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Abstract
Time series forecasting is prevalent in various real-
world applications. Despite the promising re-
sults of deep learning models in time series fore-
casting, especially the Recurrent Neural Networks
(RNNs), the explanations of time series models,
which are critical in high-stakes applications, have
received little attention. In this paper, we pro-
pose a Decomposition-based Linear Explainable
LSTM (DeLELSTM) to improve the interpretabil-
ity of LSTM. Conventionally, the interpretability
of RNNs only concentrates on the variable impor-
tance and time importance. We additionally distin-
guish between the instantaneous influence of new
coming data and the long-term effects of histori-
cal data. Specifically, DeLELSTM consists of two
components, i.e., standard LSTM and tensorized
LSTM. The tensorized LSTM assigns each variable
with a unique hidden state making up a matrix ht,
and the standard LSTM models all the variables
with a shared hidden state Ht. By decomposing
the Ht into the linear combination of past informa-
tion ht−1 and the fresh information ht − ht−1, we
can get the instantaneous influence and the long-
term effect of each variable. In addition, the advan-
tage of linear regression also makes the explana-
tion transparent and clear. We demonstrate the ef-
fectiveness and interpretability of DeLELSTM on
three empirical datasets. Extensive experiments
show that the proposed method achieves competi-
tive performance against the baseline methods and
provides a reliable explanation relative to domain
knowledge.

1 Introduction
Time series forecasting is ubiquitous across a broad range of
applications, including finance [Wu et al., 2013], meteorol-
ogy [Chakraborty et al., 2012], energy consumption [Wang
et al., 2020], and medical health [Zhang, 2019]. Deep neu-
ral networks have been successfully developed for time se-
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ries forecasting tasks. Among them, Recurrent Neural Net-
works (RNNs) and its variant, the Long-Short Term Memory
(LSTM) [Hochreiter and Schmidhuber, 1997] and the Gated
Recurrent Units (GRU) [Cho et al., 2014], are widely used
networks for handling sequential data and have been proven
to be powerful tools [Guo et al., 2019].

Despite the promising results of RNNs in time series fore-
casting, using RNNs to modelling time series lack inter-
pretability, which is critical in high-stakes applications like
finance and healthcare. For example, in the medical field,
e.g., predicting the mortality rate after patients enter the ICU,
it is crucial for clinicians to understand how models output a
specific prediction and which indicators are useful. Such ex-
planations can aid reliable decision-making for clinicians and
increase trust in models’ predictions.

Although much recent work has been done on explain-
ability in the computer vision and natural language pro-
cessing [Masoomi et al., 2021; Mohankumar et al., 2020;
Tsang et al., 2020], this problem has been overlooked in
the case of time series forecasting [Tonekaboni et al., 2020;
Rojat et al., 2021; Hsieh et al., 2021]. The time series is spe-
cial because of its dynamic nature, which causes multivari-
able patterns to change over time and makes it more difficult
to build explainable models.

There are two main challenges in explaining time series
forecasting models. First, each variable has a different im-
pact on the target series, and the effects of variables on the
target series are dynamic over time. Therefore, capturing the
different dynamic impacts of each variable and distinguish-
ing the contribution of each variable to the prediction is dif-
ficult for explaining the forecasting model. Second, the se-
rial dependencies for each variable are heterogeneous. When
predicting target series, the long-term effects of some vari-
ables play a decisive role, while the instantaneous effect of
other variables is more important. For example, in the fi-
nancial market, investors tend to utilize multivariate time se-
ries, such as the stock index and related stocks, to forecast
the stock prices at the next time point. If the instantaneous
influence and the long-term effects of each feature can be dis-
tinguished, investors can focus on more significant informa-
tion and make appropriate investment decisions. As a result,
we should solve the challenge of distinguishing the long-term
effect and the instantaneous influence of each variable.
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Existing explainable RNNs primarily use the attention
mechanism on the hidden states to get the important vari-
ables [Tonekaboni et al., 2020; Guo et al., 2019]. The hid-
den states involve information from previous steps and the
new inputs of all variables, but none of these methods ex-
plicitly model the immediate impact of fresh information
and the long-term effects of historical data. In addition,
whether the attention mechanism can be directly applied to
model interpretation is still controversial [Sun et al., 2021;
Serrano and Smith, 2019]. Moreover, most of the explain-
able studies just make predictions once based on historical
data and ignore the importance of real-time series forecast-
ing, which predicts at each time point. For example, predict-
ing electricity consumption at each hour is crucial for elec-
tric power providers to maximize resource utilization and cut
costs.

To address these challenges, we propose DeLELSTM:
Decomposed-based Linear Explainable LSTM, which simul-
taneously: (i) identifies the instantaneous influence and long-
term effects of each variable; (ii) leverages the linearity of lin-
ear regression to make interpretation transparent and straight-
forward. Specifically, DeLELSTM involves two components.
One is standard LSTM, in which the hidden state Ht encap-
sulates information of all variables until time t. The other is
tensorized LSTM [He et al., 2017], where the hidden state ht

is a matrice and each row of the hidden state only encodes
information exclusively from a certain variable of the input.
To capture the instantaneous influence and long-term effects
of each variable, the linear combination of the hidden state at
time t−1 and the dynamic change of the hidden state at time t
of each variable is used to approximate the Ht. The linearity
of the linear regression can make the explanation transparent
and clear. In addition, given the significance of real-time fore-
casting in time series, we aim to build an explainable model
for real-time series forecasting.

The major contributions of this work are as follows:

• We consider the instantaneous influence and long-term
effects of each variable, which commonly exists in time
series data.

• We take advantage of the explanation of the linear re-
gression model to make a clear and transparent explana-
tion.

• Extensive experiments with three benchmark datasets
show that DeLELSTM can achieve competitive perfor-
mance and provide transparent explanations relative to
domain knowledge.

The rest of the paper is organized as follows. Section 2 re-
views the related work. Section 3 introduces the problem def-
inition and details our proposed framework. Then we evaluate
our method by comparing it with several baselines in Section
4 and conclude in Section 5.

2 Related Work
In recent years, different classes of approaches have been pro-
posed to explain time series forecasting models, especially
RNNs. One general approach is post-hoc analysis, which ex-
plains the models by evaluating the importance of each vari-

able in the predictions. The other is ante-hoc methods, which
incorporate interpretability directly into their structures.

Post-hoc methods frequently adopt variable-level attribu-
tion interpretations, also known as salience maps [Ding et
al., 2022]. These methods assign a relevance score to each
variable, indicating how sensitive a variable is to the output.
Gradient-based and perturbation-based methods are the two
main types of attribution methods. Gradient-based methods
examine the characteristics to which output was most sensi-
tive [Ancona et al., 2017; Shrikumar et al., 2017; Sundarara-
jan et al., 2017; Yang et al., 2018]. In perturbation-based
approaches, the variable importance is obtained by perturb-
ing the variables with mean value or random uniform noise,
running a forward pass on the new put, and comparing the
difference to the original output [Dabkowski and Gal, 2017;
Fong and Vedaldi, 2017]. However, these post-hoc explain-
able models have been criticized for failing to capture the
sequential dependencies and clarifying how the underlying
model arrived at a specific prediction [Tonekaboni et al.,
2020; Rigotti et al., 2021].

On the other hand, ante-hoc models can provide intrinsic
explanations by building self-explanatory systems. Among
ante-hoc models, attention-based interpretable models are
widely used for explaining RNNs. The parameters of these
models, known as attention weights, are utilized to explain
how the models behave over time. For example, [Choi et al.,
2016] proposed RETAIN, an explainable model based on a
two-level attention mechanism. Two sets of attention scores
are used to identify relevant clinical variables and influential
hospital visits, respectively. [Guo et al., 2019] proposed a
mixture attention framework to get variable importance and
temporal importance. However, the focus of the current at-
tention mechanism is on hidden states, which encode infor-
mation from both past and new observations. Differentiating
between the immediate impact of new information and the
long-term effects of historical data can be difficult. In addi-
tion, attention’s interpretability is still debatable [Sun et al.,
2021], and other studies found that attention patterns cannot
reliably provide transparent and reliable explanations [Jain
and Wallace, 2019].

In this paper, we propose a decomposition-based method to
decompose hidden states at each time step into two compo-
nents, representing instantaneous information and historical
information, respectively. In addition, the linear regression
model is utilized to build a transparent and faithful explain-
able model for time series forecasting.

3 The Proposed Framework - DeLELSTM
3.1 Problem Definition
Let X ∈ RD×T be a sample of a multivariate time-series data
where D is the number of variables with T observations over
time. Further, xt ∈ RD is the set of all observations at time
t ∈ [1, · · · , T ], denoted by the vector [x1

t , x
2
t , · · · , xD

t ] and
X1:t ∈ RD×t is the matrix [x1;x2; · · · ;xt], representing the
observations until t.

Let Y ∈ RT be the target time series of length T . Noted,
the target series can be one of the multivariate time series X
or not. Given X1:t ∈ RD×t, we aim to learn a function F
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to predict the next value of the target series, namely, yt+1 =
F(X1:t)

3.2 Network Architecture: DeLELSTM

This subsection first describes the framework of our proposed
model DeLELSTM, then follows with the details of the model
and the process of obtaining the interpretation.

DeLELSTM consists of two components (i) a standard
LSTM, in which xt is the input at time t and Ht is the hidden
state at t. The hidden state Ht incorporates new informa-
tion and past information of all variables; (ii) a tensorized
LSTM, in which the hidden state ht is a matrix and each
row of the hidden state ht only contains information taken
from one particular input variable. ht−1 stands for the infor-
mation from the past, and ht − ht−1 is the dynamic change
brought by the new observations at time t. Here, we define
∆ht = ht − ht−1. To capture both the immediate influ-
ence and the long-term effect of each variable, we propose
to approximate Ht as a linear combination of ht−1 and the
dynamic change ∆ht, thereby allowing the separation of out-
put states into contributions from instantaneous influence and
long-term effects of each variable. Finally, the approximated
hidden state Ĥt is used to predict the yt+1 and the computa-
tion of the hidden state in the next step Ht+1. Figure 1 shows
the architecture of the proposed DELeLSTM framework.

The architecture of DeLELSTM is made to learn a rep-
resentation of the multivariate time series data that suffices
for accurate real-time prediction and offers a transparent ex-
planation of each variable’s long-term effect and instanta-
neous influence. We now proceed to illustrate each module
of DeLELSTM in more detail.

Standard LSTM
The standard LSTM is shown in Equation (1).

It = σ(UiHt−1 +Wixt +Bi)

Ft = σ(UfHt−1 +Wfxt +Bf )

Ot = σ(UoHt−1 +Woxt +Bo)

C̃t = tanh(UcHt−1 +Wcxt +Bc)

Ct = Ft ⊙Ct−1 + It ⊙ C̃t

Ht = Ot ⊙ tanh(Ct)

(1)

where xt ∈ RD is the new observations of D variables at
time t, Ht ∈ RM is the hidden state at time t which encodes
information from all input variables until time t. M is the
dimension of the hidden state. ⊙ is the elementwise product.

Tensorized LSTM
The tensorized LSTM is used to explain and approximate the
hidden state Ht and identify the contribution of each variable.
Here, the tensorized LSTM can be considered as a set of par-
allel LSTMs, each of which processes a single variable series.
The hidden state of the tensorized LSTM is a matrix, and each
row of the hidden state incorporates information only from a

particular variable. Equation (2) shows the tensorized LSTM.

it = σ(Ui ⊛ ht−1 +Wi ⊛ xt + bi)

ft = σ(Uf ⊛ ht−1 +Wf ⊛ xt + bf )

ot = σ(Uo ⊛ ht−1 +Wo ⊛ xt + bo)

c̃t = tanh(Uc ⊛ ht−1 +Wc ⊛ xt + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t
ht = ot ⊙ tanh(ct)

(2)

where ht = [h1
t , · · · ,hD

t ]T ,ht ∈ RD×M ,hd
t ∈ RM . The hd

t
is the hidden state vector specific to the d-th input variable at
time t, and the ht is the hidden state of all variables at time t.
Uc = [u1

c , · · · ,uD
c ], Uc ∈ RD×M×M , ud

c ∈ RM×M , is the
hidden-to-hidden transition. Wc = [w1

c , · · · ,wD
c ], Wc ∈

RD×M×1, wd
c ∈ RM×1, is the input-to-hidden transition.

(Ui,Uf ,Uo), ( Wi,Wf ,Wo) have the same shapes as Uc,Wc,
respectively. ⊛ is the tensor-dot operation, which is defined
as the product of two tensors along the D axis, e.g., Uc ⊛
ht−1 = [u1

ch
1
t−1, · · · ,uD

c hD
t−1]

T , ud
ch

d
t−1 ∈ RM . Such a

design can guarantee that gates and memory cells are also
matrices, and each row of these matrices only captures the
information from a single variable.

Decomposition
Ht involves the information from previous steps and new in-
put of all variables, so it is challenging to measure the in-
fluence of each variable, including the long-term effect from
Ht−1 and the instantaneous impact from xt.

Theoretically, each row of ht−1 corresponds to the infor-
mation belonging to a particular variable until time t−1. Each
row of ∆ht represents a single variable’s new information of
time t, We propose to decompose Ht as a linear combina-
tion of ht−1 and ∆ht, so that we can obtain each variable’s
instantaneous influence and long-term impact.

Specifically, we approximate Ht using Equation (3):

Ht ≈
D∑
i=1

(αi
th

i
t−1 + βi

t(h
i
t − hi

t−1))

= hT
t−1αt + (ht − ht−1)

Tβt

(3)

This approximation is minimised following a least squares
criterion, which has a well-known solution, α̂t, β̂t, and cor-
responding optimal approximation Ĥt. Here, we use Ĥt to
get the prediction of target yt+1 and compute the hidden state
Ht+1.

3.3 Learning to Interpret
To get the immediate impact and the long-term effect of each
variable, we derive significance from the magnitude of lin-
ear approximation weights rather than only focusing on the
largest values. We first take the absolute value of α̂t, β̂t and
get α̃t, β̃t after normalizing weights at each time step. Then,
we propose several measures to interpret the prediction model
for real-time series forecasting.

Definition 1. The instantaneous importance of the d-th vari-
able at time t, Ind

t , is defined as the Equation (4), the ratio
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Figure 1: Proposed DeLELSTM model Framework.

of β̃d
t and (α̃d

t + β̃d
t ). Accordingly, the long-term effect of the

d-th variable at time t is 1− Ind
t .

Ind
t =

β̃d
t

(α̃d
t + β̃d

t )
(4)

Ind
t can help us figure out which is more important: past

information until time t − 1 versus current data at time t of
the d-th variable. If Ind

t is close to 1, we can know that the
past information of the variable d has little impact on the pre-
diction; in other words, it has no long-term effect.
Definition 2. The global importance of the d-th variable at
time T, GldT , is defined as the Equation (5), which considers
both the immediate impact and long-term impact of the d-th
variable.

GldT =
1

T

T∑
t=1

√
(α̃d

t
2 + β̃d

t
2) (5)

The global importance of each variable can help us iden-
tify the important variables in general. Further, we can also
get the dynamic shift in a variable’s weight by considering√

(α̃d
t
2 + β̃d

t
2) over time, which we use to provide further

model interpretability.
Algorithm 1 summarizes the proposed procedure.

4 Experiment
In this section, we describe our experiments to evaluate the
prediction performance and the interpretation ability of our
proposed model 1.

4.1 Datasets
We used three publicly available real-world multivariate time
series datasets covering meteorology, energy, and finance
fields.

PM2.5 [Liang et al., 2015]: It contains hourly PM2.5 data
and the associated meteorological measurements in Beijing

1Code and supplementary is available in the repository:
https://github.com/wangcq01/DeLELSTM.

Algorithm 1 The Training Process of DeLELSTM
Input:Time series X1:T , where T is the max time length;
Set: Ht = H0, ht = h0

Output: α1:T , β1:T , y2:T+1

1: for t = 1 to T do
2: Ht=standard LSTM(xt, Ht−1);
3: ht=Tensorized LSTM(xt, ht−1);
4: ∆ht = ht − ht−1;

% Compute the dynamic change of hidden state ht

from t− 1 to t
5: (αt,βt)=Least Square(Ht,ht−1,∆ht);

% Compute the optimal solution of (αt,βt) using
Leaset Square

6: Ĥt = (ht−1)
Tαt + (∆ht)

Tβt

% Compute the approximated hidden state Ĥt

7: ŷt+1=MLP(Ĥt)
8: end for
9: return α1:T , β1:T , y2:T+1

from 2010.1.1 to 2014.12.31. PM2.5 is the target series.
Aside from PM2.5 values, the meteorological variables in-
clude dew point, temperature, pressure, wind direction, wind
speed, hours of snow, and hours of rain. Given the measure-
ments, the task is to forecast PM2.5 each hour within a day.
For example, using the data before 2:00 predicts PM2.5 at
2:00; using the data before 3:00 predict its value at 3:00, etc.

Electricity [Gao et al., 2022]: It records the time series
of electricity consumption in the US, from 2017.10.11 to
2020.6.24. The consumption is chosen as the target series
sampled hourly. The other 15 time series are exogenous fac-
tors, including max temperature, min temperature, visibility,
etc. Similarly to PM2.5, our task is also to forecast consump-
tion each hour of the day.

Exchange [Lai et al., 2018]: It is the collection of the daily
exchange rates of eight foreign countries, including Australia,
British, Canada, Switzerland, China, Japan, New Zealand,
and Singapore, ranging from 1990 to 2016. We consider the
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time series of 30 days as a sample for this task. The Singapore
exchange is taken as the target series, and we aim to predict
the exchange rate of Singapore each day of a month.

4.2 Baseline Methods and Evaluation Setup
We evaluate the prediction performance of DeLELSTM with
several baseline models as follows:

LSTM:[Hochreiter and Schmidhuber, 1997]: LSTM net-
work with one hidden layer is used to learn an encoding from
multivariate time series data and make predictions at each
time step. The prediction performance is also used as the
basis for other models.

RETAIN:[Choi et al., 2016]: RETAIN is a two-level neu-
ral attention model for sequential data that can recognize
the influential events and relevant characteristics within these
events.

IMV-LSTM:[Guo et al., 2019]:IMV-LSTM explores the
structure of LSTM network to learn variable-wise hidden
states and separate the contribution of variables to the pre-
diction. With hidden states, a mixture attention mechanism
is explored to model the generative process of the target. It
has two realizations of IMV-LSTM, i.e., IMV-Full and IMV-
Tensor. We consider both versions.

We implemented the proposed model and deep learning
baseline methods with Pytorch. We used Adam[Kingma and
Ba, 2014] optimizer. We conduct the grid search to select op-
timal parameters. The batch size is selected in {32, 64, 128}.
Learning rate is searched in {0.05, 0.01, 0.001}. The size of
the hidden states is selected in {32, 64, 128}. We train the
models using 75% of the samples, and 15% of the samples
are for validation. The remaining 10% is used as the test set.
We repeat the experiment five times and report the average
performance with standard deviation.

We consider three metrics to measure the prediction per-
formance, i.e., RMSE, MAE, and MAPE. RMSE is defined
as RMSE =

√∑
n(yn − ŷn)2/N . MAE is defined as

MAE =
∑

n ∥yn− ŷn∥/N . MAPE is defined as MAPE =∑
n(|ŷn − yn|/|yn|)/N × 100%, where ŷn is the predicted

value, and yn is the true value.

4.3 Prediction Performance
We compared the proposed DeLELSTM with four baseline
models on real-time series forecasting and reported the re-
sults in Table 1. As shown in Table 1, among the attention-
based models, the performance of RETAIN is better than
IMV-LSTM in most cases. The IMV-Full is better than IMV-
Tensor. Our proposed model presents comparable perfor-
mance and obtains the best performance in electricity con-
sumption prediction, indicating that our decomposition-based
linear explainable model can still guarantee the prediction
performance, while capturing the instantaneous and long-
term effects and providing transparent and clear interpreta-
tion.

4.4 Interpretation
In this subsection, we depict three case studies designed to
evaluate the effectiveness of DeLELSTM in providing in-
sightful explanations of its forecasting. In particular, we
qualitatively analyze the immediate and long-term impact of

Figure 2: Electricity Long (l)/Short (s) term effects evolving over
time (24h)

each variable identified by the defined measurement lnd
t and

1− lnd
t . We also report the meaningful variables at each time

step and overall according to the defined measurement GldT .

Case Study I: Electricity Data
Predicting real-time electricity consumption accurately is
quite important for electric power providers, so that they
can more precisely manage resources for energy generation
to maximize resource utilization, cut costs, and advance the
development of smart grids. Figure 2 shows how the long-
term and instantaneous (short-term) impacts change through-
out the day. Here, we depict the change of the top 10 features,
ordered by their overall importance for predicting electricity
consumption. We can observe that compared with the short-
term effects, the long-term information of most features is
vital when people are sleeping and not engaged in other ac-
tivities, and gradually diminishes importance during the day-
time. On the other hand, the long-term effects of WindChill
are important for electricity prediction.

Figure 3 depicts the dynamic change of variable impor-
tance for the electricity consumption forecast. It is seen
that the electricity consumption itself has an evident auto-
correlation and contributes more to the prediction. In addi-
tion, as evening approaches, pressure and precipitation be-
come more critical. While the temperature becomes impor-
tant for electricity consumption at noon, because the temper-
ature at noon tends to be high, people need to switch on the
air-conditioner to have a comfortable environment. It is a
primary reason that affects electricity consumption at noon.
In general, variables consumption, precipitation, tempera-
ture, pressure, wind speed and humidity are highly ranked
by DeLELSTM.

Case Study II: PM2.5 Data
PM2.5 is fine inhalable particles, with diameters that are gen-
erally 2.5 micrometers and smaller. Exposure to such fine
particles has been linked to early death from heart and lung
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Dataset Metric LSTM RETAIN IMV-Full IMV-Tensor DeLELSTM

Electricity
RMSE 5.1049±6.3693 2.6685±0.2622 2.0284±0.1001 2.6069±0.9455 1.7247±0.0370
MAE 3.9574±5.3274 2.0000±0.2136 1.4085±0.0899 1.7526±0.6754 1.1025±0.0128
MAPE 6.49% ± 8.84% 3.21% ± 0.36% 2.28% ± 0.17% 2.74% ± 1.04% 1.69%±0.02%

PM2.5
RMSE 26.566 ± 0.152 24.913 ± 0.177 28.465 ± 0.264 28.866 ± 0.277 26.612 ± 0.470
MAE 13.466 ± 0.098 13.402 ± 0.089 14.087 ± 0.266 14.480 ± 0.164 13.553 ± 0.168
MAPE 22.47%±0.83% 21.23%±0.42% 25.21%±1.63% 26.67%±1.64% 22.16%±0.98%

Exchange
RMSE 0.0026±9.7e-06 0.0025±9.4e-06 0.0026±5.0e-06 0.0026±4.6e-06 0.0023±2.7e-05
MAE 0.0015±3.8e-06 0.0015±1.0e-05 0.0015±5.5e-06 0.0015±3.1e-06 0.0015±1.5e-05
MAPE 0.23%±5.5e-06 0.23% ±1.6e-05 0.22% ±3.2e-04 0.23% ±5.7e-06 0.23% ±2.3e-05

Table 1: Performance (±standard deviation) of baseline and proposed models

Figure 3: Electricity variable importance.

disease [Franklin et al., 2008]. Understanding influential
variables and forecasting PM2.5 accurately are necessary so
that people can avoid going outside on time with high PM2.5
levels. We report the long-term and short-term effects of each
variable during the day in Figure 4.

As shown in Figure 4, the impact of prior PM2.5 infor-
mation is more significant than that of recent fresh informa-
tion for real-time forecasting PM2.5 in a day. It indicates that
PM2.5 always has long-term effects; we should utilize both
past and current data of PM2.5. On the other hand, for other
variables, such as dew point (DEWP), hours of snow(IS),
temperature (TEMP), and the hours of rain (IR), the past in-
formation is only helpful before 6:00 am. After that, the ratio
of instantaneous influence occupies almost 99% for predict-
ing PM2.5 in the next hour, showing little long-term effect.
Therefore, we can conclude that it is sufficient to see the cur-
rent data of these variables for forecasting PM2.5 during the
daytime. One possible reason is that the natural environment
has a significant impact on PM2.5 changes when there is less
human activity and less pollution released at night, but hu-
man activity plays an important role during the day, so the
long-term effects of these meteorological variables are lost.

Figure 5 shows the dynamic change of variable importance
considering the long-term effect and instantaneous influence.
As shown in Figure 5, in the early morning, the PM2.5 it-
self contributes more to predict PM2.5 in the next hour. In
the daytime, the wind speed, dew point, temperature, all take
on greater significance. Taking into account all time steps,
the top four important variables are the wind speed, PM2.5,
the dew point, and the temperature. According to [Pu et al.,

Figure 4: PM2.5 Long (l)/Short (s) term effects evolving over time
(24h).

2011], wind speed has a significant impact on the amount of
such inhalable particles transported and dispersion between
Beijing and its surrounding areas. In addition, [Liang et al.,
2015] also conclude that dew point and temperature are criti-
cal factors for PM2.5 prediction. Therefore, our variable im-
portance is in line with the domain knowledge.

Case Study III: Exchange Data
Investors need to be very aware of changes in foreign ex-
change rates. These changes greatly impact the returns on
foreign investments. As a result, if the exchange rate can
be predicted with accuracy, investors could improve the tim-
ing of their foreign investments and earn higher returns. The
long-term and short-term effects evolving over time for pre-
dicting Singapore’s exchange rate on the next day is shown
in Figure 6. The exchange rates of Japan and Switzerland
have both an immediate and long-term effects. Nevertheless,
for other countries, the instantaneous influence is gradually
increasing compared with the long-term effect.

Figure 7 displays the variable importance changing over
time. Singapore has the biggest influence on predicting Sin-
gapore’s exchange rate on the next day, followed by Australia,
China, and Japan.
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Figure 5: PM2.5 variable importance.

Figure 6: Exchange Long (l)/Short (s) term effects evolving over
time (30 days).

In summary, three case studies demonstrate that our pro-
posed DeLELSTM can not only provide a transparent and
clear explanation but also be able to distinguish the instanta-
neous influence and long-term effect of each variable. These
explanations aid us in better understanding the data and build-
ing models for time series prediction.

4.5 Baseline Comparisons
In this subsection, we compare the interpretation results of
the three baseline models, i.e., RETAIN, IMV-Full, and IMV-
Tensor. Due to the page limitation, we show the variable im-
portance at each time of three models in the supplementary.

As shown in Figure 1,2,3 in the supplementary1, we can
observe that the interpretable models based on the attention
mechanism give the variable importance always the same at
most of the time points. In addition, except for the most im-
portant variables identified by the models, it is hard for them
to distinguish the importance of the other variables. The
reason might be the hidden state representations are similar

Figure 7: Exchange variable importance.

Model RMSE MAE MAPE
DeLELSTM 1.677±0.022 1.116±0.019 1.746%±0.038%
IMV-Full 5.332±1.232 3.964±0.959 6.264%±1.418%
IMV-Tensor 1.686±0.020 1.130±0.022 1.776%±0.046%
RETAIN 1.695±0.027 1.146±0.025 1.807%±0.046%

Table 2: Performance based on top 50% important variables

across time steps [Mohankumar et al., 2020].
To further evaluate the sufficiency of our explanation

model, we retain the top 50% of features identified by each
explainable model, and then feed them into the LSTM of the
same architecture to obtain the prediction results. Table 2
shows the prediction results on the electricity consumption
task. We can observe that features selected by our model can
obtain better performance.

Compared with these baseline models, our proposed model
is able to identify the dynamic impacts of variables on the pre-
diction over time, and distinguish the instantaneous influence
and the long-term effects of each variable.

5 Conclusion
Explaining the time series forecasting model is of signifi-
cance, especially in high-stakes applications. In this work,
we propose DeLELSTM, a decomposition-based linear ex-
plainable LSTM, to improve the interpretability of LSTM.
Specifically, DeLELSTM decomposes the hidden states into
the linear combination of the past information and the new
information of each variable so that it can capture the in-
stantaneous influence and long-term effects. The utilization
of linear regression also guarantees that the explanations are
transparent and clear. The experimental results on three real
datasets demonstrate the effectiveness of DeLELSTM com-
pared with baseline models. The case studies show that the
explanations made by DeLELSTM are in line with domain
knowledge.

One limitation of this work is that the contributions to the
prediction are for individual variables, ignoring the complex
interactions between variables, which is common in real life.
We keep this challenging task as our future work.
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