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Abstract
We propose a universal Graph Neural Network archi-
tecture which can be trained as an end-2-end search
heuristic for any Constraint Satisfaction Problem
(CSP). Our architecture can be trained unsupervised
with policy gradient descent to generate problem
specific heuristics for any CSP in a purely data
driven manner. The approach is based on a novel
graph representation for CSPs that is both generic
and compact and enables us to process every pos-
sible CSP instance with one GNN, regardless of
constraint arity, relations or domain size. Unlike
previous RL-based methods, we operate on a global
search action space and allow our GNN to mod-
ify any number of variables in every step of the
stochastic search. This enables our method to prop-
erly leverage the inherent parallelism of GNNs. We
perform a thorough empirical evaluation where we
learn heuristics for well known and important CSPs,
both decision and optimisation problems, from ran-
dom data, including graph coloring, MAXCUT, and
MAX-k-SAT, and the general RB model. Our ap-
proach significantly outperforms prior end-2-end
approaches for neural combinatorial optimization.
It can compete with conventional heuristics and
solvers on test instances that are several orders of
magnitude larger and structurally more complex
than those seen during training.

1 Introduction
Constraint Satisfaction Problems (CSP) are a ubiquitous frame-
work for specifying combinatorial search and optimization
problems. They include many of the best-known NP-hard
problems such as Boolean satisfiability (SAT), graph coloring
(COL) and maximum cut (MAXCUT) and can flexibly adapted
to model specific application dependent problems. CSP solu-
tion strategies range from general solvers based on methods
such as constraint propagation or local search (see [Russell
et al., 2020], Chapter 6) to specialized solvers for individual

∗This work was supported by the German Research Foundation
(DFG) under grants GR 1492/16-1 and KI 2348/1-1 “Quantitative
Reasoning About Database Queries”.

problems like SAT (see [Biere et al., 2021]). In recent years,
there is a growing interest in applying deep learning methods
to combinatorial problems including many CSPs (e.g. [Khalil
et al., 2017], [Selsam et al., 2018], [Tönshoff et al., 2021]).
The main motivation for these approaches is to learn novel
heuristics from data rather than crafting them by hand.

Graph Neural Networks (see Gilmer et al. 2017) have
emerged as an effective tool for learning powerful, permuta-
tion invariant functions on graphs using deep neural networks,
and they have become the primary architecture for neural com-
binatorial optimization. Problem instances are modelled as
graphs and then mapped to approximate solutions with GNNs.
However, most methods use graph reductions and GNN archi-
tectures that are problem specific. Transferring them across
combinatoral tasks requires considerable engineering, limiting
their use cases. Designing a generic neural network architec-
ture and training procedure for the general CSP formalism
offers a powerful alternative. Then learning heuristics for any
specific CSP becomes a purely data driven process requiring
no specialized graph reduction or architecture search.

We propose a novel GNN based reinforcement learning
approach to general constraint satisfaction. The main contri-
butions of our method called ANYCSP1 can be summarized
as follows: We define a new graph representation for general
CSP instances which is generic and well suited as an input for
recurrent GNNs. It allows us to directly process all CSPs with
one unified architecture and no prior reduction to more spe-
cific CSPs, such as SAT. In particular, one ANYCSP model
can take every CSP instance as input, even those with domain
sizes, constraint arities, or relations not seen during training.
Training is unsupervised using policy gradient ascent with a
carefully tailored reward scheme that encourages exploration
and prevents the search to get stuck in local maxima. During
inference, a trained ANYCSP model iteratively searches the
space of assignments to the variables of the CSP instance for
an optimal solution satisfying the maximum number of con-
straints. Crucially, the search is global; it allows transitions
between any two assignments in a single step. To enable this
global search we use policy gradient methods to handle the ex-
ponential action spaces efficiently. This design choice speeds
up the search substantially, especially on large instances. We
thereby overcome a primary bottleneck of previous neural ap-

1Are Neural Networks great heuristics? Yes, for CSPs.
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G(I, α) :CSP Instance I :

X = {X,Y, Z}

D(X) = {1, 2, 3}
D(Y ) = {1, 2}
D(Z) = {1, 2}

C1 : X ≤ Y
C2 : Y ̸= Z

Assignment α = (2, 1, 2)

Figure 1: Example of the constraint value graph G(I, α) for a given CSP instance I and an assignment α. The graph contains vertices
for the variables, values and constraints of I. Each value is connected to its variable and labeled with the assignment α. Each constraint is
connected to the values of its variables. This edge set is labeled such that a label of 1 for edge (C,v) states that choosing value v will satisfy
the constraint C if no other variables involved in C change their values.

proaches based on local search, which only flip the values of a
single or a few variables in each step. GNN based local search
tends to scale poorly to large instances as one GNN forward
pass takes significantly more time than one step of classical
local search heuristics. ANYCSP addresses this by exploiting
the GNNs inherent parallelism to refine solutions globally.

We evaluate ANYCSP by learning heuristics for a range of
important CSPs: COL, SAT, MAXCUT and general CSP bench-
mark instances. We demonstrate that our method achieves
a substantial increase in performance over prior GNN ap-
proaches and can compete with conventional algorithms.
ANYCSP models trained on small random graph coloring
problems are on par with state-of-the-art coloring heuristics
on structured benchmark instances. On MAX-k-SAT, our
method scales to test instances 100 times larger than the train-
ing data, where it outperforms state-of-the-art search heuristics
despite performing 1000 times fewer search iterations.

2 Related Work
In this paper, we are primarily interested in end-2-end ap-
proaches which directly predict approximate solutions for
combinatorial problems with neural networks. Another line
of work integrates deep learning components into more tra-
ditional solvers (i.e. [Gasse et al., 2019; Zhang et al., 2020]).
While also quite interesting, these are at most loosely related
to our work, and we leave them out of the following discus-
sion. For a comprehensive overview on neural combinatorial
optimisation, we refer to [Cappart et al., 2021].

Early work was done by [Bello et al., 2016], who learned
TSP heuristics with Pointer Networks [Vinyals et al., 2015]
and policy gradient descent. Several extensions of these ideas
have since been proposed based on attention [Kool et al., 2018]
and GNNs [Joshi et al., 2020]. [Khalil et al., 2017] propose
a general method for graph problems, such as MAXCUT or
Minimum Vertex Cover. They model the expansion of partial
solutions as a reinforcement learning task and train a GNN
with Q-learning to iteratively construct approximate solutions.

A related group of approaches models local modifications
to complete solutions as actions of a reinforcement learning
problem. A GNN is then trained as a local search heuristic
that iteratively improves candidate solutions through local

changes. Methods following this concept are RLSAT [Yolcu
and Póczos, 2019] for SAT, ECO-DQN [Barrett et al., 2020]
for MAXCUT, LS-DQN [Yao et al., 2021] for graph partition-
ing problems and TSP as well as BiHyb [Wang et al., 2021] for
graph problems based on selecting and modifying edges. Like
conventional search heuristics, these architectures can be ap-
plied for any number of search iterations to refine the solution.
A shared drawback on large instances is the relatively high
computational cost of GNNs, which slows down the search
substantially when compared to classical algorithms. ECORD
[Barrett et al., 2022] addresses this issue for MAXCUT by
applying a GNN once before the local search, which is car-
ried out by a faster GRU-based architecture without message
passes. We address the same problem, but not by iterating
faster, but by allowing global modifications in each iteration.

A fundamentally different approach considers soft relax-
ations of the underlying problems which can optimized di-
rectly with SGD. Examples of this concept are PDP [Amizadeh
et al., 2019] for SAT and RUNCSP [Tönshoff et al., 2021] for
all binary CSPs with fixed constraint language. These architec-
tures can predict completely new solutions in each iteration but
the relaxed differentiable objectives used for training typically
do not capture the full hardness of the discrete problem.

3 Preliminaries
A CSP instance is a triple I = (X,D,C), where X is a
finite set of variables, D assigns to each variable X ∈ X
a finite set D(X), the domain of X , and C is a set of con-
straints C =

(
sC , RC), where for some k ≥ 1, the scope

sC = (X1, . . . , Xk) ∈ Xk is a tuple of variables and
RC ⊆ D(X1) × . . . × D(Xk) is a k-ary relation over the
corresponding domains. We always assume that the variables
in the scope sC of a constraint C are mutually distinct; we can
easily transform an instance not satisfying this condition into
one that does by adapting the relation RC accordingly.

Slightly abusing terminology, we call a pair (X, d) where
X ∈ X and d ∈ D(X) a value for variable X . For all
X ∈ X we let VX = {X} ×D(X) be the set of all values
for X , and we let V =

⋃
X∈X VX be the set of all values.

We usually denote values by v. Working with these values
instead of domain elements is convenient because the sets VX ,
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for X ∈ X, are mutually disjoint, whereas the domains D(X)
are not necessarily.

An assignment for a CSP instance I = (X,D,C) is a
mapping α that assigns a domain element α(X) ∈ D(X) to
each variable X . Alternatively, we may view an assignment
as a subset α ⊆ V that contains exactly one value from each
VX . Depending on the context, we use either view, and we
synonymously write α(X) = d or (X, d) ∈ α. An assignment
α satisfies a constraint C = ((X1, . . . , Xk), R) (we write
α |= C) if (α(X1), . . . , α(Xk)) ∈ R, and α satisfies I, or is
a solution to I, if it satisfies all constraints in C. The objective
of a CSP is to decide if a given instance has a satisfying
assignment and to find one if it does. To distinguish this
problem from the maximization version introduced below,
we sometimes speak of the decision version. Specific CSPs
such as Boolean satisfiability or graph coloring problems are
obtained by restricting the instances considered.

We define the quality QI(α) of an assignment α to be the
fraction of constraints in C satisfied by α: QI(α) = |{C|C ∈
C, α |= C}|/|C|. An assignment α is optimal if it maximizes
QI(α) for the instance I. The goal of the maximisation
problem MAXCSP is to find an optimal assignment for a given
instance. A soft assignment for a CSP instance I is a mapping
φ : V → [0, 1] such that

∑
v∈VX

φ(v) = 1 for all X ∈ X.
We interpret the numbers φ(v) as probabilities and say that an
assignment α is sampled from a soft assignment φ (we write
α ∼ φ) if for each variable X ∈ X we independently draw a
value v ∈ VX with probability φ(v).

4 Method
With every CSP instance I = (X,D,C) we associate a
tripartite graph with vertex set X ∪V ∪C, where V is the
set of values defined in the previous section, and two kinds
of edges: variable edges (X,v) for all X ∈ X and v ∈ VX ,
and constraint edges (C,v) for all C ∈ C and v ∈ VX

for some X in the scope of C. This graph representation is
more or less standard; one slightly unusual feature is that we
introduce edges from constraints directly to the values and not
to the variables. This will be important in the next step, where
information about the constraint relations RC is compactly
encoded through a binary labeling of the constraint edges. For
each assignment α we introduce a vertex labeling LV and an
edge labeling LE . The vertex labeling LV is a binary encoding
of α, that is, LV (v) = 1 if v ∈ α and LV (v) = 0 for each
v ∈ V \ α. The edge labeling LE encodes how changes to α
affect each constraint. For every constraint C ∈ C and value
(Xi, d) ∈ VXi

of variable Xi in the scope (X1, . . . , Xk) of C
we define the edge label to be LE(C,v) = 1 if

(α(X1), . . . , α(Xi−1), d, α(Xi+1), . . . , α(Xk)) ∈ RC .

and LE(C,v) = 0 otherwise. Intuitively, the edge labels en-
code for each constraint edge (C,v) whether or not choosing
the value v for its variable would satisfy C under the condition
that all other variables involved in C retain their current value
in α. We call the labeled graph G(I, α) obtained this way the
constraint value graph of I at α. Figure 1 provides a visual
example of our construction.

A complete encoding of each constraint relation would
have exponential worst-case space requirements. Our method

avoids this issue through a partial encoding using edge labels
that dynamically adapts to the current assignment. In Ap-
pendix2 A.5 we provide details on efficiently recomputing the
edge labels for a new assignment α and a discussion on global
constraints.

4.1 Architecture
We construct a recurrent GNN πθ that maps constraint value
graphs to soft assignments and serves as a trainable policy
for our reinforcement-learning setup. Here, the real vector
θ contains the trainable parameters of πθ. The input of πθ

in iteration t is the current graph G(I, α(t−1)) and recurrent
vertex states h(t−1). The output is a new soft assignment φ(t)

for I as well as updated recurrent states:

φ(t), h(t) = πθ

(
G(I, α(t−1)), h(t−1)

)
(1)

The next assignment α(t) can then be sampled from φ(t) be-
fore the process is repeated. Here, we will provide an overview
of the GNN architecture while we give a detailed formal de-
scription in Appendix A.

In a nutshell, our architecture is a recurrent heterogeneous
GNN that uses distinct trainable functions for each of the
three vertex types in the constraint value graph. The main
hyperparameters of πθ are the latent dimension d ∈ N and the
aggregation function

⊕
which we either choose as an element-

wise SUM, MEAN or MAX function. We usually found
MAX to perform best on decision problems while MEAN
worked better for maximization tasks. This coincides with
observations of [Joshi et al., 2020].
πθ associates a recurrent state h(t)(v) ∈ Rd with each value

v ∈ V and uses a GRU cell to update these states after each
round of message passing. Variables and constraints do not
have recurrent states. We did consider versions with stateful
constraints and variables, but these did not perform better
while being slower. All remaining functions for message
generation and combination are parameterized by standard
MLPs with at most one hidden layer. In each iteration t, πθ

performs 4 directed message passes in the following order:
(1) values to constraints, (2) constraints to values, (3) values
to variables, (4) variables to values. The first two message
passes incorporate the node and edge labels and enable the
values to gather information about how changes to the current
assignment effect each constraint. The final two message
passes allow the values of each domain to negotiate the next
variable assignment. Note that this procedure is carried out
once in each search iteration t. As the recurrent states can
carry aggregated information across search iterations we found
a single round of message passes per iteration sufficient.

Finally, πθ generates a new soft assignment φ(t). To this
end, each value v ∈ VX of each variable X predicts a scalar
real number o(t)(v) = O(h(t)(v)) from its updated latent
state with a shared MLP O : Rd → R. We can then apply the
softmax function within each domain to produce a soft value
assignment:

φ(t)(v) =
exp

(
o(t)(v)

)∑
v′∈VX

exp
(
o(t)(v′)

) (2)

2Code and Appendix: https://github.com/toenshoff/ANYCSP
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Figure 2: Illustration of a run of ANYCSP on a given CSP instance I. We iteratively apply our policy GNN πθ to the constraint value graph
G(I, α(t−1)) of I and the current assignment α(t−1). From this we obtain a soft assignment φ(t) from which the next assignment α(t) is
sampled freely with no restrictions to locality.

This procedure leverages a major strength of our graph con-
struction: By modeling values as vertices we can directly
process arbitrary domains with one GNN. For larger domains,
we simply add more value vertices to the graph.

4.2 Global Search as an RL Problem
We deploy the policy GNN πθ as a trainable search heuristic.
Note that a single GNN πθ can search for solutions on any
given CSP instance. ANYCSP takes a CSP instance I and
a parameter T ∈ N as input and outputs a sequence α =
α(0), . . . , α(T ) of assignments for I. The initial assignment
α(0) is simply drawn uniformly at random. In each iteration
1 ≤ t ≤ T the policy GNN πθ is applied to the current
constraint value graph G(I, α(t−1)) to generate a new soft
assignment φ(t). The next assignment α(t) ∼ φ(t) is then
sampled from the predicted soft assignment by drawing a new
value α(t)(X) for all variables X independently and in parallel
without imposing any restrictions on locality. Any number of
variables may change their value in each iteration which makes
our method a global search heuristic. This allows ANYCSP
to modify different parts of the solution simultaneously to
speed up the search. Figure 2 provides a visual illustration of
the overall process. Formally, our action space is the set of
all assignments for the input instance, one of which must be
chosen as the next assignment in each iteration t. This set is
extremely large for many CSPs, with up to 1050 assignments
to choose from for some of our training instances. Despite
this, we found standard policy gradient descent algorithms to
be effective and stable during training.

Rewarding Iterative Improvements. We devise a reward
scheme that assigns a real-valued reward r(t) to each generated
assignment α(t). A simple approach would be to use the
quality QI(α

(t)) as a reward. However, we found that models
trained with this reward tend to get stuck in local maxima and
have comparatively poor performance. Intuitively, this simple
reward scheme immediately punishes the policy for stepping
out of a local maximum causing stagnating behavior.

We, therefore, choose a more sophisticated reward system
that avoids this issue. First, we define the auxiliary variable
q(t) = maxt′<t QI(α

(t′)), which tracks the highest quality
achieved before iteration t. We then define the reward in
iteration t as follows:

r(t) =

{
0 if QI(α

(t)) ≤ q(t),

QI(α
(t))− q(t) if QI(α

(t)) > q(t).
(3)

The policy earns a positive reward in iteration t if the new
assignment α(t) satisfies more constraints than any assignment
generated in the previous steps. In this case, the reward is the
margin of improvement. Note that the reward is 0 in any
step in which the new assignment is not an improvement over
the previous best regardless of whether the quality of the
solution is increasing or decreasing. This reward is designed
to encourage πθ to yield iteratively improving assignments
while being agnostic towards how the assignments change
between improvements. Our reward is conceptually similar to
that of ECO-DQN [Barrett et al., 2020]. The main difference
is that we do not add intermediate rewards for reaching local
maxima. Inductively, we observe that the total reward over all
iterations is given by

∑T
t=1 r

(t) = q(T+1) − QI(α
(0)). For

any input instance I the total reward is maximal (relative to
QI(α

(0))) if and only if the highest achieved quality q(T+1)

is the optimal quality for I. In Appendix C we provide an
ablation study where we compare our reward scheme to the
simpler choice of using QI(α

(t)) directly as a reward.

Markov Decision Process. For a given input I we model
the procedure described so far as a Markov Decision Process
M(I) which will allow us to deploy standard reinforcement
learning methods for training: The state in iteration t is given
by s(t) = (α(t), q(t)) and contains the current assignment and
highest quality achieved before step t. The initial assignment
α(0) is drawn uniformly at random and q(0) = 0. The space
of actions A is simply the set of all possible assignments
for I.3 The soft assignments produced by the policy πθ are
distributions over this action space. After the next action
is sampled from this distribution, the state transition of the
MDP is deterministic and updates the state with the chosen
assignment and its quality. The reward r(t) at time t is defined
as in Equation 3.

Training. During training, we assume that some data gen-
erating distribution Ω of CSP instances is given. We aim to
find a policy that performs well on this distribution of inputs.
Ideally, we need to find the set of parameters θ∗ which max-
imizes the expected total reward if we first draw an instance
from Ω and then apply the model to it for Ttrain ∈ N steps:

θ∗ = argmax
θ

E
I∼Ω

α∼πθ(I)

[ Ttrain∑
t=1

λt−1r(t)
]

(4)

3Formally, the state and action space also contain the recurrent
states h(t) which we omit for clarity.
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Figure 3: Survival plot for RB50. The x-axis gives the wall clock
runtime in seconds. The y-axis counts the cumulative number of
instances solved within a given time.

The discount factor λ ∈ (0, 1] and the number of search iter-
ations during training Ttrain are both hyperparameters. Start-
ing with randomly initialized parameters θ, we utilize REIN-
FORCE [Williams, 1992] to train πθ with stochastic policy
gradient ascent. REINFORCE is a natural choice for training
ANYCSP since its complexity does not depend on the size of
the action space A. Soft assignments allow us to efficiently
sample the next assignment α ∼ φ and recover its probability
P(α|φ) =

∏
X φ(α(X)). These are the only operations on

the action space required for REINFORCE. Note that we use
vanilla REINFORCE without a baseline or critic network and
we sample a single trajectory for every training instance. We
found this simple version of the algorithm to be surprisingly
robust and effective in our setting. Details on how the policy
gradients are computed are provided in Appendix A.

4.3 Implementation and Hyperparameters

We implement ANYCSP in PyTorch. The code for relabeling
G(I, α(t)) in each iteration t is also fully based on PyTorch
and is GPU-compatible. We implement generalized sparse
matrix multiplication in the COO format in CUDA. This helps
to increase the memory efficiency and speed of the message
passes between values and constraints.

We choose a hidden dimension of d = 128 for all experi-
ments. We train with the Adam optimizer for 500K training
steps with a batch size of 25. Training a model takes between
24 and 48 hours, depending on the data. During training, we
set the upper number of iterations to Ttrain = 40. During test-
ing, we usually run ANYCSP with a timeout rather than a
fixed upper number of iterations T . All hyperparameters are
provided in Appendix A.

For each training distribution Ω we implement data load-
ers that sample new instances on-the-fly in each training step.
With our hyperparameters we therefore train each model on
12.5 Million sampled training instances. We use fixed subsets
of 200 instances sampled from each distribution before train-
ing as validation data. The exact generation procedures for
each training distribution are provided in Appendix B.

METHOD COL<10 COL≥10

RUNCSP 33 -
COSOCO 49 33

PICAT 49 38
GREEDY 16 15
DSATUR 38 28

HYBRIDEA 50 40

ANYCSP 50 40

Table 1: Results on structured Graph Coloring instances. We provide
the number of instances solved with a 20 Minute timeout for both
splits, each containing 50 instances with chromatic number less than
10 and at least 10, respectively.

5 Experiments
We evaluate ANYCSP on a wide range of well-known CSPs:
Boolean satisfiability (3-SAT) and its maximisation version
(MAX-k-SAT for k = 3, 4, 5), graph colorability (k-COL),
maximum cut (MAXCUT) as well as random CSPs (generated
by the so-called MODEL RB). These problems are of high
theoretical and practical importance and are commonly used to
benchmark CSP heuristics. We train one ANYCSP model for
each of these problems using randomly generated instances.
Recall that the process of learning problem-specific heuristics
with ANYCSP is purely data-driven as our architecture is
generic and can take any CSP instance as input. We cross-
compare all models on each others CSPs in Appendix B.6.

Here, we will compare the performance of ANYCSP to
classical solvers and heuristics as well as previous neural
approaches. When applicable, we also tune the configuration
of the classical algorithms on our validation data to ensure a
fair comparison. All neural approaches run with one NVIDIA
Quadro RTX A6000 GPU with 48GB of memory. All classical
approaches run on an Intel Xeon Platinum 8160 CPU (2.1
GHz) and 64GB of RAM.

MODEL RB. First, we evaluate ANYCSP on general CSP
benchmark instances generated by the MODEL RB [Xu and
Li, 2003]. Our training distribution ΩRB consists of randomly
generated MODEL RB instances with 30 variables and arity
2. The test dataset RB50 contains 50 satisfiable instances
obtained from the XCSP project [Audemard et al., 2020].
These instances each contain 50 variables, domains with 23
values and roughly 500 constraints. They are commonly used
as part of the XCSP Competition to evaluate state-of-the-art
CSP solvers. Note that the hardness of MODEL RB problems
comes from the dense, random constraint relations chosen
at the threshold of satisfiability and even instances with 50
variables are very challenging. We will compare ANYCSP to
three state-of-the-art CSP solvers: Picat [Zhou, 2022], ACE
[Lecoutre, 2022] and CoSoCo [Audemard, 2018]. Picat is
a SAT-based solver while ACE and CoSoCo are based on
constraint propagation. Picat in particular is the winner of the
most recent XCSP Competition [Audemard et al., 2022]. No
prior neural baseline exists for this problem.

Figure 3 provides a the results on the RB50 dataset. All
algorithms run once on each instance with a 20 Minute timeout.
ANYCSP solves the most instances by a substantial margin.
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METHOD |V |=800 |V |=1K |V |=2K |V |≥3K
GREEDY 411.44 359.11 737.00 774.25

SDP 245.44 229.22 - -
RUNCSP 185.89 156.56 357.33 401.00

ECO-DQN 65.11 54.67 157.00 428.25
ECORD 8.67 8.78 39.22 187.75

ANYCSP 1.22 2.44 13.11 51.63

Table 2: MAXCUT results on Gset graphs. The graphs are grouped
by their vertex counts and we provide the mean deviation from the
best known cut size.

The second strongest approach is the CoSoCo solver which
solves 34 instances in total, 8 less than ANYCSP. Within the
timeout of 20 Minutes, ANYCSP will perform 500K search
iterations. Recall that we set Ttrain = 40. Therefore, the
learned policy generalizes to searches that are over 10K times
longer than those seen during training.

Graph Coloring. We consider the problem of finding a
conflict-free vertex coloring given a graph G and number
of colors k. The corresponding CSP instance has variables
for each vertex, domains containing the k colors and one bi-
nary “̸=”-constraint for each edge. We train on a distribution
ΩCOL of graph coloring instances for random graphs with 50
vertices. We mix Erdős-Rényi, Barabási-Albert and random
geometric graphs in equal parts. The number of colors is cho-
sen to be in [3, 10]. As test instances we use 100 structured
benchmark graphs with known chromatic number X(G). The
instances are obtained from a collection of hard coloring in-
stances commonly used to benchmark heuristics4. They are
highly structured and come from a wide range of synthetic and
real problems. We divide the test graphs into two sets with
50 graphs each: COL<10 contains graphs with X(G) < 10
and COL≥10 contains graphs with X(G) ≥ 10. The graphs in
COL≥10 have up to 1K vertices, 19K edges and a chromatic
number of up to 73. This experiment tests generalization to
larger domains and more complex structures.

We compare the performance to three problem specific
heuristics: a simple greedy algorithm, the classic heuristic
DSATUR [Brélaz, 1979] and the state-of-the-art heuristic Hy-
bridEA [Galinier and Hao, 1999], all implemented efficiently
by [Lewis et al., 2012; Lewis, 2015]. We also evaluate the
best two CSP solvers from the MODEL RB experiment. The
neural baseline RUNCSP is also tested on COL<10. Unlike
ANYCSP, RUNCSP requires us to fix a domain size before
training. Therefore, we must train one RUNCSP model for
each tested chromatic number 4 ≤ X(G) ≤ 9 and omit test-
ing on COL≥10. We use the same training data as [Tönshoff et
al., 2021] for their experiments on structured coloring bench-
marks.

Table 1 provides the number of solved k-COL instances
from both splits. ANYCSP is on par with HybridEA which
solves the most instances of all baselines. RUNCSP solves
significantly fewer instances than ANYCSP on COL<10 and
outperforms only the simple greedy approach. ANYCSP
solves 40 out of the 50 instances in COL≥10. The optimally

4https://sites.google.com/site/graphcoloring/vertex-coloring

METHOD SL50 SL100 SL150 SL200 SL250

RLSAT 100 87 67 27 12
PDP 93 79 72 57 61

WALKSAT 100 100 97 93 87
PROBSAT 100 100 97 87 92

ANYCSP 100 100 100 97 99

Table 3: Number of solved 3-SAT benchmark instances from
SATLIB. For each number of variables there are 100 satisfiable test
instances.

colored graphs include the largest instance with 73 colors.
Since ANYCSP trains with 3 to 10 colors the trained model
is able to generalize to significantly larger domains.

MAXCUT. For MAXCUT we train on the distribution
ΩMCUT of random unweighted Erdős-Rényi graphs with 100
vertices and an edge probability p ∈ [0.05, 0.3]. Our test data
is Gset [Ye, 2003], a collection of commonly used MAXCUT
benchmarks of varying structure with 800 to 10K vertices. We
evaluate three neural baselines: RUNCSP, ECO-DQN [Barrett
et al., 2020] and ECORD [Barrett et al., 2022]. RUNCSP is
also trained on ΩMCUT. We train and validate ECO-DQN and
ECORD models with the same data that [Barrett et al., 2022]
used for their Gset experiments. We omit S2V-DQN [Khalil et
al., 2017] since ECO-DQN and ECORD have been shown to
yield substantially better cuts. We adopt the evaluation setup
of ECORD and run the neural methods with 20 parallel runs
and a timeout of 180s on all unweighted instances of Gset.
The results of a standard greedy construction algorithm and
the well-known SDP based approximation algorithm by [Goe-
mans and Williamson, 1995] are also included as classical
baselines. Both are implemented by [Mehta, 2019]. SDP runs
with a 3 hour timeout for graphs with up to 1K vertices.

Table 2 provides results for Gset. We divide the test graphs
into groups by the number of vertices (8-9 graphs per group)
and report the mean deviation from the best-known cuts ob-
tained by [Benlic and Hao, 2013] for each method. ANYCSP
outperforms all baselines across all graph sizes by a large
margin. Recall that RUNCSP trains on a soft relaxation of
MAXCUT while ECO-DQN and ECORD are both neural local
search approaches. Neither concept matches the results of our
global search approach trained with policy gradients.

3-SAT. For 3-SAT we choose the training distribution Ω3SAT
as uniform random 3-SAT instances with 100 variables. The
ratio of clauses to variables is drawn uniformly from the inter-
val [4, 5]. For 3-SAT we test on commonly used benchmark
instances for uniform 3-SAT from SATLIB5. The test set SLN
contains 100 instances with N ∈ {50, 100, 150, 200, 250}
variables each. The density of these formulas is at the thresh-
old of satisfiability. We evaluate two neural baselines: RLSAT
[Yolcu and Póczos, 2019] and PDP [Amizadeh et al., 2019].
PDP is also trained on Ω3SAT. We train RLSAT with the cur-
riculum learning dataset for 3-SAT provided by its authors.
We also adopt the experimental setup of RLSAT, which limits
the evaluation run by the number of search steps instead of a

5https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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METHOD 3CNF 4CNF 5CNF

WALKSAT 2145.28 1556.68 1685.10
CCLS 1567.24 1323.14 1315.96

SATLIKE 1595.86 1188.56 1152.88

ANYCSP 1537.46 1126.44 1105.62

Table 4: Results on Max-k-SAT instances with 10K variables. For
each k ∈ {3, 4, 5} we provide the mean number of unsatisfied clauses
over 50 random instances.

timeout. The provided code for both PDP and RLSAT is com-
paratively slow and a timeout would compare implementation
details rather than the capability of the learned algorithms. We
also evaluate two conventional local search heuristics: The
classical WalkSAT algorithm [Selman et al., 1993] based on
random walks and a modern probabilistic approach called
probSAT [Balint and Schöning, 2018]. Like [Yolcu and Póc-
zos, 2019], we apply stochastic boosting and run each method
10 times for 10K steps on every instance. PDP is deterministic
and only applied once to each formula. Note that our aim is to
compare the performance of ANYCSP to prior end-2-end neu-
ral approaches and conventional stochastic search algorithms
for SAT. We note that ANYCSP can not currently compete
with CDCL solvers on structured decision SAT instances, like
most known stochastic search heuristics.

Table 3 provides the number of solved instances for each
tested size. All compared approaches do reasonably well on
small instances with 50 variables. However, the performance
of the two neural baselines drops significantly as the number of
variables increases. ANYCSP does not suffer from this issue
and even outperforms the classical local search algorithms on
the three largest instance sizes considered here.

MAX-k-SAT. We train on the distribution ΩMSAT of uni-
form random MAX-k-SAT instances with 100 variables and
k ∈ {3, 4}. Here, the clause/variable ratio is chosen from
[5, 8] and [10, 16] for k = 3 and k = 4, respectively. These
formulas are denser than those of Ω3SAT since we aim to train
for the maximization task. Our test data for MAX-k-SAT
consists of uniform random k-CNF formulas generated by us.
For each k ∈ {3, 4, 5} we generate 50 instances with 10K
variables each. The number of clauses is chosen as 75K for
k = 3, 150K for k = 4 and 300K for k = 5. These formulas
are therefore 100 times larger than the training data and aim to
test the generalization to significantly larger instances as well
as unseen arities, since k = 5 is not used for training. Neu-
ral baselines for SAT focus primarily on decision problems.
For MAX-k-SAT we therefore compare ANYCSP only to
conventional search heuristics: the classical (Max-)WalkSAT
[Selman et al., 1993] and two state-of-the-art MAX-SAT local
search heuristics CCLS [Luo et al., 2015] and SATLike [Cai
and Lei, 2020]. Table 4 provides a comparison. We provide
the mean number of unsatisfied clauses after processing each
instance with a 20 Minute timeout. Remarkably, ANYCSP
outperforms all classical baselines by a significant margin. We
note that for each tested arity ANYCSP finds the best solution
on all 50 test instances.

We point out that the conventional search heuristics all

Figure 4: Detailed results for MAX-5-SAT. For each test instance and
each method we plot the number of unsatisfied clauses in the best
found solution against the search step in which it was found.

perform over 100M search steps in the 20 Minute timeout.
ANYCSP performs less than 100K steps on each instance
in this experiment. The GNN cannot match the speed with
which classical algorithms iterate, even though it is acceler-
ated by a GPU. Despite this, ANYCSP consistently finds the
best solutions. Figure 4 evaluates this surprising observation
further. We plot the number of unsatisfied clauses in the best
found solution against the search step in which the solution
was found (Steps to Opt.) for all methods and all instances
of our MAX-5-SAT test data. We also provide the results of
a modified ANYCSP version (ANYCSP Local defined in
Appendix C) that is only allowed to change one variable at a
time and is therefore a local search heuristic. Note that the
x-axis is logarithmic as there is a clear dichotomy separating
neural and classical approaches: Compared to conventional
heuristics ANYCSP performs roughly three orders of mag-
nitude fewer search steps in the same amount of time. When
restricted to local search, ANYCSP is unable to overcome this
deficit and yields worse results than strong heuristics such as
SATLike. However, when ANYCSP leverages global search
to parallelize refinements across the whole instance it can find
solutions in 100K steps that elude state-of-the-art local search
heuristics after well over 100M iterations.

6 Conclusion
We have introduced ANYCSP, a novel method for neural
combinatorial optimization to learn heuristics for any CSP
through a purely data-driven process. Our experiments demon-
strate how the generic architecture of our method can learn
effective search algorithms for a wide range of problems. We
also observe that standard policy gradient descent methods
like REINFORCE are capable of learning on an exponentially
sized action space to obtain global search heuristics for NP-
hard problems. This is a critical advantage when processing
large problem instances.

Directions for future work include widening the scope of the
architecture even further: Weighted and partial CSPs are a nat-
ural extension of the CSP formalism and could be incorporated
through node features and adjustments to the reward.
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