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Abstract

We propose a joint model that performs instance-
level feature selection and classification. For a
given case, the joint model first skims the full fea-
ture vector, decides which features are relevant for
that case, and makes a classification decision us-
ing only the selected features, resulting in compact,
interpretable, and case-specific classification deci-
sions. Because the selected features depend on the
case at hand, we refer to this approach as context-
aware feature selection and classification. The
model can be trained on instances that are anno-
tated by experts with both class labels and instance-
level feature selections, so it can select instance-
level features that humans would use. Experiments
on several datasets demonstrate that the proposed
model outperforms eight baselines on a combined
classification and feature selection measure, and is
able to better emulate the ground-truth instance-
level feature selections. The supplementary ma-
terials are available at https://github.com/IIT-ML/
IJCAI23-CFSC.

1 Introduction
A barrier to using highly accurate machine learning algo-
rithms for decision support is their opacity [De Laat, 2018].
While opacity might be acceptable for certain tasks, such as
handwritten digit recognition, when machine learning sys-
tems are used to assist humans in decision making, the al-
gorithms must be able to explain their decision making pro-
cesses and these explanations need to make sense to humans
in order to be useful. For instance, when a machine learn-
ing system is employed for loan decisions, the reasons for
approving or rejecting a loan must be explained in a human-
understandable form to the loan officer (who will make the fi-
nal decision based on the system’s recommendations and ex-
planations), to the applicant (who is directly impacted by the
decision), to the developer (for debugging), and to the regula-
tors (to ensure the system’s decisions are not discriminatory)
[Arya et al., 2019].

While being interpretable and able to explain its decisions
are important and necessary, they are not sufficient for a

model to be effective in a decision support system. For exam-
ple, a logistic regression model is assumed to be interpretable.
However, when the model uses thousands of features, the ex-
planations are rarely useful as inspecting the relative impact
of all relevant features will be overwhelming for the stake-
holders (decision makers, users, etc.). Likewise, a decision
tree, while considered interpretable, is not necessarily useful
for decision support. One can impose sparsity, such as us-
ing L1 regularization for logistic regression, or a depth limit
on the decision tree. While sparsity can make the models
simpler, it often does so by prioritizing common features that
have the greatest impact on the most number of objects (e.g.,
the word ‘movie’ tends to be a common and a statistically
negative term in a movie review classification task), which
may not be the most meaningful features for stakeholders
[Lage et al., 2019].

Additionally, when people make decisions, they tend to
quickly scan all available information and then focus on few
factors that are relevant for the case at hand [Shrestha et al.,
2019]. For instance, when loan officers review a loan applica-
tion, they skim the entire application and then focus on what
is relevant for the case. While all information is used, the in-
come and the credit score might be the determining factors for
one application while the number of missed payments might
be the determining factor for another [Purohit et al., 2012].
The human decision maker is essentially performing what we
call context-aware feature selection and classification: skim-
ming the full feature set, focusing on the features that are rele-
vant for the current case, and making a classification decision
using only the selected features.

Context-aware feature selection by machine learning mod-
els is limited. Traditional feature selection methods such as
L1 regularization and filter methods perform ‘global’ feature
selection where the same set of features are used for all ob-
jects, as opposed to context-aware feature selection where the
selected features depend on the object itself. While decision
trees perform context-aware feature selection, the rules pro-
vided by decision trees are hierarchical, and hence some fea-
tures, like the root and the features close to the root, will
repeatedly be selected. They are also not necessarily accu-
rate in learning the complex relationships between data points
and features. Rule-based systems perform context-based fea-
ture selection, but they also tend to have low accuracy [Mol-
nar, 2020]. Attention-based neural networks [Bahdanau et
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al., 2014] can perform context-aware feature selection and be
highly accurate. However, the selected features are not guar-
anteed to be meaningful to humans. We discuss related work
in more detail in the next section.

When explanations that are meaningful to humans are de-
sired, one approach is to ask for supervision from humans on
which features they focused for each classification decision.
We refer to these as instance-level feature labels, as opposed
to global feature labeling [Melville and Sindhwani, 2009;
Das et al., 2013]. Eliciting instance-level features from hu-
mans requires extra time, effort, and cost; hence, instance-
level feature labeling is practical for only domains where
human-like explanations and decisions are desired. We ex-
periment with both fully-automated baselines that do not need
instance-level feature labels as well as with the ones that can
use them if available.

Our contributions in this paper include:

• We introduce and formalize the context-aware feature
selection and classification problem.

• We propose a context-aware feature selection and clas-
sification model that jointly utilizes class labels and
instance-level feature selection annotations.

• We conduct experiments to empirically compare the
proposed model to a number of baselines on several
datasets, comparing them using both classification per-
formance and feature selection performance.

The rest of the paper is organized as follows. We discuss
related work in the next section. We present our model in
Section 3. We discuss the experimental methodology in Sec-
tion 4. We discuss our findings in Section 5 and followed by
a discussion of limitations in Section 6, and then conclude.

2 Related Work
2.1 Feature Selection
Traditional feature selection methods can be broadly cat-
egorized into three: i) filter methods use a feature im-
portance measure such as feature correlation [Hall, 2000;
Yu and Liu, 2003] and mutual information [Gao et al., 2016],
to rank and select features; ii) wrapper methods that itera-
tively search for the best set of features for a given model [Ko-
havi and John, 1997; Arai et al., 2016]; iii) and, methods that
embed the feature selection into the learning process, such as
decision trees, rule-based systems, and L1-regularized mod-
els. We used decision tree and L1 regularized logistic regres-
sion as two baselines in our experiments.

2.2 Rule-Based Systems
Rule-based systems have been extensively used for decision
support [Adriaenssens et al., 2004; Seerat and Qamar, 2015].
They were preferred for their interpretability. Approaches
include OneR that created rules with one feature [Holte,
1993], IREP that used a combination of pre-pruning and post-
pruning [Fürnkranz and Widmer, 1994], RIPPER that used
rule pruning to optimize the rule set in a post-processing
phase [Cohen, 1995], and Bayesian Rule Lists [Letham et al.,
2015]. We used RIPPER as a baseline in our experiments.

2.3 Learning with Rationales
A closely related area is learning with rationales which
asks annotators to highlight segments of the text per doc-
ument as ‘rationales’ for their labeling decisions. Zaidan
et al. [2007] converted the rationales into constraints for
training support vector machines. Sharma and Bilgic [2018]
presented a method to manipulate feature weights in the
training of off-the-shelf classifiers. Recent deep learning-
based approaches on incorporating rationales either gener-
ated rationale-augmented representations of text [Zhang et
al., 2016] or utilized the rationales for richer supervision
[Barrett et al., 2018; Wang et al., 2022]. Although the main
purpose of these methods was to improve classification per-
formance, instead of performing feature selection, some of
them can be adapted to perform context-aware feature se-
lection. We adapted Barrett et al. [2018]’s BiLSTM-based
method as one of the baselines.

2.4 Model Interpretability
Several papers worked on generating explanations for com-
plex or black-box models. For example, Ribeiro et al. [2016]
replaced the underlying complex model with a surrogate
model, Lundberg and Lee [2017] computed Shapley values
as feature importance, Wachter et al. [2017] used examples
for explanations, Li et al. [2015] computed input saliency for
neural networks. Our approach differs from most of these
post-processing methods as it selects case-specific features
that are certainly used by the model for predicting a specific
instance. While several papers used attention mechanism
for interpretability [Wang et al., 2016; Ghaeini et al., 2018],
other papers pointed out that attention weights often reflect
how much the model attend to the hidden representation of
each input, which might already have mixed in information
from other inputs [Bastings and Filippova, 2020], and are not
stable indicators for interpretability [Jain and Wallace, 2019;
Serrano and Smith, 2019].

Several papers also incorporated interpretability into the
approach itself. For example, rationalized neural net-
work [Lei et al., 2016] and causality-based approaches
[Narendra et al., 2018; Harradon et al., 2018]. Closest to our
task is rationalized neural network [Lei et al., 2016]; they ex-
tracted short and continuous ‘rationales’ from each document
for classifying and rationalizing the document. We adapted
this approach as a baseline in our experiments.

3 Context-Aware Feature Selection and
Classification (CFSC)

We are given a dataset D whose members are triplets
⟨xi, yi,ai⟩ where xi ∈ Rm is an m dimensional input vec-
tor, yi ∈ {c1, c2, ..., cq} is a discrete variable representing
xi’s class label, and ai ∈ {0, 1}m is xi’s feature label in-
dicating which features are used by a human in making the
classification decision yi for the instance xi.

The objective is to train a model f : xi → ⟨yi,ai⟩ that
can generalize to unseen data points xj and correctly pre-
dict both the label yj and the feature selections aj for xj .
Predicting aj is equivalent to solving a multi-label classifica-
tion problem as each entry indicates if feature k is selected,
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Figure 1: The architecture for the CFSC (Context-Aware Feature
Selection and Classification) approach.

ajk ∈ {0, 1}. Note that while f has access to the full triplet
⟨xi, yi,ai⟩ during training time, f has access to only xj at
test time and not aj . Hence, at test time f must predict both
aj and yj . We refer to this task as a context-aware feature
selection and classification problem. The step of predicting
aj is the context-aware feature selection where the feature
selection decisions, aj , depend on the particular instance xj ,
as opposed to global feature selection methods. Moreover, to
ensure sparsity and interpretability, we require the predicted
aj to have exactly 0 for features that are not selected for pre-
dicting yj of xj , and the step of predicting yj should use only
the selected features.

We propose the neural network model depicted in Figure 1
and refer to it as Context-aware Feature Selection and Clas-
sification, or CFSC in short. The model contains a context-
aware feature selection module and a classification module. It
is first trained to predict ai using xi, without initially worry-
ing about yi, and then fine-tuned to predict ai and yi jointly.

The feature selection module processes the input xi

through an optional number of hidden layers. The hidden
layer part of this module can be as simple or complicated
as needed, such as a simple fully-connected dense layer, or
a deep neural network consisting of self-attention and dense
layers. The output of this process is a′

i. a
′
i are not constrained

to be between 0 or 1 and they are not constrained to be sparse
just yet, as sparsity will be imposed in the next step. Hence,
we use the identity activation at these nodes at this stage.

To train the feature selection module using human-
provided triplets D = {⟨xi, yi,ai⟩}, we formulate the objec-
tive as a multi-label classification task. First, we pass each a′ik
through a sigmoid of the form 1/(1 + e−a′

ik). The weights
of the feature selection module, Wa, are then trained using
binary cross entropy loss. Let this loss be La. This training
process imposes that for a feature that should be selected, i.e.,
for aik = 1, the a′ik needs to be positive, and a′ik needs to be
negative for features where the ground truth is aik = 0.

For predicting yi, we need to use only the features that are
selected by the feature selection module. Because the output
of the feature module, a′ik, are real-valued, where a′ik > 0 in-
dicates if a feature should be selected, we pass the a′

i vector
through a ReLU function. That is, âi = ReLU(a′

i), guaran-
teeing that features for which a′ik < 0 will have exactly zero

values and âi acts as a mask function, performing feature se-
lection.

xi is first multiplied with the predicted feature mask âi,
xi ⊗ âi, which is then passed through a number of optional
hidden layers and then used for predicting yi. This overall
process is meant to mimic the human decision-making pro-
cess where the full feature vector xi is first skimmed to de-
cide which features are relevant for the case at hand (âi), and
only those feature values (xi ⊗ âi) are used for predicting
yi. Cross entropy is used as the classification loss using the
predicted ȳi and the ground truth yi. Let this loss be Ly . The
overall loss L is a weighted combination of Ly and La:

L = λaLa + (1− λa)Ly (1)

where λa is the weight of the feature loss. The weights of fea-
ture selection module, Wa, are trained to optimize La first,
and then the weights of the full model, W = Wa ∪Wy , are
jointly trained to optimize the combined loss L.

4 Experimental Methodology
We conduct experiments to compare the proposed CFSC
method to several baselines on both classification and feature
selection performance. In this section, we describe the base-
lines, the datasets, the two simulated experts, the combined
classification and feature selection measure, the density mea-
sure, and the parameter settings.

4.1 Baselines
To the best of our knowledge, no existing paper directly ad-
dresses the context-aware feature selection and classification
problem for tabular data, except decision trees and rule-based
systems. However, several approaches can be adapted to
perform this task. We modified and experimented with an
attention-based BiLSTM model [Barrett et al., 2018], a ratio-
nalized neural network [Lei et al., 2016], a pipeline model,
and a global feature selection model.
Attention-based Bi-directional LSTM (ATT-FL). This is
the main baseline that is closest to our approach and uti-
lizes both ai and yi during training. This baseline is based
on the method by Barrett et al. [2018] for text classification.
They regularized the attention layer of a Bi-directional LSTM
model using ‘estimated’ human attention from an eye track-
ing corpora. We adapted their method to be used for vector-
based data as follows: each instance xi is passed through
a hidden layer, followed by a Bi-LSTM layer, an attention
layer, and finally the classification layer. The softmax in the
attention layer is replaced with sparsemax [Martins and As-
tudillo, 2016] to ensure sparsity and enable feature selection.
We refer to this method as ATT-FL. For comparison and to
evaluate how much the human-provided feature labels help,
we also present results with the fully-automated version of
this method that still performs context-aware feature selec-
tion but does not need feature labels; we refer to this as ATT.
Rationalizing Neural Predictions (RNP). This method is
based on the work of Lei et al. [2016]. It used a generator
to extract short and continuous ‘rationales’ for text classifica-
tion, where rationales are pieces of text from the document
for classifying the document. We adapted this method to a
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vector-based domain as follows: each instance xi is passed
through a generator consisting of two hidden layers and one
output layer for rationale selection first. The selected features
pass through an encoder consisting of one hidden layer and
one output layer for classification. Following the implemen-
tation of Lei et al. [2016], we used gumbel-softmax activation
function [Jang et al., 2016] coupled with L1 penalty for ratio-
nales in the loss function to impose sparsity.
Logistic Regression Pipeline (LR-PL). In contrast to our
joint learning approach, one simple baseline is to build a
pipeline where one logistic regression model is trained for
feature selection and another logistic regression model is
trained for classification separately. The first model is trained
to perform f1 : xi → ai. The second model is trained to per-
form f2 : xi ⊗ āi → yi where āi is the predicted binarized
feature labels. At test time, f1 is used to predict xj → aj and
then f2 is used to predict xj ⊗ āj → yj .

We also experimented with three classification algorithms
that simultaneously perform feature selection. A decision tree
classifier (DT), a rule-based learner (RL) based on RIPPER
[Cohen, 1995](we trained two rule-based learners for binary
classification: one aimed at predicting the positive class as
RL-P and the other for the negative class as RL-N), and a
L1-regularized logistic regression model (LR). Decision tree
classifier and rule-based learner perform context-aware fea-
ture selection, whereas the L1-regularized logistic regression
model performs global feature selection. Finally, we include
a feed-forward neural network (FF) that acts as a baseline for
only the classification performance.

4.2 Datasets
We experimented with five real-world and three synthetic
datasets. The Credit [Goyal, 2020] dataset contains 3,254
bank credit card customers with 37 features and binary la-
bels indicating if the customer is an ‘Attrited Customer.’ The
Company [Zieba et al., 2016] dataset has 4,182 companies
with 64 features and binary labels indicating whether the
company bankrupted within the forecasting period. The Mo-
bile [Sharma, 2017] dataset contains 2,000 mobile phone data
with 20 features and binary labels indicating if the price of
a phone is in the high cost range. The NHIS [CDC, 2017]
dataset has 2,306 adult survey data with 144 features and bi-
nary labels indicating if the person is suffering from chronic
obstructive pulmonary disease. The Ride [City of Chicago,
2019] dataset has 4,800 ride trip records with 46 features
and binary labels indicating if the trip is shared with other
persons. We chose these real-world datasets because the
domains are relatively easy for the laypeople, as opposed
to more specialized domains. These datasets did not con-
tain instance-level feature labels. Hence, similar to work
on generating synthetic explanations [Ribeiro et al., 2018;
Guidotti, 2021], we created simulated experts, which we dis-
cuss in detail in the next subsection.

We created three synthetic datasets containing instance-
level feature labels where the first two are for binary clas-
sification and the third one is a multi-class classification task.
We first generated the input data by allocating each class a
normally-distributed cluster of points. We trained a shallow
decision tree based on the original data and then reassigned

class labels based on the predictions of the decision tree. Syn-
thetic1 contains 1,000 instances with 5 features whereas Syn-
thetic2 contains 1,500 instances with 10 features. Synthetic3
contains 3,024 instances with 20 features and four classes.
For each xi, the aik is 1 for the features used in the deci-
sion path, and 0 otherwise. To experiment with the datasets
with different settings, we kept the root node in the decision
path and hence one feature was always ‘on’ for Synthetic1
and Synthetic3 datasets, whereas for Synthetic2 dataset, we
removed the root node from the decision path and hence no
feature was always ‘on.’

4.3 Simulated Expert
We used two strategies to simulate experts that can provide
instance-level feature labels. The first strategy is based on the
evidence counterfactual method [Moeyersoms et al., 2016].
A logistic regression model is trained on a given dataset. For
object xi, let the predicted label be y and wyk be the coeffi-
cient of feature k for class y. Starting with the least important
feature for xi (i.e., the feature that has the lowest |wyk×xik|),
features are removed one by one until the predicted label
changes. The top features, including the last one that caused a
label flip, are retained as the justification of the classification
decision. Because features are ranked by |wyk × xik| and not
simply by |wyk|, this process performs context-aware feature
selection, rather than global feature selection.

The second strategy uses a decision tree to generate the
instance-level feature labels. First, a decision tree on a given
dataset is trained. Then, at prediction time, the features that
are used in the decision path for classifying xj are marked as
‘on’ and the rest are marked as ‘off.’

4.4 Evaluation Measures
One can use traditional evaluation measures, such as accuracy
and F1, to evaluate the classification performance. To eval-
uate the performance of the context-aware feature selection,
which is a multi-label classification task, measures such as
hamming loss and subset accuracy can be used. However,
these measures are crude and inadequate for transparency
purposes; while some features are frequently used, others are
never used, and some are used rarely. Summarizing every-
thing up in a single measure would not portray the whole
picture. Therefore, we introduce a more granular evaluation
approach for evaluating context-aware feature selection.

Let T be the evaluation set, Aon
δ be the features that are

used for all instances in T : Aon
δ = {k | aik = 1 for ∀xi ∈

T }, and Aoff
δ be the set of features that are never used for

any of the objects: Aoff
δ = {k | aik = 0 for ∀xi ∈ T }.

Let Aν represent the rest of the features, i.e., the features
that are used for some objects but not for others. We use
accuracy separately for the features in Aon

δ and for features
in Aoff

δ . For features in Aν , however, because the ground-
truth aj tend to be sparse for human-interpretable decisions,
a measure for imbalanced classes, such as F1, is more appro-
priate. For feature k ∈ Aν we first calculate F1k, and take a
weighted average as F1

w, where each F1k is weighted based
on the frequency the feature k is ‘on.’

In addition to individual classification and feature selection
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measures, we also present a linear combination of the two:

M(y, ȳ,a, ā) = γa ×Ma(a, ā)+ (1− γa)×My(y, ȳ) (2)

where ā is the binarized â, Ma(a, ā) refers to the evaluation
of the context-aware feature selection, and My(y, ȳ) refers to
the evaluation of the classification decisions, and γa controls
the relative importance of the feature selection measure.

Finally, we introduce a new measure aimed at understand-
ing how ‘dense’ each context-aware classification decision is.
We calculate the number of features used per instance, on av-
erage, in a given dataset:

Density =
1

|T |
∑
xj∈T

m∑
k=1

ajk (3)

As an example, assume a domain with 20 features, that there
are 100 instances in the evaluation set, and the model uses
2 features for classifying 50 instances, 3 features for 25 in-
stances, 4 features for 15 instances, and 5 features for the
remaining 10 instances. The density for such a model would
be (50× 2 + 25× 3 + 15× 4 + 10× 5)/100 = 2.85.

4.5 Model Structures and Parameter Settings
CFSC has one hidden layer with 16 units for the classification
module and two hidden layers with 64 and 256 units respec-
tively for the feature selection module. The ATT-FL model
has one hidden layer with 64, one BiLSTM layer with 32, and
one attention layer with 256 units. The RNP model has one
hidden layer with 16 units for the classification module and
two hidden layers with 64 and 256 units respectively for the
feature selection module. The FF model has one hidden layer
with 16 units. We used the same structures for all datasets and
did not perform structure search.
Hyper-Parameter Tuning. For each dataset, we use 1/3
of the data as the test set and perform 5-fold validation on
the rest of the data where one fold is used for validation and
four folds are used for training. We set γa to 0.5 (Equation 2)
for all models1. We performed grid search with cross vali-
dation to optimize all the other tunable hyper-parameters of
each method using the combined measure on the validation
set. We provide the range of all tunable parameters for each
method in the supplementary materials for reproducibility.

5 Results
We first compare CFSC to the baselines on a combined clas-
sification and feature selection measure2. Then, we conduct
a deep dive analysis of the instance-level feature selection of
three methods. Finally, we conduct an ablation study to in-
vestigate different parameter settings for γa and λa.

5.1 Combined Performance Measures
Tables 1 and 2 present the combined classification F1 and
feature selection F1 on eight datasets under the counterfac-
tual and decision-tree expert strategies respectively. All ex-
perimental results are reported by taking an average over five

1We provide an ablation study of varying γa in Section 5.3.
2The separate results for classification and feature selection are

included in the supplementary materials.

FF LR DT RL-P RL-N ATT RNP LR-PL ATT-FL CFSC

Credit .707 .680 .701 .576 .538 .549 .675 .622 .745 .785
Company .589 .480 .456 .174 .336 .506 .567 .328 .608 .701
Mobile .853 .852 .852 .716 .715 .779 .842 .785 .903 .907
NHIS .606 .598 .500 .448 .477 .497 .550 .685 .596 .781
Ride .679 .675 .671 .492 .540 .591 .659 .573 .706 .765

Table 1: Comparison between CFSC and baselines using the com-
bined measure. Feature labels are generated via the evidence coun-
terfactual strategy. CFSC significantly outperformed all baselines,
except being comparable to ATT-FL on the Mobile dataset.

FF LR RL-P RL-N ATT RNP LR-PL ATT-FL CFSC

Credit .796 .772 .609 .626 .631 .802 .868 .829 .945
Company .860 .751 .170 .335 .769 .808 .806 .821 .895
Mobile .625 .624 .654 .673 .524 .620 .454 .601 .903
NHIS .758 .754 .421 .538 .517 .753 .905 .602 .909
Ride .787 .786 .504 .625 .696 .781 .871 .844 .881
Synthetic1 .902 .832 .633 .636 .769 .876 .921 .943 .980
Synthetic2 .754 .697 .526 .600 .634 .853 .811 .890 .946
Synthetic3 .814 .835 - - .526 .845 .908 .627 .964

Table 2: Comparison between CFSC and baselines using the com-
bined measure. Feature labels are generated using decision trees.
CFSC significantly outperformed all baselines, except being compa-
rable to ATT-FL on the Synthetic2 dataset.

different runs, computed over the five-fold validation splits.
We compare CFSC with all baselines using the combined
measures computed by Equation 2, with γa = 0.5, which
balances equally between the F1 for classification and the
weighted F1

w for feature selection. Note that CFSC and all
the baselines except FF tuned their hyper-parameters to max-
imize the equally-balanced and combined measures.

The results show that CSFC performs better than all base-
lines on all datasets for both expert simulation settings.
For the evidence counterfactual simulation setting (Table 1),
CSFC versus the best runner-up baseline’s performances are:
0.78 versus 0.74 for Credit, 0.70 versus 0.61 for Company,
0.91 versus 0.90 for Mobile, 0.78 versus 0.68 for NHIS,
and 0.76 versus 0.71 for the Mobile dataset. The t-test re-
sults3 confirm that differences are statistically significant for
all datasets except for the Mobile dataset. The results are sim-
ilar for the decision tree simulation setting (Table 2); CSFC
outperforms all baselines, and the differences are significant
for all datasets except on the Synthetic2 dataset.

Among the baselines, only LR-PL and ATT-FL are also
supervised by feature labels during training time. The other
methods serve as baselines for full automation when human
supervision for instance-level feature selection is not avail-
able. ATT-FL performed better than most baselines, as ex-
pected. LR-PL was competitive but sometimes failed badly
(e.g., 0.33 on the Company dataset in Table 1 and 0.45 on
the Mobile dataset in Table 2). Among the full automation
baselines, FF usually performed the best, which was some-
what surprising. This is contributed by its great classification
F1 score and reasonable-but-not-great feature selection F1

w

score (but note that FF always used all features so it did not
provide any interpretability). DT and LR were comparable to
FF in most cases. RNP generally performed worse than FF
on the evidence counterfactual simulation setting mostly due

3The p values are included in the supplementary material.
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to its worse classification F1 score. For the decision tree sim-
ulation setting, however, RNP can be better or comparable to
FF, as it often had much better feature selection F1

w.

5.2 Feature Selection Analysis
We next conduct a deep dive analysis of the instance-level
feature selection of the methods. We compare CFSC with
the other two baselines that also used feature supervision
(LR-PL and ATT-FL) to the ground truth feature selections
at the instance level.

Instance-Level Feature Selection Analysis
Using ground-truth feature selection vectors aj for each xj ,
we group each instance xj in the test data based on which
features are used to classify them. For example, on the Syn-
thetic1 dataset, 206 instances in the test set had exactly the
following three features ‘on’ based on ground truth: Feature0,
Feature3, and Feature4. We also create groupings based on
the predicted feature selection vectors āj . We then compare
the ground truth and the predicted groups.

For a given ground-truth group Gt (i.e., instances that have
exactly the same features ‘on’), let the features that are on be
Aj = {ajk = 1}. For a given model, f , find all objects xl

where exactly the same features Aj are predicted to be ‘on;’
let this group be Gf . We compute the true positive (Gt ∩ Gf ),
false positive (Gf \ Gf ), precision, recall, and F1 for Gt. The
results are presented in Tables 3 and 4 for the counterfactual
and decision tree simulated experts respectively. As an illus-
tration, take the Credit data in Table 3 as an example: 691
objects in the test data had only one feature (Total Trans Ct)
‘on’ based on ground truth. The LR-PL strategy predicted
that only Total Trans Ct was ‘on’ for 929 objects, of which
636 were true positives and 293 were false positives. Hence,
the precision of LR-PL for this group is 636/929 = .685 and
recall is 636/691 = .920.

We first observe that the features that are ‘on’ for the top
group in the evidence counterfactual strategy and the decision
tree strategy are quite different: for the former, the top groups
have only one feature ‘on’ whereas multiple features are ‘on’
for the latter strategy. A possible reason is as follows: when a
counterfactual strategy is for a logistic regression model, the
top |wyk × xik| might dominate the classification decision
and removing smaller values would not flip the label. For
the decision tree approach, however, the root feature is often
followed by other features before a classification decision is
made, because the splits at the top are often not pure enough.

Comparing CFSC, LR-PL, and ATT-FL, we see that in
Table 3, CFSC had better or comparable F1 measures on these
groups for most datasets, except for the Company dataset,
where recall was low (.492). LR-PL had fluctuating perfor-
mance, sometimes with low precision (Company), sometimes
with low recall (NHIS), and sometimes both low precision
and low recall (Ride). Though ATT-FL performed well in
general (best F1 on two datasets, and within .05 F1 on an-
other two datasets), it predicted 0 cases for the NHIS group.

For the decision tree expert simulation strategy (Table 4),
CFSC had better or comparable F1 results to LR-PL, whereas
the ATT-FL method again struggled, with many cases with
0 instances. Further analysis show that ATT-FL used totally

different features with most instances. For example, the top
Gf of ATT-FL used 16 features on NHIS dataset for the evi-
dence counterfactual simulation setting.

Density
We next present the density statistics (as defined in Equa-
tion 3) as a measure of how many features are used per in-
stance on average by each method. A model with low density
is often preferred to the one with higher density because of its
easier interpretability. Table 5 shows the density values for all
methods under the evidence counterfactual simulation setting
(results for the decision tree strategy are similar and included
in the supplementary materials).

The ground truth density values for these datasets are pre-
sented as the last column in the table. They are all low val-
ues, ranging from 1.2 (Mobile) to 4.8 (NHIS), as most in-
stances were classified with only a handful of features. The
rule-based learners (RL-P and RL-N) often have the lowest
density among all models as they use none of the features if
no rules apply for an instance. The two feature-selection su-
pervised baselines, ATT-FL and LR-PL, have lower density
than the true values in most cases, whereas CFSC often has
the closest density to the ground truth density.

5.3 Ablation Study for CFSC
In the results that we presented so far, the classification
F1 and the feature selection F1

w were given equal weights
through γa = 0.5 (Equation 2) and the λa parameter for
CFSC (used to combine the classification loss Ly and fea-
ture selection loss La in training of the network) was tuned
using a validation set. Here, we study what would happen if
we manually set the λa and γa to fixed values and force CFSC
to focus on the feature selection and classification tasks with
varying degrees. Table 6 shows the results for three cases:

• Case 1: λa = λ∗
a, γa = 0.5. This is the same setting

used in earlier results.

• Case 2: λa = 0.5, γa = 0.5. Both classification and
feature selection are given equal weights. Different from
Case 1, λa is not tuned on the validation set and instead
is fixed to 0.5. Other hyper-parameters such as learning
rate are tuned on the validation set.

• Case 3: λa = 1, γa = 1. The model focuses exclusively
on feature selection and ignores classification loss dur-
ing training. It also ignores classification performance
when tuning other hyper-parameters on the validation
set. The purpose of this setting is to put the feature selec-
tion performances of Case 1 and Case 2 into perspective.

CFSC performs the best on the combined measure when
λa = λ∗

a, γa = 0.5 as expected. The fully-balanced and
fixed setting, λa = 0.5, γa = 0.5, has comparable4 com-
bined performance to the tuned λa case in general. When
λa = 1, γa = 1, feature F1 is the best but the classification
F1 is junk as expected, which also resulted in a poor com-
bined performance. Case 3 results show that context-aware
feature selection is a difficult problem in general, as the F1

4The p values are included in the supplementary material.
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Top Group Group Size LR-PL ATT-FL CFSC

TP FP P R F1 TP FP P R F1 TP FP P R F1

Credit Total Trans Ct 691 636 293 .685 .920 .785 534 31 .945 .773 .850 609 43 .934 .881 .907
Company Attr21 531 472 445 .515 .889 .652 321 21 .939 .605 .735 261 51 .837 .492 .619
Mobile RAM 530 530 137 .795 1.000 .886 475 11 .977 .896 .935 513 85 .858 .968 .910
NHIS Emphysema=No 240 136 23 .855 .567 .682 0 0 - .000 .000 177 16 .917 .738 .818
Ride Trip Cost 691 382 356 .518 .553 .535 549 22 .961 .795 .870 630 54 .921 .912 .916

Table 3: Evaluation for CFSC, LR-PL, and ATT-FL on the top groups. Feature labels are generated via the evidence counterfactual strategy.
CFSC had better or comparable F1 measures for most datasets whereas LR-PL and ATT-FL had fluctuating performance.

Top Group Group Size LR-PL ATT-FL CFSC

TP FP P R F1 TP FP P R F1 TP FP P R F1

Credit Total Trans Amt∧Total Trans Ct 430 389 2 .995 .905 .948 425 223 .656 .988 .788 421 10 .977 .979 .978
Company Attr26∧Attr27∧Attr34 1131 1124 1 .999 .994 .996 0 0 - .000 .000 1115 5 .996 .986 .991
Mobile RAM 534 531 133 .800 .994 .886 424 3 .993 .794 .882 498 11 .978 .933 .955
NHIS Emphysema=Yes∧Yrs Since Smk 322 311 1 .997 .966 .981 0 0 - .000 .000 305 6 .981 .947 .964
Ride Trip Cost∧Trip Seconds 632 567 91 .862 .897 .879 593 308 .658 .938 .774 551 99 .848 .872 .860
Synthetic1 Feature0∧Feature3∧Feature4 206 196 14 .933 .951 .942 39 4 .907 .189 .313 194 0 1.000 .942 .970
Synthetic2 Feature6 185 172 0 1.000 .930 .964 181 0 1.000 .978 .989 180 3 .984 .973 .978
Synthetic3 Feature11∧Feature3 252 198 80 .712 .786 .747 0 0 - .000 .000 242 11 .957 .960 .958

Table 4: Evaluation for CFSC, LR-PL and ATT-FL on top groups. Feature labels are generated via decision trees. CFSC had better or
comparable F1 results to LR-PL, whereas ATT-FL had fluctuating performance

LR DT RL-P RL-N ATT RNP LR-PL ATT-FL CFSC True

Credit 34.4 4.3 1.0 1.2 15.4 10.8 1.2 1.6 2.0 2.1
Company 64.0 7.1 .1 .1 59.4 30.1 1.3 1.9 3.2 3.2
Mobile 19.6 1.5 .8 .7 1.7 6.5 1.0 1.3 1.2 1.2
NHIS 114.3 6.5 1.0 1.7 15.0 43.5 4.3 31.1 5.0 4.8
Ride 44.8 5.1 .8 1.2 1.7 14.1 1.6 1.9 2.3 2.6

Table 5: The density measure as defined in Equation 3. Feature
labels are generated via the evidence counterfactual strategy. CFSC
often had the closest density to the true values. ATT-FL and LR-PL
had lower density than the true values in most cases.

(λa=λ∗
a , γa=0.5) (λa=0.5, γa=0.5) (λa=1, γa=1)

Credit
Clf. F1 .886 .892 .564
Fea. F1 .684 .666 .710
Comb. F1 .785 .779 .637

Company
Clf. F1 .771 .782 .560
Fea. F1 .631 .570 .691
Comb. F1 .701 .676 .626

Mobile
Clf. F1 .957 .955 .567
Fea. F1 .856 .857 .857
Comb. F1 .907 .906 .712

NHIS
Clf. F1 .827 .824 .576
Fea. F1 .735 .687 .754
Comb. F1 .781 .756 .665

Ride
Clf. F1 .832 .841 .438
Fea. F1 .697 .684 .694
Comb. F1 .765 .763 .566

Table 6: Comparison between different sets of λa and γa for CFSC.
Feature labels are generated via the evidence counterfactual strategy.

values were often in the 0.7 range. Case 1, even though it bal-
anced both classification and feature selection performance,
had a reasonable feature selection performance in compari-
son to Case 3 (comparable on two datasets, within 0.02 for
one, within 0.03 for one, and within 0.06 for the worst case).

We presented a few possible scenarios here. The optimal
balance depends on the application and needs to be decided
by the stakeholders by weighing the trade-off between high

classification and high feature selection performance.

6 Limitations
While there are publicly available text classification datasets
where pieces of text were highlighted as rationales, we could
not find any tabular data with instance-level features were
highlighted. Hence, we created simulated experts for tabu-
lar data. Creating simulated experts and users is not new;
for example, Sharma and Bilgic [2018] created simulated ex-
perts for learning with rationales for text, Tanno et al. [2019]
used simulated annotators for learning with label noise, Lei
et al. [2020] used simulated users for recommender systems,
Li et al. [2019] used simulated labelers for crowdsourcing.

While simulating experts has its advantages, such as the
opportunity to experiment with many datasets and the ability
to control and vary simulation settings, we also acknowledge
that the empirical findings might not carry over to the real
datasets completely. To mitigate this problem, we created
two completely different experts: an evidence counterfactual
expert and a decision tree expert. Furthermore, we exper-
imented with several kinds of domains (e.g., credit, health,
ride sharing, etc.) with varying number of features.

7 Conclusions
We proposed a joint model that can learn from both class
labels and instance-level feature labels, to perform what we
define as context-aware feature selection and classification:
skim a given instance’s full feature vector, focus on the rele-
vant features for that instance, and make a final classification
decision using only the selected features. We adapted several
approaches from the literature to the context-aware feature
selection and classification task. The empirical evaluations
showed that the proposed model outperformed them on the
combined classification and feature selection measures while
also was able to better emulate the ground-truth instance-level
feature selections.
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