.46±0.89 79.06±0.71 78.46±0.63 99.67±0.22 99.55±0.37

TET 95.28±0.40 95.00±0.76 75.68±0.99 71.48±1.08 97.61±2.27 79.81±4.46
TET+SCM 96.04±0.31 96.11±0.29 77.76±0.58 76.98±0.80 99.47±0.37 99.15±0.72

SCE 95.97±0.39 95.83±0.55 77.04±0.89 76.64±1.21 99.11±0.49 98.94±0.50
SCE+SCM 95.83±0.35 95.90±0.29 80.16±0.98 80.00±0.89 99.70±0.12 99.68±0.12

SRL 95.90±0.75 96.11±0.67 77.32±0.52 77.12±0.96 99.70±0.17 99.64±0.23
SRL+SCM 96.60±0.75 96.68±1.02 80.24±0.90 79.86±0.65 99.83±0.11 99.79±0.11
SpikeMax 96.32±0.53 95.83±0.55 77.30±0.79 76.78±0.62 99.47±0.18 99.33±0.21

SpikeMax + SCE 95.97±0.58 95.90±0.45 80.22±0.85 80.12±0.89 99.75±0.06 99.73±0.06

Table 2: Comparison of MP/Spike Acc±std with different loss functions on ResNet-18.

Gradient Rewriting [Chen et al., 2021]

DVS128-GESTURE (T=40) CIFAR10-DVS (T=20) ASL-DVS (T=20)
Training Loss MP Acc (%) Spike Acc (%) MP Acc (%) Spike Acc (%) MP Acc (%) Spike Acc (%)

CE 95.42±0.29 95.21±0.29 76.56±0.49 76.36±0.86 99.08±0.99 99.19±0.78
CE+SCM 96.18±0.43 96.25±0.29 79.28±0.36 78.48±0.55 99.60±0.36 99.60±0.32

MSE 94.38±0.52 93.40±0.55 76.72±0.65 71.04±1.59 99.65±0.24 86.33±7.29
MSE+SCM 95.97±0.40 95.97±0.40 79.48±0.54 79.14±0.31 99.81±0.12 99.78±0.13

TET 94.65±0.80 94.79±0.35 77.04±0.98 76.66±0.94 99.37±0.32 95.70±1.69
TET+SCM 95.76±0.38 95.97±0.53 79.66±0.83 79.24±0.93 99.75±0.05 99.60±0.12

Differentiable Spike [Li et al., 2021]

CE 95.56±0.45 95.63±0.63 76.44±0.72 75.66±1.18 99.08±0.80 98.97±0.87
CE+SCM 96.18±0.35 96.39±0.58 79.14±0.82 79.12±0.76 99.73±0.08 99.71±0.09

MSE 94.51±0.38 90.97±1.30 77.14±0.43 62.72±4.07 99.55±0.28 81.41±3.30
MSE+SCM 95.56±0.75 95.63±0.47 79.74±0.50 79.22±0.35 99.76±0.13 99.75±0.13

TET 94.44±0.35 94.72±0.52 76.02±0.88 75.86±1.16 99.34±0.34 98.14±2.03
TET+SCM 96.18±0.55 96.18±0.49 79.74±1.05 79.28±1.27 99.71±0.10 99.59±0.19

Table 3: Comparison with Gradient Rewiring and Differentiable Spike training approaches on ResNet-18.

Comparison With Difference Training Approaches
The surrogate gradient for SNN training is a potential fac-
tor affecting performance. To demonstrate that the SCM
can adapt to different training approaches, we apply the t-
wo recently developed spike-based BP techniques: Gradient
Rewiring (GR) [Chen et al., 2021] and Differentiable Spike
(DS) [Li et al., 2021] with CE, MSE, and TET for the train-
ing of Stage 1. We initialize the models with the MP-loss-
based SNNs given in Tab. 2. The experimental results are
presented in Tab. 3. Compared to the MP-loss-based SNNs in
Tab. 2, both GR and DS improve the Spike Acc of MP-based
and Spike-based predictions in many cases. Nevertheless, the
performance gap between MP-based and Spike-based predic-
tions is still large, especially for MSE-based SNNs. All mod-
els achieve significant improvement by introducing SCM,
similar to the SCM-based models in Tab. 2. For the MSE-
based SNN with DS, SCM increases the average Spike and
MP Acc from 62.72% and 77.14% to 79.22% and 79.74%.

4.3 Robustness & Generalization
The experiments in the following subsections are analyzed
based on the C10-DVS, and MP-based prediction. We an-
alyze the robustness and generalization of the SCM in two
aspects: a) The improvement of the SCM for the baselines
in every epoch; b) The performance of the SCM using d-
ifferent subsets of training samples. We apply the SCM to
the spatial-temporal features of the SNNs of Stage 1 in ev-
ery training epoch and accordingly train the classifiers for
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Figure 4: The changing average MP Acc of SCM and baseline mod-
els on CIFAR10-DVS.

predictions. Experiment results are shown in Fig. 4. The
training of Stage 1 requires many epochs to improve accuracy
performance for classification. However, the SCM performs
better than baseline models in every epoch. In early train-
ing epochs, the performance of the baselines is weak, but the
SCM significantly improves the performance. For example,
the average accuracy of the CE-based model in the first epoch
is 51.18%, and the SCM increases the baseline accuracy to
62.88%, showing the robustness of the SCM.

To show the generalization of the SCM, we use the
subsets of the C10-DVS with sample numbers given in
{1000, 2000, 4000, 6000, 9000} to train the classifier. Exper-
iment results are shown in Fig. 5. By using 1000/9000 sam-
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Figure 5: Average MP Acc ± std on CIFAR10-DVS with different
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Figure 6: CIFAR10-DVS confusion matrix of the SCM and the
MSE-baseline. The last row and column are the recall and preci-
sion, respectively. The value in the lower right corner is MP Acc.

ples of the full training set, the SCM improves the accura-
cy of the GR baseline models from 76.72% (MSE), 76.56%
(CE), and 77.04% (TET) to 79.56%, 79.16%, and 79.70%,
respectively. We set γ = 0.01, ρ = 1 and apply 1000 train-
ing samples for SCM to verify the generalization further. We
choose the MSE-based SNN as the baseline for SCM, and
the confusion matrix is presented in Fig. 6. For each out-
put class, the first row shows the results of the SCM, and
the second row shows the results of the MSE-baseline. The
SCM improves the average recall of the MSE-baseline from
73.09% to 79.42%. In addition, the average precision of SCM
is 79.34%, while the MSE-baseline is 78.91%. Besides, the
accuracy is increased from 73.10% to 79.60%.

4.4 Convergence
We show the convergence of the SCM based on the chang-
ing value of the penalty function, the objective function, the
regular term of zc, and the accuracy of each iteration. The
baseline models are trained by GR, and the SCM is trained
based on ρ = 1, γ = 0.01, and 9000 training samples. The
results are shown in Fig. 7. All curves in Fig. 7(a)∼7(c) de-
crease and converge. The decrease of the penalty function and
the regularizer shows the convergence of Eq. (16) and shows
that Eq. (9) can be approximated by solving Eq. (15). Based
on Fig.7(d), we find that the SCM converges fast, and the
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Figure 7: The convergence of SCM. The abscissa denotes the iter-
ation number, the ordinate of (a), (b), and (c) is the loss value, and
the ordinate of (d) is the MP Acc.
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Figure 8: The MP Acc with different values of γ and ρ.

best accuracy scores of all models are 79.70% (MSE+SCM),
79.40% (CE+SCM), and 80.50% (TET+SCM).

4.5 Influence of Parameters γ and ρ
We analyze the influence of γ and ρ based on the accuracy,
and the results are given in Fig. 8. We fix ρ = 1 to show
the influence of γ. For the analysis of the influence of ρ, we
set γ = 0.01. The SCM stays stable in most cases. Based
on Fig. 8(a), the fluctuations of all models are small if the
γ ranges from 0.001 to 1000. The MSE+SCM, CE+SCM,
and TET+SCM achieve 79.90% (γ = 1000), 79.40% (γ ≤
1000), and 80.50% (γ < 1000), respectively. As shown in
Fig. 8(b), all models keep stability if ρ < 2. By setting ρ =
1.2, the SCM+TET achieves 80.80% accuracy performance.

5 Conclusions
In this paper, we propose the SCM to train the SNN by opti-
mizing the output spikes. We propose the spike counting loss
to count the output spikes and design the two-stage algorithm
for training. Experimental results on various neuromorphic
datasets demonstrate the effectiveness of the SCM. Since the
matrix multiplication complexity of the Stage 2 is proportion-
al to the number of samples, the SCM is inefficient on large
datasets. In addition, the two-stage strategy may be subop-
timal for the SCM because the backbone is fixed to extract
features for the Stage 2 training. Our future work will focus
on improving the efficiency of the SCM.
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