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Abstract
Exploration is a fundamental aspect of reinforce-
ment learning (RL), and its effectiveness is a decid-
ing factor in the performance of RL algorithms, es-
pecially when facing sparse extrinsic rewards. Re-
cent studies have shown the effectiveness of en-
couraging exploration with intrinsic rewards esti-
mated from novelties in observations. However,
there is a gap between the novelty of an observation
and an exploration, as both the stochasticity in the
environment and the agent’s behavior may affect
the observation. To evaluate exploratory behaviors
accurately, we propose DEIR, a novel method in
which we theoretically derive an intrinsic reward
with a conditional mutual information term that
principally scales with the novelty contributed by
agent explorations, and then implement the reward
with a discriminative forward model. Extensive ex-
periments on both standard and advanced explo-
ration tasks in MiniGrid show that DEIR quickly
learns a better policy than the baselines. Our eval-
uations on ProcGen demonstrate both the general-
ization capability and the general applicability of
our intrinsic reward.
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Figure 1: Enlarged MultiRoom environment (leftmost figure) from MiniGrid with 30 cascaded rooms as a representative of environments with
sparse extrinsic rewards, where the agent (upper-left red dot) is tasked with finding the optimal path to the goal (upper-right green dot). We
create advanced variants (three rows on the right) with extra difficulties (reduced view sizes, noisy observations, and invisible obstacles). In
these challenging tasks, existing methods (ICM, RND, NGU, and NovelD) either fail to find an optimal path or require a prohibitive number
of episodes to do so. In contrast, our proposed DEIR leverages a conditional mutual information-based intrinsic reward and a contrastive
learning-inspired model, which is capable of diverse exploration and delivering significantly better performances (see Section 4.2).

1 Introduction
Exploration is an important aspect of reinforcement learn-
ing (RL), as suggested by the famous exploration-exploitation
trade-off [Sutton and Barto, 2018] wherein an agent that only
exploits with the current policy would be stuck and fail to
improve its policy anymore due to the lack of novel experi-
ences. Effective exploration is non-trivial, especially in tasks
where environmental rewards are sparse. Relying on unstruc-
tured exploration (e.g., ϵ-greedy or randomized probability
matching [Sutton and Barto, 2018; Scott, 2010]) requires an
exponential number of samples and is unlikely to achieve a
satisfactory level of exploration. Manually designing dense
rewards with domain knowledge has exhibited promising re-
sults in several areas where RL has significantly progressed,
such as game-playing and robotics [Mnih et al., 2015; Baker
et al., 2019; Hafner et al., 2020]. However, given the huge
amount of knowledge and effort required, designing such
dense rewards is only feasible in a handful of tasks, and ef-
fective exploration thus remains a challenge.

To tackle this issue, several works have proposed guid-
ing the exploration with intrinsic rewards or rewards that
are internal to agents, including ICM [Pathak et al., 2017],
RND [Burda et al., 2019], NGU [Badia et al., 2020], and
NovelD [Zhang et al., 2021]. In these methods, the intrinsic
reward is devised to encourage visiting states that are likely
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to be more novel, where novelty is defined as either the dis-
tance between the current and past observations or the differ-
ence between model predictions and realities. Although these
works have shown encouraging empirical results leading to
better exploration efficiency, the relationship between the ob-
served novelty and the agent’s actions has not yet been ex-
plicitly decoupled. In other words, effectively handling triv-
ial novelties remains unaddressed, as they are rooted in the
stochasticity in the environment’s dynamics and have little to
do with the agent’s exploration capabilities (e.g., the “noisy
TV” problem [Pathak et al., 2017]).

This paper bridges this gap with DEIR (Discriminative-
model-based Episodic Intrinsic Reward), a novel intrinsic re-
ward design that considers not only the observed novelty but
also the effective contribution brought by the agent. In DEIR,
we theoretically derive an intrinsic reward by scaling the nov-
elty metric with a conditional mutual information term be-
tween the observation distances and the agent’s actions. We
make the intrinsic reward tractable by using a simple formula
serving as the lower bound of our primary objective. DEIR
is thus designed to distinguish between the contributions to
novelty caused by state transitions and by the agent’s policy.
For computing the proposed reward, we devise a discrim-
inative forward model that jointly learns the environment’s
dynamics and the discrimination of genuine and fake trajec-
tories. We evaluated DEIR in both standard and advanced
MiniGrid [Chevalier-Boisvert et al., 2018] tasks (grid-world
exploration games with no extrinsic reward until reaching
the goal) and found that it outperforms existing methods on
both (see Figure 1). To examine DEIR’s generalization ca-
pability in tasks with higher dimensional observations, we
also conducted experiments in ProcGen [Cobbe et al., 2019;
Cobbe et al., 2020] (video games with procedurally generated
levels that require planning, manipulation, or exploration)
and found that it delivers a state-of-the-art (SOTA) perfor-
mance in all selected tasks. Finally, we performed an in-
depth analysis of our method through additional experiments
to clarify the effectiveness of DEIR and its components.

Our contributions can be summarized as follows. (1) Our
method, theoretically grounded, effectively decouples the
stochasticity in the environment and the novelty gained by
the agent’s exploration. (2) Our method empirically outper-
forms others in this line of work by a large margin, especially
in advanced MiniGrid tasks, but not limited thereto. It also
has potential applications for a variety of other tasks. (3) Our
method is easy to implement and use, and provides state rep-
resentations useful for potential downstream objectives.

2 Related Work
Exploration through intrinsic rewards is widely studied in RL
literature, with many works falling into one of two categories:
Prediction error-driven methods that are motivated by the dif-
ferences (“surprises”) between predictions and realities, and
Novelty-driven methods that seek novel agent observations.

Prediction error-driven methods. It is typical for predic-
tion error-driven methods to learn a model of the environ-
ment’s dynamics and use it to make predictions for future
states. Large deviations between the predictions and the reali-

ties suggest regimes where the model is insufficiently learned.
Intrinsic rewards, positively correlated to prediction errors,
encourage the agent to explore more in those states. One of
the representative works in this category is ICM [Pathak et
al., 2017], which jointly trains both the forward and the in-
verse transition models to capture the environment’s dynam-
ics better, but only uses the forward model’s prediction errors
to generate intrinsic rewards for the agent. Prediction error-
driven methods require approximating the environment’s dy-
namics with neural networks, which is especially difficult
in high-dimensional spaces. Still, as demonstrated by ICM,
training with auxiliary tasks seems to be worth the effort.

Novelty-driven methods. Recent novelty-driven methods
usually define a distance metric between observations, and
then formulate this distance as intrinsic rewards to encour-
age more exploration in RL roll-outs. Early works include
count-based methods, which record how many times dis-
tinct states are visited and use the count differences as intrin-
sic rewards [Bellemare et al., 2016; Ostrovski et al., 2017;
Tang et al., 2017]. However, due to their simplicity, count-
based methods have difficulty in tasks featuring continuous
states or high-dimensional observations. To overcome this
problem, neural networks have been introduced to encode the
states and observations. For example, RND [Burda et al.,
2019] defines the distance as the difference between the out-
puts of a parameter-fixed target neural network and a ran-
domly initialized neural network. In this approach, the for-
mer network is used to be distilled into the latter one, effec-
tively “evolving” a distance metric that adjusts dynamically
with the agent’s experience. In NovelD [Zhang et al., 2021],
one of the latest works, RND is applied to evaluate the dis-
tances between pairs of observations, in which the bound-
ary between explored and unexplored regions is defined as
where the distance is larger than a predefined threshold and
large intrinsic rewards are provided when the agent crosses
the boundaries. In this way, NovelD encourages the agent to
explore in a manner similar to breadth-first search and has al-
ready demonstrated a state-of-the-art (SOTA) performance on
many MiniGrid tasks. Never-Give-Up (NGU) [Badia et al.,
2020] introduces the inverse model from ICM in its episodic
intrinsic reward generation module. Their final intrinsic re-
ward is based on the Euclidean distances of the K-nearest
embeddings of the recently visited states. In practice, mea-
suring novelty often requires analysis of the distribution of an
environment’s states. Even so, “noisy TV”-like problems can
still occur, where novelty in the observation space is primarily
due to the stochasticity in an environment’s dynamics. This
prevents the agent from achieving meaningful explorations.

Our method incorporates the advantages of the two cate-
gories: while we explicitly encourage our agent to seek novel
observations, we also rely on a discriminative model to con-
struct a conditional mutual information term that scales nov-
elty in the observation space, incorporating the model-based
prediction task from prediction error-driven methods. Unlike
conventional novelty-driven methods, our conditional mutual
information scaling term effectively eliminates the novelties
rooted in the environment’s stochasticity other than those
brought by the agent’s explorations. It has granted us better
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performances (see Figure 1). To illustrate the difference from
existing prediction error-driven methods, our model learns
both the environment’s dynamics and the capability to tell
the genuine and fake trajectories apart. Consistent with the
results reported in contrastive learning studies [Laskin et al.,
2020; Agarwal et al., 2021], the discriminative nature of our
model encodes the observations in a space closely related to
the underlying tasks and thus enables us to measure the dis-
tances between observations more accurately.

3 Proposed Method
3.1 Background and Notations
A Markov decision process (MDP) [Sutton and Barto, 2018]
can be defined as a tuple (S,A, r, f, P0, γ), where S is the
state space, A is the action space, r(st, at, st+1) is the reward
function, f(st, at) is the environment’s transition function,
P0 is the distribution of the initial state s0, and γ ∈ [0, 1] is
the reward discount factor. The goal is to optimize a policy
π : S × A → R so that the expected accumulated reward
Es0∼P0

[
∑

t γ
tr(st, at, st+1)] is maximized. However, in a

partially observable MDP (POMDP), st ∈ S is not accessi-
ble to the agent. A common practice is to use π(at|τt) for the
policy instead, where τt = {o0, o1, · · · , ot} is an approxima-
tion of st. Many works implement this using recurrent neural
networks (RNN) [Rumelhart et al., 1986] to best utilize avail-
able historical information.

We adopt proximal policy optimization (PPO) [Schulman
et al., 2017] to learn the agent’s policy. With PPO as a basis,
we propose an episodic intrinsic reward that helps decouple
the novelties introduced by the agent from those by the envi-
ronment. We also introduce a discriminative forward model
to learn better state representations in partially observable en-
vironments. Following popular studies, our reward function
is designed to be the weighted sum of extrinsic (those from
the environment) and intrinsic (those from curiosity) rewards:
r(st, at, st+1) = rE

t + β · rI
t, where rE

t and rI
t (both functions

of (st, at, st+1)) are respectively the extrinsic and intrinsic
rewards at time step t, and β is a hyperparameter.

3.2 Episodic Intrinsic Reward
Scaling the Novelty
For a pair of states (st, si), ∀i ∈ [0, t) and the action at, we
want a novel state (valuable for exploration) to have a large
distance between observations (ot+1, oi) while that distance
is closely related to the action at. Intuitively, it is crucial to
distinguish novelty rooted in the environment’s stochasticity
from novelty brought by an exploratory action of the agent.
This leads to our primary objective, which is to maximize

J = dist(ot+1, oi) · I (dist(ot+1, oi); at|st, si) (1)
as a product of the distance dist(ot+1, oi) (denoted as Dt+1,i)
between observations and conditional mutual information

I(Dt+1,i; at|st, si) =
E

st,si,at

[DKL(p(Dt+1,i|st, si, at)∥p(Dt+1,i|st, si))].

With the Bretagnolle–Huber inequality [Bretagnolle and
Huber, 1978], we have

DKL(P∥Q) ≥ −log(1− d2TV(P,Q)),

where P (x) = p(x|st, si, at) and Q(x) = p(x|st, si) are
defined for simplicity, and dTV(P,Q) = 1

2∥P − Q∥1 is the
total variation between P and Q.

Note that, in deterministic environments (including par-
tially observable cases), (a) P is a unit impulse function that
has the only non-zero value at Dt+1,i, and (b) we can natu-
rally assume the Dt+1,i|st, si ∼ Exp(λ = 1/dist(st, si)) to
match the distance between observations and that of their un-
derlying states. Thus, we devise a simplified surrogate func-
tion for the mutual information, as

DKL(P∥Q) ≥ log(dist(st, si)) +
dist(ot+1, oi)

dist(st, si)
+ const.

Substituting it back to the objective, we obtain

J ≥ dist(ot+1, oi)

· E
st,si,at

(
log(dist(st, si)) +

dist(ot+1, oi)

dist(st, si)

)
. (2)

To make it tractable, we simplify the right-hand side to

J ≥ min
i

dist2(ot+1, oi)

dist(st, si)
, (3)

which is a lower bound for the original objective. It is simpler
and empirically performs as well as or even better than Equa-
tion 2. We speculate that improving the minimum value is
crucial to improving the expectation value. A detailed deriva-
tion is provided in Appendix A.1.

Intrinsic Reward Design
To maximize our objective through the lower bound in Equa-
tion 3, we propose our intrinsic reward in an episodic manner:

rI
t = min

∀i∈[0,t)

{
dist2(eOBS

i , eOBS
t+1)

dist(eTRAJ
i , eTRAJ

t ) + ϵ

}
, (4)

where eOBS
t is the embedding of observation ot, eTRAJ

t is the
embedding of trajectory τt at time step t in an episode, dist
is the Euclidean distance between two embeddings, and ϵ is a
small constant (10−6 in our experiments) for numeric stabil-
ity. Note that the complete information regarding st is inac-
cessible in POMDPs, so eTRAJ

t is commonly used as a proxy of
st. All these constitute a metric space of observations where
distance is defined. Both eOBS

t and eTRAJ
t are computed by a

discriminative forward model, as detailed in Section 3.3.
Our intrinsic rewards are episodic, as they are created from

the observations seen in a single episode. Arguably, episodic
rewards are generally compatible with lifelong rewards and
can be used jointly. Still, in this work, we focus on the former
for simplicity and leave such a combination for future studies.

3.3 Learning a Discriminative Model
We train a neural network to extract embeddings eOBS

t and eTRAJ
t

from observations in high-dimensional spaces. Existing stud-
ies have adopted auxiliary tasks in which the forward and
inverse models are two representatives to obtain better em-
beddings suitable for exploration. We propose an improved
auxiliary task suitable for exploration in POMDPs inspired
by contrastive learning [Laskin et al., 2020]. Concretely, our
proposed model learns the environment’s dynamics and dis-
criminates the genuine trajectories from the fake. Figure 2
illustrates the architecture of our model.
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Figure 2: Overview of proposed DEIR. Given the input transition
of two observations and an action between them, the discriminative
model predicts whether they are from a truly observed transition.
Observation and trajectory embeddings produced by the model are
saved in an episodic history to compute intrinsic rewards for guiding
explorations during RL roll-outs.

Model Definition
Our discriminative model is denoted as Dsc(ot, at, ox) :
O × A × O′ → [0, 1], where ot, at are defined as above and
ox ∈ {ot+1, ot′} is either the next observation ot+1 (posi-
tive example) or an observation ot′ that has been observed
recently and is randomly selected at time step t (negative ex-
ample) for each training sample. In short, the model estimates
the likelihood that the input ox is a positive example.

Specifically, to efficiently retrieve fake examples with de-
cent diversity during RL roll-outs, we maintain recent novel
observations with a first-in-first-out queue Q so that ot′ can
be randomly selected from all observations saved in Q. This
queue is maintained by continuously adding newly retrieved
“novel” observations to replace the oldest observations. Here,
ot is considered “novel” only if rIt is not less than the running
average of all intrinsic rewards. In addition, when sampling
fake observations from Q, we always sample twice and keep
only ones that differ from the true ones. These measures lead
to a very high ratio of valid samples with distinct true and
fake observations in training.

Proposed Architecture
The proposed intrinsic reward is based on the observation
embeddings eOBS

t and the trajectory embeddings eTRAJ
t gener-

ated by the discriminator. From input to output, the dis-
criminator Dsc is formed by a convolutional neural network
(CNN) [LeCun et al., 1998], a recurrent neural network
(RNN) [Rumelhart et al., 1986], and a multi-layer percep-
tron (MLP) [Rosenblatt, 1958] output head. We adopt gated
recurrent units (GRU) [Cho et al., 2014] in the RNN mod-

ule to reduce the number of trainable parameters (compared
to LSTM [Hochreiter and Schmidhuber, 1997]). As shown in
Figure 2, the CNN takes the observations ot and ot+1 as input
in parallel and outputs two observation embeddings. These
observation embeddings are then fed into the RNN, together
with the RNN’s previous hidden state ht−1. In addition to the
updated hidden state ht, the RNN outputs the embeddings
of two trajectories starting from the beginning of an episode
and ending at time steps t and t + 1, respectively. Finally,
the two trajectory embeddings with the action at are fed into
the MLP for predicting the likelihood. RNN hidden states
are saved as part of the discriminative model’s training sam-
ples. We adopt PPO for learning the policy, as it refreshes
the experience buffer more frequently than other algorithms.
Therefore, we do not apply specialized methods to renew the
hidden states within one episode.

Mini-Batches and Loss Function
During training, each mini-batch consists of two types of
samples: half of them positive and half of them negative.
Both types are picked from the agent’s recent experiences.
The discriminator is trained with a binary cross-entropy loss
function [Murphy, 2022] as in ordinary classification tasks.

4 Experiments
We address the following questions through our experiments:

• Is DEIR effective in standard benchmark tasks and can
it maintain decent performance in advanced, more chal-
lenging settings?

• Is our design decision in DEIR generally applicable to
a variety of tasks, and particularly, can it generalize to
tasks with higher dimensional observations?

• How significantly does each technical component in
DEIR contribute to the performance?

4.1 Experimental Setup
We evaluate DEIR using the following two popular procedu-
rally generated RL benchmarks. (1) MiniGrid [Chevalier-
Boisvert et al., 2018], which consists of 20 grid-world explo-
ration games featuring different room layouts, interactive ob-
jects, and goals. An agent needs to learn a specific sequence
of actions to reach a final goal with its limited view size. Valid
actions include picking up a key, unlocking a door, unpack-
ing a box, and moving an object. No extrinsic reward is given
until the goal. (2) ProcGen [Cobbe et al., 2020], which con-
sists of 16 games with 64 × 64 × 3 RGB image inputs, each
of which requires a certain level of planning, manipulation,
or exploration skill to pass. Each episode is a unique game
level with randomly initialized map settings, physical proper-
ties, enemy units, and visual objects. The agent needs to learn
policies that can be generalized to unseen levels.

Environments and networks are by default initialized with
20 seeds in each MiniGrid experiment and three seeds (from
the full distribution of game levels) in each ProcGen experi-
ment. All experimental results are reported with the average
episodic return of all runs with standard errors. We performed
hyperparameter searches for every method involved in our ex-
periments to ensure they have the best performance possible.
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Figure 3: Mean episodic returns in (1) standard and (2)–(4) advanced MiniGrid games. (1) Agent has a fixed 7× 7, unhindered view size. (2)
Agent has a reduced view size of 3 × 3 grids. (3) Noisy observations, where Gaussian noise (µ = 0.0, σ = 0.1) are added element-wise to
the observations that are first normalized to [0, 1]. (4) Obstacles that are invisible to the agent but still in effect. In all figures, Y axes start at
−0.05 to show near-zero values.
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We also performed sensitivity analyses on two key hyperpa-
rameters of our method, namely, the maximum episode length
and the maximum observation queue size, and found that both
work well with a wide range of candidate values.

Note that, while our experiments in this paper focus on
POMDPs, we find that the performance of DEIR is superior to
existing exploration methods in many fully observable tasks
as well, which deserves further analysis in future works.

4.2 Evaluation Experiments
Evaluation in Standard MiniGrid
We first evaluated the performance of DEIR in four standard
MiniGrid tasks, where the agent’s view size is a 7× 7 square
and no other constraints are applied. The mean episodic re-
turns of all exploration methods are shown in Figure 3 (first
row). In FourRooms and MultiRoom-N6, which are simple
tasks, DEIR and the existing methods all exhibited a de-
cent performance. DoorKey-16x16 and KeyCorridorS6R3 are
more complex tasks featuring multiple sub-tasks that must
be completed in a particular order, requiring efficient explo-
ration. In these complex tasks, DEIR also learned better poli-
cies faster than the existing methods.

We also compared the performances of DEIR and NovelD
on the most difficult MiniGrid task ObstructedMaze-Full (see
Figure 5). Its difficulty is due to the highest number of sub-
tasks that need to be completed in the correct order among
all standard MiniGrid tasks. So far, it has been solved by
only few methods, including NovelD, albeit in an excessive
amount of time. To reach the same SOTA performance, DEIR
required only around 70% of frames as NovelD, for which
we also conducted hyperparameter searches and exceeded its
original implementation by requiring fewer training steps.

Evaluation in Advanced MiniGrid
We further evaluated the robustness of DEIR on 12 MiniGrid
tasks with advanced (more challenging) environmental set-
tings, in which the following modifications were made to the
standard environments (see examples in Figure 1):

Reduced view sizes. The agent’s view size is reduced from
the default 7 × 7 grids to the minimum possible view size
of 3 × 3 (81.6% reduction in area). Consequently, the agent
needs to utilize its observation history effectively.

Noisy observations. At each time step, noises are sam-
pled from a Gaussian distribution (µ = 0.0, σ = 0.1) in an
element-wise manner and added to the observations that are
first normalized to [0, 1]. With this change, each observation
looks novel even if the agent does not explore.

Invisible obstacles. Obstacles are invisible to the agent but
still in effect; that is, the agent simply perceives them the
same way as floors, but cannot step on or pass through them.
This requires the agent to have a comprehensive understand-
ing of the environment’s dynamics, beyond the superficial ob-
servable novelty.

The results in Figure 3 (second to fourth rows) clearly show
that DEIR was significantly more robust than the existing
methods in all advanced settings. The performance difference
was especially large when only noisy observations were pre-
sented. Compared to the results in standard tasks, DEIR lost
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Figure 5: Comparison of episodic returns of DEIR and NovelD in
ObstructedMaze-Full—the hardest standard task in MiniGrid that
has been solved by only few methods, including NovelD. DEIR was
able to solve the task here and also learned significantly faster.

at most 25% of its returns by the end of the training, while
other methods lost nearly all of their returns in 75% of the
noisy-observation tasks. Note that our noisy-observation task
is similar to the “noisy-TV” experiments [Burda et al., 2019]
but features increased difficulty due to changing more pixels.
In ICM [Pathak et al., 2017], up to 40% of the observation
image was replaced with white noise. According to published
source code, NovelD was originally tested in a scenario where
at most one special object in an observation switches its color
among six hard-coded colors when triggered by the agent,
i.e., most parts of the observation image remain unchanged.

Generalization Evaluation in ProcGen
We evaluated the generalization capability of DEIR under
various reward settings and environmental dynamics using
the ProcGen benchmark. Four tasks (on hard mode) were
selected on the basis of their partial observability and de-
mand for advanced exploration skills. We used the same CNN
structure as in IMPALA [Espeholt et al., 2018] and Cobbe
et al.’s work [Cobbe et al., 2020] for the agent’s policy and
value function, and a widened version of the CNN used in
DQN [Mnih et al., 2015] for the dynamics model of each ex-
ploration method. The results in Figure 4 show that DEIR
performed better than or as well as other exploration methods
and could successfully generalize to new game levels gener-
ated during training. The results also suggest that the pro-
posed model and intrinsic reward are universally applicable
to a variety of tasks, including those with higher-dimensional
observations. In addition, we confirmed that the performance
of DEIR was consistent with the training results reported in
previous studies [Cobbe et al., 2020; Cobbe et al., 2021;
Raileanu and Fergus, 2021].

4.3 Ablation Studies
To better understand DEIR, we created an advanced KeyCor-
ridorS6R3 task with all three modifications proposed in Sec-
tion 4.2 (view size: 3, standard deviation of noise: 0.3, ob-
stacles: invisible), and conducted ablation studies to analyze
the importance of (1) the conditional mutual information term
and (2) the discriminative model.

Conditional Mutual Information Scaling
To analyze the importance of the conditional mutual infor-
mation term proposed in Equation 1, we evaluated the perfor-
mances of our DEIR agent and a variant without the mutual
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Figure 6: Results of ablation studies in an advanced KeyCorri-
dorS6R3 task. The effectiveness of the conditional mutual informa-
tion (MI) can be confirmed by comparing (a), (b), (c). The difference
between (a), (d), (e) shows the discriminator’s importance.

information term (see Figure 6(a) and (b)). As we can see,
DEIR performed significantly better than the latter, which
demonstrates the importance of our intrinsic reward design.

We utilize RNN in our model to capture temporal informa-
tion in trajectories, which enables a more accurate represen-
tation to be learned. Thus, we further examine the effect of
RNN on its own by training a separate agent with the discrim-
inator only (see Figure 6(c)) and found that using RNN alone
barely brings any benefit compared to Figure 6(b). Thus, we
are confident that the mutual information scaling term indeed
contributes to all of the performance improvements.

Discriminative Model
The performances of the DEIR agents driven by the inverse
model and the forward model are shown in Figure 6(d) and
(e), respectively. We applied the conditional mutual informa-
tion term and RNN to both, and used the same tuned hyper-
parameters as in our previous experiments. Compared with
Figure 6(a), our discriminative model-driven agent presented
an evident advantage over the agent trained with the inverse
model alone, while the forward model-driven agent com-
pletely failed to learn any meaningful policy in the task (due
to the fact that the forward model is notorious for being weak
to noise [Pathak et al., 2017]), suggesting that to achieve an
advanced performance, the discriminative model is indispens-
able for learning state representations in POMDPs. We be-
lieve the main contribution stems from the trajectory embed-
dings learned by the discriminative model, and we present
further analysis results in Section 4.4 for more insights.

4.4 Effectiveness of Learned Embeddings
To obtain further insights into the impact of the learned em-
beddings on the final performance, we conducted an experi-
ment to compare three model variants. Concretely, we trained
a forward-only, an inverse-only, and a discriminative model
using the same data sampled by a vanilla PPO agent in stan-
dard DoorKey-8x8, where an agent needs to find a key to open
a door that leads to the goal in another room. Following Alain
and Bengio’s work [Alain and Bengio, 2016], we devise five
auxiliary supervised learning tasks. Given the learned trajec-
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Figure 7: Validation losses of predicting temporal and spatial met-
rics using trajectory embeddings by three models. Upper-right figure
exemplifies the objects (key, door, goal) related to the metrics. Up-
per: Whether the agent has picked up the key and opened the door.
Lower: The agent’s normalized distances to the key, door, and goal.

tory embeddings eTRAJ, each task predicts an important tem-
poral or spatial metric that is directly related to the game’s
progress or the agent’s position. Technically, the ground-truth
metrics are retrieved from the game’s backend, and training
stops after the agent reaches a near-optimal policy. The re-
sults in Figure 7 demonstrate that our discriminator-based
method learns the most helpful embeddings for predicting im-
portant temporal and spatial metrics. This explains why it can
benefit downstream objectives in RL, including exploration.

In comparison, embeddings from the forward and inverse
models did not perform as well as ours, which is consistent
with the findings in Figure 6. We hypothesize that the inverse
model is less motivated to include historical data in embed-
dings because, by design, it can reliably infer actions merely
from its always-factual inputs. On the other hand, the forward
model relies too much on visual details, so its embeddings do
not carry much information crucial to underlying tasks [Gul-
rajani et al., 2017; Goyal et al., 2017].

5 Conclusion
Training RL agents to explore effectively is a challenging
problem, especially in environments with sparse rewards. A
promising approach is to augment the extrinsic rewards with
novelty-driven intrinsic rewards. However, focusing only on
the novelty of observations is insufficient because an agent
may incorrectly recognize the stochasticity in the environ-
ment’s dynamics as novelties brought by its explorations. In
this work, we proposed scaling the observation novelty with
a conditional mutual information term that explicitly relates
the agent’s actions to the distances between observations, and
learning a discriminative model that gives better intrinsic re-
wards. Compared with baselines, our method delivers out-
standing performances in both standard and advanced ver-
sions of MiniGrid tasks. Also, it demonstrates general appli-
cability to a variety of tasks with higher-dimensional inputs
(such as those in ProcGen). As future work, we envision re-
search on continuous action spaces and multi-agent settings.
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A Technical Appendix
A.1 Intrinsic Reward Derivation
Given a pair of states (st, si), ∀i ∈ [0, t), a pair of observa-
tions (ot+1, oi), and an action at from an episode’s history,
we optimize the agent’s policy with an intrinsic reward

J = dist(ot+1, oi) · I (dist(ot+1, oi); at|st, si) . (A1)

The first term of J is the distance between observations ot+1

and oi, as used in previous studies [Blundell et al., 2016;
Pritzel et al., 2017; Badia et al., 2020]. The second term of J
is the conditional mutual information between dist(ot+1, oi)
and at given st, si. Our intuition behind such design is that
the policy achieves novelty by maximizing the distance be-
tween observations (ot+1, oi) and letting the distances be
closely related to at, the action taken in st. This would ef-
ficiently eliminate the novelties rooted in the environment’s
stochasticity other than those brought by agent explorations.

The second term of J can be derived as (denoting Dt+1,i ≜
dist(ot+1, oi) for simplicity).

I(Dt+1,i; at|st, si) =
E

st,si,at

[DKL(p(Dt+1,i|st, si, at)∥p(Dt+1,i|st, si))],

which is because

I(X;Y |Z)

= E
p(x,y,z)

[
log

P (X,Y |Z)

P (X|Z)P (Y |Z)

]
= E

p(x,y,z)

[
log

P (X|Y,Z)✘✘✘✘P (Y |Z)

P (X|Z)✘✘✘✘P (Y |Z)

]
= E

p(y,z)

[
Ep(x|y,z)

[
log

P (X|Y,Z)

P (X|Z)

]]
= E

p(y,z)

[
DKL(P (X|Y = y, Z = z)∥P (X|Z = z))

]
.

We seek to simplify J , which contains an intractable ev-
idence term in the Kullback–Leibler (KL) divergence DKL.
To do so, we devise a surrogate function for the KL diver-
gence by connecting it with total variation (TV). Denoting
P (x) = p(x|st, si, at) and Q(x) = p(x|st, si), the Bretag-
nolle–Huber inequality [Bretagnolle and Huber, 1978] gives

dTV(P,Q) ≤
√
1− exp(−DKL(P∥Q))

⇔ DKL(P∥Q) ≥ −log(1− d2TV(P,Q)),

where dTV(P,Q) = 1
2∥P−Q∥1 is the total variation between

P and Q. Since dTV(P,Q) monotonically increases w.r.t.
to KL divergence DKL(P∥Q), we use dTV as the surrogate
function. Furthermore, given st, si, at in any deterministic
environment (including POMDPs), st+1, ot+1, and Dt+1,i

are uniquely determined. P is thus a unit impulse function
that has the only non-zero value at Dt+1,i:

P (x) =

{
+∞ x = Dt+1,i

0 x ̸= Dt+1,i
,

∫
D
P (x)dx = 1,

where D denotes the set of all possible observation distances.
Also, by the definition of Q, we have

∫
D Q(x)dx = 1 and

Q(Dt+1,i) ≤ 1. Given those properties and Scheffé’s theo-

rem [Tsybakov, 2008], we obtain

dTV = 1−
∫
D
min

(
P (x), Q(x)

)
dx = 1−Q(Dt+1,i).

We derive the KL divergence’s lower bound using dTV, as
DKL(P∥Q) ≥ −log(1− d2TV(P,Q))

= −log(1− (1−Q(Dt+1,i))
2)

= −log(2×Q(Dt+1,i)−Q(Dt+1,i)
2)

≥ −log(2×Q(Dt+1,i))

= −log(2)− log(Q(Dt+1,i)),

where −log(2) is constant, and we effectively maximize the
last term −log (Q(Dt+1,i)). Since Dt+1,i ≜ dist(ot+1, oi)
is the non-negative distance between two observations ot+1

and oi, and dist(ot+1, oi) is related to dist(st, si), we as-
sume Dt+1,i approximately follows an exponential distribu-
tion with a mean of the distance between its closest underly-
ing states st and si. The intuition here is that limited observ-
ability leads to similar observations with minor variations,
especially during early training phases when exploration is
crucial. The marginal distributions of observation distances
observed in our experiments also confirmed this. By setting
Dt+1,i|st, si ∼ Exp(λ = 1/dist(st, si)) with an expected
value of 1/λ = dist(st, si), we obtain

−log
(
Q(Dt+1,i)

)
= −log (λ exp (−λDt+1,i))

= −log
( 1

dist(st, si)
exp

(
−dist(ot+1, oi)

dist(st, si)

))
= log(dist(st, si)) +

dist(ot+1, oi)

dist(st, si)
.

With all of the above, we finally define J’s lower bound as
J ≥ dist(ot+1, oi)

· E
st,si,ai

(
log(dist(st, si)) +

dist(ot+1, oi)

dist(st, si)

)
.

(A2)

Note that the full distributions of observations and states
are difficult to sample. By keeping only the dominating term
dist(ot+1, oi)/dist(st, si) and relaxing the expectation to the
minimum, we further simplify Equation A2 to

J ≥ min
i

dist2(ot+1, oi)

dist(st, si)
, (A3)

where ot+1, oi, and st, si are random variables in Equa-
tions A1 and A2 but realized values in Equation A3. We find
that Equation A3 is much simpler than Equation A2, yet de-
livers a performance that is just as good or even better. Equa-
tion A3 is equivalent to the intrinsic reward proposed in the
main text (Equation 4).

A.2 Implementation Details
Our implementations are based on Stable Baselines 3 [Raf-
fin et al., 2021] and the official code of existing methods (if
available). Our source code is available at https://github.com/
swan-utokyo/deir. More details about our algorithms, bench-
marks, hyperparameters, network structures, and experimen-
tal results can be found at https://arxiv.org/abs/2304.10770.
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