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Abstract
Confidence calibration - the process to calibrate
the output probability distribution of neural net-
works - is essential for safety-critical applications
of such networks. Recent works verify the link
between mis-calibration and overfitting. However,
early stopping, as a well-known technique to miti-
gate overfitting, fails to calibrate networks. In this
work, we study the limitions of early stopping and
comprehensively analyze the overfitting problem of
a network considering each individual block. We
then propose a novel regularization method, prede-
cessor combination search (PCS), to improve cal-
ibration by searching a combination of best-fitting
block predecessors, where block predecessors are
the corresponding network blocks with weight pa-
rameters from earlier training stages. PCS achieves
the state-of-the-art calibration performance on mul-
tiple datasets and architectures. In addition, PCS
improves model robustness under dataset distribu-
tion shift. Supplementary material and code are
available at https://github.com/Linwei94/PCS

1 Introduction
Deep neural networks (DNNs) have achieved great successes
across a variety of domains, especially on classification re-
lated tasks such as object detection [Wang et al., 2022;
Zhou et al., 2021; Qiao et al., 2021] and image classifica-
tion [Pham et al., 2021; Wortsman et al., 2022], reaching pre-
diction accuracy far beyond human beings. However, they
still suffer from mis-calibrated predictions in the sense that
the prediction probability cannot represent the ground-truth
probability.This may lead to fatal problems when any safety-
critical downstream tasks such as autonomous driving [Bo-
jarski et al., 2016] and medical diagnosis [Caruana et al.,
2015] rely heavily on the prediction probability.

The underlying cause for mis-calibrated predictions is as-
sociated with the capacity of modern neural networks that
makes them vulnerable to overfitting [Guo et al., 2017].
[Mukhoti et al., 2020] show that overfitting in modern neu-
ral networks mostly results from the overconfidence on mis-
classified samples and they empirically verify the strong con-
nection between the overfitting issue and calibration perfor-

mance. Given this observation, some regularization tech-
niques such as weight decay [Guo et al., 2017], label smooth-
ing [Müller et al., 2019], and data augmentation [Thulasi-
dasan et al., 2019; Hendrycks et al., 2019] are introduced to
improve model calibration.

Early stopping [Prechelt, 1998] is another well-known reg-
ularization method, which suspends training once the model
performance stops improving on a hold out validation dataset.
[Mukhoti et al., 2020] conduct a series of empirical experi-
ments and demonstrate that early stopping on training accord-
ing to multiple criteria fails to yield a well-calibrated model.
We mainly attribute this sub-optimal solution to the unitary
strategy of conventional early stopping techniques which treat
the entire network as a whole. Specifically, an early stopping
technique takes a DNN as a black box without investigating
the internal components, i.e., the blocks inside the network.
However, the increasing depth of modern DNNs makes the
optimization more challenging, which could lead to discrep-
ancies of convergence speeds of different blocks in DNNs.
Thus, any model calibration via a conventional early-stopping
technique could be a sub-optimal solution.

In this paper, instead of taking a DNN as a whole, we con-
sider a block in a DNN as the basic unit and explore the over-
fitting problem in each block. We empirically observe that
blocks in a network overfit at different stages during training.
Unlike the conventional early stopping approach [Prechelt,
1998] that stops the training of the whole network at a cer-
tain point to form a network predecessor, we propose to stop
the training of each block at its own best-fitting block pre-
decessor to improve model calibration. However, the blocks
in DNNs are strongly coupled with each other, and the early
stopping of an individual block independently does not en-
sure an optimal solution. To achieve an effective and adap-
tive early stopping for each block, we take into consideration
all possible block predecessor combinations. Our objective is
to discover the predecessor combination (PC) with better cali-
bration performance. We propose a neural architecture search
inspired approach, predecessor combination search (PCS) to
calibrate the DNNs, which performs a differential search of
the optimal block predecessor combination through a relax-
ation of the search space as well as a predecessors evaluation
estimator.

Our contribution can be summarized as follows: (1) We
study the overfitting problem of individual blocks empiri-
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cally and show that different blocks reach their own over-
fitting points at different stages of training. (2) We propose
a novel differential PCS method to search a better-calibrated
model together with a sampling strategy to improve search-
ing efficiency. (3) PCS achieves state-of-the-art results for
both pre- and post-temperature scaling [Guo et al., 2017]
on a variety of datasets and architectures via a large num-
ber of experiments. We show that PCS works well on out-
of-distribution (OoD) samples by shifting the dataset from
CIFAR-10 to SVHN [Goodfellow et al., 2013] and CIFAR-
10-C [Hendrycks and Dietterich, 2018].

2 Related Works
Due to the mis-calibration problem in modern neural net-
works [Guo et al., 2017] and the significant importance of
calibration, many techniqueshave been proposed in recent
years. The current calibration methods could be divided into
three categories. The first category modifies the training loss
by replacing the conventionally used cross-entropy loss with
a mean square error loss [Hui and Belkin, 2020] or a focal
loss [Gupta et al., 2020] or by adding an auxiliary regular-
ization loss such as the MMCE loss [Kumar et al., 2018] and
the AvUC loss [Krishnan and Tickoo, 2020]. [Bohdal et al.,
2021] propose a differentiable surrogate for expected calibra-
tion error that improves the calibration performance directly.
The recent work in [Karandikar et al., 2021] introduces a
differentiable bin membership function and applies it on bin-
based metrics such as expected calibration error (ECE) [Guo
et al., 2017] to make it become a differentiable auxiliary cal-
ibration loss.

Another category is the post-hoc calibration approaches
that improve the calibration performance by modifying the
prediction logits. Platt scaling [Platt et al., 1999] learns pa-
rameters to perform a linear transformation on the original
prediction logits. Isotonic regression [Zadrozny and Elkan,
2002] learns piece-wise functions to transform the original
prediction logits. Histogram binning [Zadrozny and Elkan,
2001] obtains calibrated probability estimates from decision
trees and naive Bayesian classifiers. Bayesian binning into
quantiles (BBQ) [Naeini et al., 2015] is an extension of his-
togram binning with Bayesian model averaging. Beta cal-
ibration [Kull et al., 2017] is proposed for binary classifi-
cation and [Kull et al., 2019] generalize the beta calibra-
tion method from binary classification to multi-classification
with Dirichlet distributions. [Wenger et al., 2020] employ
a non-parametric representation using a latent Gaussian pro-
cess. Among these methods, temperature scaling is the most
popular post-hoc approach, which tunes the temperature pa-
rameter of the softmax function that minimizes the negative
log likelihood (NLL) and does not change the prediction re-
sults. In this work, we present the calibration performance
with both before and after temperature scaling.

All other regularization methods that can calibrate net-
works form the third category. Label smoothing [Müller
et al., 2019] implicitly calibrates networks by artificially
softening targets to prevent a model from overfitting to the
“hard label”. Mixup [Thulasidasan et al., 2019] and Aug-
Mix [Hendrycks et al., 2019] are two popular data augmen-

tation techniques for calibration. The mix step in data aug-
mentation increases the generality of datasets and reduces
the influence of hard samples that can easily cause over-
confidence problem. Weight decay, which dominated regu-
larization methods for neural networks in the past, is now less
often used by modern neural networks. However, it still plays
an important role in improving model calibration [Guo et al.,
2017]. Learning with Retrospection(LWR) [Deng and Zhang,
2021] makes use of the learned information in the past epochs
to guide the subsequent training, which benefit the classifica-
tion prediction and uncertainty.

3 Problem Formulation
Considering a dataset D = ⟨(xi, yi)⟩Ni=1 with N samples
from a joint distribution (X ,Y), the ground-truth class la-
bel is yi ∈ {1, 2, ...,K}, where K denotes the number of
classes. The probability for a class yi on a given input xi
predicted by network F with model parameters Θ is denoted
as p̂i,yi = FΘ(yi|xi). The predicted label ŷi and the corre-
sponding confidence p̂i are defined as

ŷi = argmaxyi∈{1,2,...,K} p̂i,yi ,

p̂i = maxyi∈{1,2,...,K} p̂i,yi . (1)

When the model is perfectly calibrated, the prediction con-
fidence p̂ is expected to represent the real probability p for
each sample xi with class label yi. In other words, the model
accuracy P(ŷ = y|p̂ = p) is p, for all p ∈ [0, 1].

ECE is a widely-accepted metric to measure calibration
performance. Formally, the ECE is defined as the expected
absolute difference between the model’s confidence and its
accuracy, which can be formulated as

ECE = Ep̂
[
|P(ŷ = y|p̂)− p̂|

]
. (2)

Due to the finite samples in datasets, [Guo et al., 2017]
estimate ECE by dividing confidence p ∈ [0, 1] into B equal-
width bins. Bi denotes the set of samples with confidences
within

(
i−1
B , iB

]
. Let Ii and Ci denote the accuracy and av-

erage confidence of all samples in bin Bi respectively. Accu-
racy of bin Bi is computed as Ii = 1

|Bi|
∑
j∈Bi

1 (ŷj = yj),
where 1 is the indicator function, and ŷj and yj are the pre-
dicted and ground-truth labels for the jth sample. Simi-
larly, the confidence Ci of the ith bin is computed as Ci =
1

|Bi|
∑
j∈Bi

p̂j , i.e., Ci is the average confidence of all sam-
ples in the bin. Thus, in practice, ECE is formulated as the
weighted average of accuracy-confidence difference for the
bins:

ECE =

B∑
i=1

|Bi|
N
|Ii − Ci| . (3)

Along with ECE, the maximum calibration error (MCE)
is proposed to minimize the influence of worst-case con-
fidence deviation, which is defined as the maximum dif-
ference of bins’ accuracy and confidence: MCE =
maxi∈1,...,B |Ii − Ci|.

[Guo et al., 2017] and [Mukhoti et al., 2020] state that
the mis-calibration problem of networks is strongly related to
overfitting on training sets. Early stopping, as a well-known

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4272



Figure 1: Empirical evidence on that different blocks have different overfitting behaviors. A ResNet-50 on CIFAR-10 is first trained
with 350 epochs with the cross-entropy loss and learning rate scheduling at epochs 150 and 250. ResNet-50 has 5 blocks, i.e., 4 convolutional
blocks and 1 final linear layer. Each sub-figure shows the overfitting issue of block fi through the training epochs with F̃i fixed at potential
“sweet point” predecessors. Top row and bottom row represent F̃i fixed at different predecessors, which are the “sweet point” epoch of the
whole model by early stopping on loss (epoch 151) and error (epoch 281) respectively. Columns represent different block fi under study. All
combinations are fine-tuned with one epoch on the training set.

regularization technique, mitigates the overfitting problem by
stopping the whole network at the best-fitting epoch. Accord-
ing to previous observations, early stopping should yield a
well calibrated model. However, the calibration performance
of an early stopped model is often far from satisfactory. Thus,
we hypothesize that shallow and deep blocks may suffer from
different degrees of overfitting during optimization and a uni-
fied regularization criteria to the entire network FΘ could lead
to a sub-optimal solution for model calibration. Instead, it
would be more desirable to resolve the overfitting problems
block-wise and explore an adaptive regularization approach
to improve the model calibration performance.

3.1 Overfitting in Blocks
Most advanced CNN model architectures are the stack of
blocks. Suppose there are M blocks in the network, the
model parameters can be represented as Θ = {θi|i =
1, 2, . . . ,M}, where θi denotes the parameter of the ith block.
Θj and θj are used to identify the network and block pa-
rameters at the jth training epoch. The degree of fitting
of FΘ is represented by the trend of validation NLL loss
LNLL(FΘj (x), y), j = 1, 2, ..., Ttrain, where Ttrain is the
number of total training epochs over the training process.
Conventional early stopping aims to find the weights at a
“sweet point”1 epoch to balance between underfitting and
overfitting. However, there is no definition of overfitting of
individual network blocks. In order to find the “sweet point”
epoch of each block, we need to measure the degree of over-
fitting of an individual block fi. We formally define the pre-
decessors of block fi as {f ji |j ∈ {1, 2, . . . , Ttrain}}, where
f ji denotes the ith block with weight at the jth epoch. To

1A sweet point is defined as the balance point between underfit-
ting and overfitting, which normally refers to the lowest point of the
validation loss curve.

achieve the overfitting measurement of fi, we treat the other
blocks of the network F̃i = {fi− |i− ∈ {1, 2, . . . ,M} \ {i}}
as constant mappings. Then the overfitting degree of block fi
could be represented by the trend of validation NLL loss over
the training process LNLL(F (x), y; f ji ), j = 1, 2, ..., Ttrain,
with the weights of other network blocks F̃i fixed. Based on
this idea, an empirical study is conducted to investigate the
overfitting behaviors of individual network blocks.

We present the empirical study in Figure 1, demonstrat-
ing the different overfitting behaviors of individual network
blocks. A ResNet-50 is first trained on CIFAR-10 for
Ttrain = 350 epochs. Then each sub-figure shows the evalu-
ation of overfitting behavior of block fi and each block other
than fi is fixed to a certain predecessor. Note that it is non-
trivial to properly select the fixed predecessors for all other
blocks F̃i and ideally these blocks need to be at their own
“sweet points”. We adopt a simplified approach and fix F̃i at
the “sweet point” of the whole model as an approximation,
i.e., F̃i = {fρ

∗

i− |i
− ∈ {1, 2, . . . ,M} \ {i}}, where ρ∗ is ob-

tained either by early stopping the whole model based on the
validation loss or classification error. Apart from the valida-
tion loss, the validation ECE and classification error are also
plotted in Figure 1. The proportionally scaled values of the
validation loss and ECE are reported for better visualisation.
Through the variation of the validation loss of each block fi
in this experiment as shown in Figure 1, we have the follow-
ing intriguing observations on overfitting in blocks.

1. Deeper convolutional blocks tend to have more se-
vere overfitting problems with training. From the first four
columns in Figure 1, we observe that all convolutional blocks
with the same block index share a similar overfitting pattern
for both settings. However, when we look into each row, a
different pattern shows on the convolutional blocks compared
with each other. The deeper convolutional block, i.e., f4,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4273



starts rapid overfitting after the first learning rate scheduler
point.
2. The overfitting problem of the final linear layer is much
more complex and depends heavily on other blocks. When
it comes to the final linear block f5 at the last column, the
loss presents a totally reverse pattern with different F̃i. The
final block f5 with F̃i fixed at predecessors early stopping
on loss has a slight overfitting problem from epoch 50 to the
first learning rate scheduler point at epoch 150, while f5 with
F̃i fixed at predecessors early stopping on classification er-
ror continues to overfit from the very first epoch until a few
epochs after the first learning rate scheduler point while the
error remains at the same level.
3. Mis-calibration is linked with block overfitting. When
we look at the variation of ECE and validation loss, we ob-
serve that the overfitting trend of an individual block is con-
sistent with the variation of ECE, which further extends the
link between mis-calibration and overfitting at block-wise
level.

According to these observations, it could be very difficult
to identify the ideal PC due to the inter-dependency among
blocks (the linear blocks in the two rows have totally different
behaviours). In other words, simply finding the best-fitting
blocks individually and combining them together without tak-
ing other blocks into account may not produce a best-fitting
model. This motivates us to explore an automatic searching
algorithm to find a group of predecessors at “sweet points”
that allows F ∗ = {fρ

∗
i
i |i = 1, 2, . . . ,M} to best-fit to the

training set. Here, ρ∗i denotes the optimal block predecessor
choice of block fi.

4 Methodology
Based on the observation on Figure 1, we propose to explore
a PC representation P = {ρi|i = 1, 2, . . . ,M} to tackle the
overfitting issue in blocks and improve model calibration per-
formance. The objective can be formulated as

min
P

(ERR(F ) + λ · ECE(F )) (4)

where F is {fρii |i = 1, 2, . . . ,M}, λ denotes a hyperparam-
eter, ρi ∈ {1, 2, . . . , Ttrain} indicates the predecessor selec-
tion of block fi, ERR and ECE are the classification er-
ror and ECE respectively. The direct optimization of Eq. (4)
is not feasible via gradient descent due to two issues. First,
the discrete representation P makes Eq. (4) an optimization
problem over a discrete domain. Second, both terms ERR
and ECE in our objective are not differentiable. Thus, we
introduce a PCS framework to tackle the aforementioned is-
sues. Specifically, we first introduce differentiable combina-
tion sampling through a continuous relaxation of the PC rep-
resentation. Proxy classification error and ECE landscape are
then introduced to achieve differential optimization of our ob-
jective through an estimator for predicting the classification
error and ECE.

4.1 Differentiable Combination Sampling
In our PCS framework, the objective is to discover the optimal
selection of predecessors from candidate sets for each block.

To learn the selection, we first exploit a K-dimensional train-
able parameter αi ∈ RK for this predecessor selection, where
K denotes the number of candidates. And ρi can be obtained
by the argmax of the selection parameter αi and further rep-
resented in a one-hot encoding format ρi ∈ RK . The PC
representation P can be written as:

P = {ρi|i = 1, 2, . . . ,M},
s.t. ρi = one-hot(argmaxαi). (5)

To relax the discrete PC representation for gradient-based
optimization, we use the Gumbel-Softmax trick [Jang et al.,
2016] to approximate the one-hot distribution and introduce
randomness. The ρi in Eq. (5) can be relaxed as:

ρ̃ki =
exp((αki + ξki )/τ)∑K

k′=1 exp((α
k′
i + ξk

′
i )/τ)

, (6)

where τ is the temperature parameter, ξki is an i.i.d sample
from Gumbel(0, 1), k and k′ denote the kth and k′th logit of
correspondingK-dimensional vector respectively. We denote
the relaxed PC representation as P̃ = {ρ̃i|i = 1, 2, . . . ,M}.
With the learning of αi, P̃ explores the random combination
at the beginning of search and gradually converges to a rela-
tively stable state.

For simplicity, we denote the model with P̃ as FP̃ . The
classification error and ECE on the validation set can be de-
noted as ERR(Dval, FP̃) and ECE(Dval, FP̃) respectively.
Since the combination is hard-combined, we fine-tune FP̃
with one more epoch on Dtrain, denoted as F ∗

P̃ . In PCS,
the original objective (Eq. (4)) can be reformulated as:

min
A

(
ERR(Dval, F ∗

P̃) + λ · ECE(Dval, F ∗
P̃)

)
, (7)

where A = {αi|i = 1, 2, . . . ,M} is the collection of learn-
able selection parameters for all blocks.

4.2 Proxy Classification Error and ECE
Landscape

For differential optimization of PC representation P̃ , we use a
trainable estimator ψ to obtain proxies ˆERR, ˆECE = ψ(P̃)
to approximate the classification error and ECE. Since the
input P̃ is a sequential data, we utilize a one-layer long short-
term memory (LSTM) to build the estimatorψ: RM×K → Rd

mapping P̃ to a d-dimensional embedding vector and a linear
layer: Rd → R2 outputting ˆERR and ˆECE. The estimator ψ
is trained with a weighted mean squared error loss function:

min
ψ
L(ψ) =

1

Tse

Tse∑
t=1

( ˆERR
(t)
− ERR(t)(Dval, F ∗

P̃))
2

+γ( ˆECE
(t)
− ECE(t)(Dval, F ∗

P̃))
2, (8)

where γ is a hyperparameter to control the loss ratio of ECE,
Tse is the total searching steps and the superscript (t) indi-
cates the evaluation results at the tth time step. All pairs
of P̃ and its corresponding classification error and ECE are
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Dataset Model Weight Decay Brier Loss MMCE Label Smoothing FL-3 FLSD-53 PCS
[Guo et al., 2017] [Brier et al., 1950] [Kumar et al., 2018] [Szegedy et al., 2016] [Mukhoti et al., 2020] [Mukhoti et al., 2020] Ours
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 5.13 1.97(1.1) 4.5 2.0(1.1) 2.0 2.0(1.0)
ResNet-110 19.05 4.43(2.3) 7.88 4.65(1.2) 19.14 3.86(2.3) 11.02 5.89(1.1) 8.64 3.95(1.2) 8.56 4.12(1.2) 1.76 1.76(1.0)

Wide-ResNet-26-10 15.33 2.88(2.2) 4.31 2.7(1.1) 13.17 4.37(1.9) 4.84 4.84(1.0) 2.13 2.13(1.0) 3.03 1.64(1.1) 1.92 1.55(1.1)
DenseNet-121 20.98 4.27(2.3) 5.17 2.29(1.1) 19.13 3.06(2.1) 12.89 7.52(1.2) 4.15 1.25(1.1) 3.73 1.31(1.1) 2.75 1.18(1.1)

CIFAR-10

ResNet-50 4.35 1.35(2.5) 1.82 1.08(1.1) 4.56 1.19(2.6) 2.96 1.67(0.9) 1.48 1.42(1.1) 1.55 0.95(1.1) 0.80 0.53(1.1)
ResNet-110 4.41 1.09(2.8) 2.56 1.25(1.2) 5.08 1.42(2.8) 2.09 2.09(1.0) 1.55 1.02(1.1) 1.87 1.07(1.1) 0.57 0.57(1.0)

Wide-ResNet-26-10 3.23 0.92(2.2) 1.25 1.25(1.0) 3.29 0.86(2.2) 4.26 1.84(0.8) 1.69 0.97(0.9) 1.56 0.84(0.9) 0.99 0.43(1.2)
DenseNet-121 4.52 1.31(2.4) 1.53 1.53(1.0) 5.1 1.61(2.5) 1.88 1.82(0.9) 1.32 1.26(0.9) 1.22 1.22(1.0) 0.78 0.78(1.0)

Tiny-ImageNet ResNet-50 15.32 5.48(1.4) 4.44 4.13(0.9) 13.01 5.55(1.3) 15.23 6.51(0.7) 1.87 1.87(1.0) 1.76 1.76(1.0) 1.32 1.32(1.0)

Table 1: Calibration Performance. ECE (%), being the lower the better, is evaluated for different methods. Both pre and post temperature
scaling (Pre T and Post T in Table) results are reported. The optimal temperature is obtained on the validation set and is included in brackets.

stored in a memory Π to optimize estimator ψ. After each
searching step t, memory Π is updated by Π = Π ∪ {(P̃(t) :
(ECE(t), ERR(t)))}. We can then use the optimized esti-
mator ψ∗ to reformulate PCS objective Eq. (7):

min
A

( ˆERR
∗
+ λ ˆECE

∗
),

where ˆERR
∗
, ˆECE

∗
= ψ∗(P̃).

(9)

The gradients of ˆERR
∗

and ˆECE
∗

can be used to optimize
P̃ and thus A:

A′ ← A− η · ∇A( ˆERR
∗
+ λ ˆECE

∗
), (10)

where A′ is the new predecessor selection parameter and η
is the learning rate. At the next searching time step, the cor-
responding P̃ ′ is based on A′, and memory Π is updated to
Π = Π ∪ {(P̃ ′ : (ECE

′
, ERR

′
)}.

Remark: Search Procedure We first train model FΘ with
Ttrain epochs and randomly store weight parameters at K
different epochs. After that, we randomly initialize a warm-
up population H of size S and evaluate the classification
error ERR(t)(Dval, F ∗

P̃i
) and ECE ECE(t)(Dval, F ∗

P̃i
) of

P̃i ∈ H. The combination-performance pairs are then stored
to memory Π, which is used to warm up estimator ψ and
equip ψ with prior knowledge about classification error and
ECE before searching. After the initial training of model and
warming up of ψ, the searching procedure is conducted with
Tse steps. In each step, one PC representation P̃(t) is sampled
based on current A(t). The corresponding FP̃(t) is then fine-
tuned with one epoch and evaluated to obtain a validation er-
ror and ECE for the training of ψ. A(t) is then optimized with
the proxy classification error ˆERR and proxy ECE ˆECE.
Remark: Search Space Sampling Strategy Each selec-
tion ρ is an integer between 1 and training epoch Ttrain,
and thus the candidate size K is Ttrain. However, stor-
ing weight parameters over all training epochs can be very
storage-intensive. For instance, storing all candidates of a
ResNet-50 training with 350 epochs can take up to 33GB.
Considering that the model parameters of adjacent epochs
are similar, especially at late training stages, we propose four
sampling strategies to reduce the size of search space and im-
prove storage efficiency, which are (1) Random Sampling,
randomly sampling K different epochs ranging from 1 to
Ttrain; (2) Uniform Sampling, uniformly sampling K epochs

ranging from 1 to Ttrain; (3) Laplace Sampling, due to model
parameters changing much faster at earlier epochs, sampling
K epochs ranging from 1 to Ttrain with a Laplace distribu-
tion centering at 0; (4) Piece-Wise Laplace Sampling, due to
model parameters changing much faster at earlier epochs of
each learning schedule, samplingK epochs ranging from 1 to
Ttrain with multiple Laplace distributions centering at 0 and
other learning schedule epochs (150 and 250 in our case).
Since the searching difficulty grows exponentially with the
size of K, another benefit of small candidate size is that it
improves the searching efficiency.

5 Experiments
5.1 Experimental Settings
Datasets We conduct experiments on various datasets,
including CIFAR-10/100 [Krizhevsky, 2012] and Tiny-
ImageNet [Deng et al., 2009] to evaluate the calibration per-
formance. We also include the robustness evaluation on Out-
of-Distribution (OoD) datasets, including SVHN [Goodfel-
low et al., 2013] and CIFAR-10-C [Hendrycks and Dietterich,
2018].
Baselines To verify the effectiveness of our proposed algo-
rithm, we include different networks for evaluation, includ-
ing ResNet-50, ResNet-110 [He et al., 2016], Wide-ResNet-
26-10 [Zagoruyko and Komodakis, 2016] and DenseNet-
121 [Huang et al., 2017], and compare with various ap-
proaches, including training with weight decay at 5 × 10−4

(we find that weight decay at 5 × 10−4 performs the best
among multiple values), Brier Loss [Brier et al., 1950],
MMCE loss [Kumar et al., 2018], Label smoothing [Szegedy
et al., 2016] with a smoothing factor αLS = 0.05, focal
loss [Mukhoti et al., 2020] with regularisation parameter
γfocal = 3, and scheduled focal loss FLSD-53 [Mukhoti
et al., 2020] which uses γfocal = 5 for p̂ ∈ [0, 0.2) and
γfocal = 3 for p̂ ∈ [0.2, 1).
Other Calibration Metrics Recent works [Nixon et al.,
2019; Kumar et al., 2019; Roelofs et al., 2022; Gupta et al.,
2020] point out the defects of ECE. To evaluate our method
comprehensively, we evaluate our method on three additional
calibration metrics, i.e., MCE, Adaptive-ECE [Ding et al.,
2020] and classwise-ECE [Kull et al., 2019] along with ECE.
We also measure PCS with reliability plots in supplementary.
Training Setup For training on CIFAR-10/100, we set
Ttrain = 350. The learning rate is set to 0.1 for epoch 0
to 150, 0.01 for 150 to 250, and 0.001 for 250 until the end
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Dataset Model Weight Decay Brier Loss MMCE Label Smoothing FL-3 FLSD-53 PCS
[Guo et al., 2017] [Brier et al., 1950] [Kumar et al., 2018] [Szegedy et al., 2016] [Mukhoti et al., 2020] [Mukhoti et al., 2020] Ours
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-10/SVHN

ResNet-50 94.32 94.56 93.59 93.72 85.17 64.75 78.88 78.89 88.28 88.42 92.48 92.79 98.12 97.04
ResNet-110 61.71 59.66 94.80 95.13 85.31 85.39 68.68 68.68 96.74 96.92 90.83 90.97 96.77 96.77

Wide-ResNet-26-10 96.82 97.62 94.51 94.51 97.35 97.95 84.63 84.66 98.19 98.05 98.29 98.20 97.55 97.84
DenseNet-121 84.43 81.57 94.65 94.66 85.88 84.87 78.79 78.94 89.48 89.42 89.59 89.59 96.72 96.72

CIFAR-10/CIFAR-10-C

ResNet-50 86.23 86.03 90.21 90.13 89.97 90.11 72.01 72.02 89.44 89.56 89.45 89.56 89.73 89.79
ResNet-110 77.53 75.16 84.09 83.86 71.96 70.02 72.17 72.18 82.27 82.18 85.05 84.70 88.1 88.27

Wide-ResNet-26-10 81.06 80.68 85.03 85.03 82.17 81.72 71.10 71.16 82.17 81.86 87.05 87.30 89.62 89.95
DenseNet-121 87.61 86.41 87.38 87.38 84.9 84.88 73.67 73.8 87.12 87.53 89.47 89.47 89.52 89.52

Table 2: Robustness on Dataset Shift. AUROC (%), being the higher the better, is evaluated for different methods with models shifting
from CIFAR-10 (in-distribution) to SVHN and CIFAR-10-C as the OoD datasets.

of training. For training on Tiny-ImageNet, we set Ttrain =
100. We follow the same training and validation set spilt set-
ting as [Mukhoti et al., 2020]. The learning rate is set to 0.1
for epoch 0 to 40, 0.01 for epoch 40 to 60, and 0.001 for 60
until the end of training. The fine-tuning learning rate is set
to 10−4 for CIFAR-10, 5 × 10−4 for CIFAR-100, and 10−3

for Tiny-ImageNet. The searching process is performed with
Tse = 100 steps. The population size is S = 100. Exper-
iments are conducted with ResNet-50 on CIFAR-10 if there
is no other specification. All networks are optimized using
the SGD optimizer with a weight decay at 5 × 10−4 and a
momentum of 0.9. The training batch size is set to 128. All
experiments are conducted on a single Tesla V-100 GPU with
all random seeds set to 1. Our code and results of compari-
son method are based on the public code and the pre-trained
weight provided by [Mukhoti et al., 2020].
Temperature Scaling Following the setting in the prior
work [Mukhoti et al., 2020], the temperature parameter τ
is optimized by grid searching with τ ∈ [0, 0.1, 0.2, . . . , 10]
on the validation set and finding the one with the best post-
temperature-scaling ECE, which is also applied on the addi-
tional calibration metrics.

5.2 Calibration Performance
We report ECE(%) (computed using 15 bins) along with op-
timal temperatures in Table 1. PCS achieves the state-of-
the-art ECE across all models and datasets and outperforms
previous works by large margins, especially pre-temperature-
scaling results. More specifically, most PCS pre-temperature-
scaling results have already substantially exceeded the post-
temperature-scaling results of previous works. The result of
ResNet-110 on CIFAR-100 achieves the best calibration per-
formance compared to previous works, with a 7% decrease in
ECE. For comparison approaches, the model trained with fo-
cal loss is broadly better-calibrated than other methods. How-
ever, it fails in some cases such as the evaluation on Tiny-
ImageNet. In addition, the scheduled γfocal trick does not
always work better than fixed γfocal and it is hard to ascer-
tain which is the better between FL-3 and FL53. The MMCE
auxiliary loss performs worst before temperature scaling. An-
other notable point of PCS is that multiple results such as
those with ResNet-110 on CIFAR-10/100 achieve the in-
nately calibrated model (T=1.0), which means that the PC it-
self has already yielded a well-calibrated model without tem-
perature scaling.

We also evaluate PCS on other widely-accepted metrics
including Adaptive ECE, Classwise-ECE and test set error.

PCS also achieves the state-of-the-art calibration results on
almost all cases. The test set error on Tiny-ImageNet shows
a 8.52% decrease from 49.81% to 41.29%, which is mainly
because of PCS performing as an early stopping trick.

5.3 Robustness on Out-of-Distribution(OoD)
Datasets

A well-calibrated model helps improve the model robustness
on OoD datasets [Thulasidasan et al., 2019]. However, tem-
perature scaling is known to be fragile under dataset distri-
bution shift [Ovadia et al., 2019]. PCS form innately cali-
brated models and thus perform well on OoD datasets. We
utilize AUROC (the higher the better) to evaluate the robust-
ness under dataset shift. Table 2 shows the AUROC (%) com-
puted for models trained on CIFAR-10 and tested on the OoD
datasets SVHN and CIFAR-10-C. Our method achieves com-
petitive results on almost all cases. The results after temper-
ature scaling tend to drop generally, and approaches yielding
better pre-temperature-scaling ECE have better robustness on
OoD datasets. Although focal loss works well on calibra-
tion, it fails under dataset shift. Our PCS with ResNet-50
on CIFAR-10 achieves a 4% increase compared to previous
methods.

5.4 Searching Results

We visualize the searching results of ResNet-50 on CIFAR-
10 in Figure 2. The searching results are obtained based on
well-fitting (test set loss < 2) PCs. The result shows that
the last convolutional block (Conv Block 4) tends to choose
predecessors in the first half of training (epoch 50 to 180)
while Conv Block 2 and Conv Block 3 prefer predecessors in
the second half (epoch 150 to 350). This observation might
indicate that the later Conv Blocks tend to overfit earlier than
the former ones. The first Conv Block and the final linear
block show no particular preference to certain predecessors.

This result is consistent with the evaluation of overfitting of
individual blocks in Figure 1. The Conv Block 1 suffers from
little overfitting throughout training and thus has no prefer-
ence to certain predecessors, while the middle blocks (Conv
Block 2, 3, 4) prefer predecessors with a low validation loss
as shown in Figure 1. We visualize the searching results of
other models and observe the similar pattern. We also test
our algorithm on other networks such as ViT [Dosovitskiy
et al., 2020] and MLP-mixer [Tolstikhin et al., 2021], which
show the similar calibration effect.
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Figure 2: Searching Results. The sub-figures show the predecessor choice frequency of different blocks in ResNet-50. The search results
are filtered by cross-entropy loss (being less than 0.2) on the test set.

Methods ERR ECE ECE(T)

Early Stopping (Loss) 6.58 2.32 0.56(1.4)
Early Stopping (Error) 4.89 4.03 1.42(2.4)
Early Stopping (ECE) 16.92 1.71 1.09(1.2)

Random Search 5.04 1.13 0.84(1.1)
Search on Loss 5.43 1.1 0.37(1.10)

PCS (λ=10) 5.31 0.86 0.73(1.10)
PCS (λ=25) 5.1 0.75 0.37(1.10)
PCS (λ=50) 5.25 0.58 0.58(1.0)
PCS (λ=100) 5.29 0.70 0.44(1.10)

Table 3: Comparison of Searching Methods. Random search is
conducted 5 times with ResNet-50 on CIFAR-10. All searching re-
sults are selected by the lowest testing loss.

5.5 Ablation Study
Comparison with Other Searching Methods In Table 3,
our method is compared with different searching methods as
well as early stopping methods. When early stopping on the
model as a whole, it is hard to ensure a low error and good
calibration performance at the same time. Early stopping on
loss and ECE shows a large performance drop on classifica-
tion error. The random search is conducted 5 times to make
the results stable and achieve a relatively high performance
on classification error but not ECE. We also compare multi-
ple objectives in Eq. (9) with the performance of a single ob-
jective optimization on validation NLL loss, i.e.,minA ˆNLL.
Searching on ECE or error individually could lead to ex-
tremely unbalanced results. PCS achieves a better result on
both test set error and ECE. The hyperparameter λ is tuned
on models and datasets.
Weight Sampling Strategy To compare sampling strate-
gies discussed in the previous section, a scatter plot in Fig-
ure 3 shows the searching results. Note that the “Full Sam-
pling” indicates searching on all possible predecessors with-
out sampling, i.e., K = Ttrain. We use the same K = 50
for all sampling strategies. From Figure 3, we observe little
difference between different sampling strategies, which in-
dicates that we save storage space with little loss of perfor-
mance. Thus, we use the random sampling strategy through-
out the paper due to its simplicity.
Warm-up Population A larger population indicates more
searching time. To find a balance between searching time and
performance, we compare the searching results with different
population sizes. We use the number of well-fitting results
(test loss under 0.2) to measure the searching performance.

Figure 3: Comparison of Sampling Strategy. All experiments
are conduct 5 runs with ResNet-50 on CIFAR-10. Searching step
Tse is set to 100 and produces 500 searching results for each strat-
egy. Metrics along the x-axis and y-axis are the lower the better.

All experimental results are averaged over 5 runs. According
to Table 4, the larger the population size, the more well-fitting
results can be found since estimator ψ can have better prior
knowledge on error and ECE landscape. However, we use
a smaller population size as long as the searching provides
satisfactory results.

Population Size 64 100 200 500

GPU Hours 3.1 3.7 5.5 10.5
Well-fitting Results 14.8 16 17.8 25.8

Table 4: Warm-up Population. Well-fitting results indicate the
number of searching results that achieve a testing loss under 0.2,
being the higher the better. All results are reported as an average of
5 runs with ResNet-50 on CIFAR-10.

6 Conclusion
In this paper, we address a common problem, the mis-
calibration in modern neural networks. We observe that dif-
ferent blocks in a network have different overfitting patterns.
Our proposed predecessor combination search, as a regular-
ization method, is very effective for calibrating models and
can also be potentially applied to other tasks such as learning
with noisy labels and improving model robustness.
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