
FEDBFPT: An Efficient Federated Learning Framework for BERT Further
Pre-training

Xin’ao Wang , Huan Li ∗ , Ke Chen ∗ and Lidan Shou
Key Lab of Intelligent Computing Based Big Data of Zhejiang Province

Zhejiang University, Hangzhou, China
{wangxin.ao, lihuan.cs, chenk, should}@zju.edu.cn

Abstract
This study proposes FEDBFPT (Federated BERT
Further Pre-Training), a Federated Learning (FL)
framework for further pre-training the BERT lan-
guage model in specialized domains while address-
ing privacy concerns. FEDBFPT enables multiple
clients to collaboratively train the shallower lay-
ers of BERT, which are crucial in the pre-training
stage, without the need to share private data. To
achieve this, FEDBFPT involves building a lo-
cal model for each client, progressively training
the shallower layers of local models while sam-
pling deeper layers, and aggregating trained pa-
rameters on a server to create the final global
model. This approach utilizes multiple smaller
local models to further pre-train a global model
targeted at specific tasks via fine-tuning, resulting
in a reduction in resource usage while maintain-
ing model accuracy. Theoretical analysis is con-
ducted to support the efficiency of FEDBFPT, and
experiments are conducted on corpora across do-
mains such as medicine, biology, and computer
science. Results indicate that FEDBFPT achieves
performance levels comparable to traditional FL
methods while reducing computation and commu-
nication costs by 46.70% and 7.04%, respectively,
even approaching the performance of centralized
training models. The Source code is released at
https://github.com/Hanzhouu/FedBFPT.

1 Introduction
Federated Learning (FL) [McMahan et al., 2017] is a tech-
nique that enables multiple clients to jointly train a global
model without sharing private data. However, training meth-
ods in FL suffer from high communication and computa-
tional costs, as client devices often possess limited hard-
ware resources and network bandwidth. Consequently, train-
ing complex models within the FL framework becomes chal-
lenging, especially when dealing with pre-trained language
models that have demonstrated significant advancements in
natural language processing tasks, such as ELMo [Peters et

∗Ke Chen and Huan Li are the corresponding authors.

al., 2018], GPT [Radford et al., 2018], BERT [Devlin et
al., 2019], and RoBERTa [Liu et al., 2019]. These models
are typically trained on general corpora but can yield better
performance on specialized domain tasks after undergoing
further pre-training [Beltagy et al., 2019] using specialized
datasets. However, collecting such specialized datasets cen-
trally poses privacy concerns, making it infeasible.

Previous research has shown that neural networks tend
to stabilize from shallower to deeper layers during train-
ing [Raghu et al., 2017]. This has been observed in the popu-
lar pre-trained language model BERT, where shallower layers
have been shown to capture phrase-level information, which
holds greater significance in model pre-training compared to
the deeper layers [Jawahar et al., 2019; Hao et al., 2019;
Manginas et al., 2020; Wang et al., 2022b]. The observa-
tion suggests that it might be feasible to train only a subset
of layers on the client side initially and gradually increase the
number of trained layers, thereby achieving efficient training
of large models in an FL setting.

In this paper, we focus on the cost-effectiveness of BERT’s
pre-training in FL by asking the following questions: (1)
Can we design a computational and communication efficient
method to complete the training of large models in resource-
constrained clients? (2) Can such a method achieve the accu-
racy of traditional FL or even centralized training?

Our answers to both questions are ”Yes.” Through investi-
gation, we propose FEDBFPT (Federated BERT Further Pre-
Training), an efficient framework that trains only part of the
layers of BERT to reduce the computational and communica-
tion costs. FEDBFPT allows for training a large global model
using FL by creating small local models for each client to
train partial layers of the global model, incurring less com-
putational resources and fewer weights to transmit. Within
FEDBFPT, we also propose a method PL-SDL (Progressive
Learning with Sampled Deeper Layers), which can train the
crucial layers of the global model efficiently on local models
with small capacity.

We perform downstream tasks via fine-tuning the resultant
global model on specialized domains such as medicine, bi-
ology, and computer science, and show that FEDBFPT can
achieve similar performance to traditional FL while using
46.70% and 7.04% of the original model’s computational and
communication costs, respectively, and can even approach the
accuracy of centralized trained models.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4344

https://github.com/Hanzhouu/FedBFPT

In summary, our main contributions are as follows.
• We propose FEDBFPT, an efficient FL framework for

further pre-training the BERT language model on the
client without sharing private corpora (cf. Section 3.2).

• We propose PL-SDL, a method for efficiently training
the important layers of the global model on the client
side with small-capacity local models (cf. Section 3.3).

• We conduct the analysis on the computational and com-
munication costs (cf. Section 4); We also conduct exper-
iments on specialized domains corpus such as medicine,
biology, and computer science, validating the efficiency
and effectiveness of FEDBFPT in comparison with
many baseline methods (cf. Section 5).

2 Related Work
Federated Learning. Federated Learning (FL) [McMahan
et al., 2017] is a technique that enables multiple clients to
work collaboratively to train a model without sharing their
private data. The general FL process typically involves two
types of updates, namely local updates and global updates.
Particularly, local updates focus on minimizing a local loss
function, whereas global updates consider aggregating local
weights from clients and synchronizing the model changes
across all clients at each communication iteration.

In FL, clients typically have limited resources, includ-
ing less powerful hardware and limited network bandwidth,
which can hinder training large models. To address these
challenges, researchers have developed techniques from vari-
ous perspectives [Wang et al., 2022a], including:

1. Message Compression that represents gradients (or pa-
rameters) with fewer bits to achieve reduced communi-
cation cost. Prominent examples are quantization [Alis-
tarh et al., 2017; Lin et al., 2018; Fu et al., 2020] and
sparsification [Stich et al., 2018; Konečnỳ et al., 2016].

2. Model Pruning that identifies (much smaller) sub-
networks within the original model for less computa-
tional cost at the inference phase [Li and Wang, 2019;
Lin et al., 2020].

3. Model Distillation [Hinton et al., 2015] that allows the
server to extract knowledge from clients using hold-out
datasets [Li and Wang, 2019; Lin et al., 2020].

Message compression helps reduce communication costs,
but it does not address the main bottleneck in FL, which is
the cost of computerization on the client side. Techniques on
model pruning and knowledge distillation can create small,
accurate models to speed up inference, but they are ineffec-
tive in training large models. Our approach employs the local
model to train only the important layers of the global model
and use the resultant global model for fine-tuning. By us-
ing small models during training, we save computational re-
sources and only transmit the important layer parameters to
save on communication costs. This way balances the use of
small models for computational efficiency and large models
for effectiveness.

Progressive Learning. Progressive Learning, a paradigm
initially proposed to stabilize the training process, has been
widely used in computer vision tasks such as image synthe-
sis [Karras et al., 2018], image super-resolution [Wang et al.,

Symbol Meaning

Ck The k-th client
Dk The local dataset at Ck

Pk The local parameter pool at Ck

ℓ The layer index number
mG The number of T-layers in the global model
mL

k The number of T-layers in the k-th local model
i, I The current FL iteration and iteration threshold

Table 1: Notation

2018], facial attribute editing [Wu et al., 2020], and represen-
tation learning [Li et al., 2020b]. The core idea is to start
training on easier tasks, such as low-resolution outputs or
shallower models, and gradually progress to more difficult
but desired tasks, such as high-resolution outputs or deeper
models [Wang et al., 2022a]. The cost-saving benefit of pro-
gressive learning, i.e., using shallower models during initial
training stages, has not been explored in the context of FL.

Further Pre-Training. Pre-trained language models are
usually trained on general text corpora, which makes them
perform well in general domains tasks but poorly in special-
ized scientific domains tasks. Some studies, such as SciB-
ERT [Beltagy et al., 2019], BioBERT [Lee et al., 2020],
have demonstrated that further pre-training using specialized
domain-specific corpus can improve performance in those do-
mains tasks. However, in specialized scientific domains, data
is often stored in different professional institutions, leading
to privacy concerns during the collection process. Motivated
by this, we propose to use FL to protect user privacy, as well
as competent techniques to address the issue of limited re-
sources of FL clients and their inability to train large models.

3 FEDBFPT
Below, we go through the concepts, present the overall frame-
work, and detail the internal designs.

3.1 Definitions and Notation
The commonly used notation is listed in Table 1.

In Federated Learning (FL), a centralized server and mul-
tiple clients (labeled as Ck, where 1 ≤ k ≤ N) are used. Ini-
tially, the server has a global (BERT) model that has already
been pre-trained from large-scale general corpora. A BERT
model consists of an embedding layer, a sequence of the in-
termediate transformer layers (T-layers), and an output layer.
Typically, the size of the output layer is much smaller than
those of the embedding layer and T-layers. Meanwhile, each
client Ck has a non-shared, domain-specific corpus (dataset),
labeled as Dk, that can be used to further pre-train the global
model for increased accuracy at that domain-specific task.
To achieve this, each client Ck runs a local (BERT) model
and the Masked Language Modelling (MLM) [Devlin et al.,
2019] task is performed to update the weights of the local
model using the domain-specific corpus. Later, the weights
of all local models are uploaded to the server to generate the
further pre-trained global model, which needs to be fine-tuned

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4345

subsequently to accomplish a specific task, e.g., classifica-
tion [Collier and Kim, 2004] or Named Entity Recognition
(NER) [Luan et al., 2018].

In total, three training processes are involved, namely pre-
training that generates the pre-trained BERT model from the
general corpora, further pre-training that generates a fur-
ther pre-trained BERT model from the domain-specific cor-
pus, and fine-tuning that generates a fine-tuned model that
targets a domain-specific task. In this study, we focus on
the further pre-training process and aim to propose an FL-
based framework for further pre-training the global model at
the server using local datasets distributed at the clients.

Considering practical needs, the framework should have
low computational and communication costs for clients,
while preserving the performance of the global BERT model
after being further pre-trained. To ensure fair and repro-
ducible comparisons with previous work, we define

• computational cost of a client as the training time of
the local model in a fixed setting of hyperparameters,
training data size, and hardware specification;

• communication cost of a client as the size of the pa-
rameters that a client sends to the server;

• final performance of the global model as the effective-
ness at the downstream task (e.g., accuracy in classifica-
tion or F1 in NER) after a fixed round of fine-tuning.

We identify two variables that are related to the above per-
formance indicators, namely the number of layers of the local
model and the number of layers to be trained and transmit-
ted at client Ck, denoted as mL

k and mT
k , respectively. Intu-

itively, a smaller mL
k will reduce Ck’s computational cost as

well as the final performance of the global model. Likewise,
a smaller mT

k will reduce Ck’s communication cost while re-
ducing the final performance of the global model as well.

Next, we will present our overall FL-based framework (cf.
Section 3.2) and the associated techniques (cf. Section 3.3),
which can maintain the final performance of the global model
with small mL

k and mT
k .

3.2 Framework Overview
The proposed FEDBFPT framework is illustrated in Figure 1.

Specifically, the server runs a global model while each
client runs a local model that keeps the same embedding and
output layers as the global model but a reduced sequence of
T-layers in between. Let mG and mL

k be the number of T-
layers in the global model and the k-th local model, respec-
tively. We stipulate that mG > mL

k is such that the local
model can be deployed and trained at resource-constrained
end devices. In the implementation, we set mG = 12 and
mL

1 = . . . = mL
N = 6. Nevertheless, our proposed frame-

work supports using different mL
k for the local models at dif-

ferent clients. Moreover, each local model is associated with
a parameter pool, which is implemented as a dictionary that
organizes model parameters as key-value pairs. It is used to
help create the local model and will be updated in each it-
eration of FL. At the initial stage, each client stores a local
dataset that will be used to further pre-train the global model
at the server in a collaborative manner.

We proceed to go through the steps of the further pre-
training of the global BERT model in Figure 1. The whole

Algorithm 1 FEDBFPT
Input: datasets {D1, . . . , DN}, global model G with initial
model parameters W (0), epoch threshold I , local MLM training
epoch ek and layer index number ℓ.
Output: final model parameters W (I) of G.
Initialize: parameter pool Pk of each client Ck; ℓ← 0.
// FL training for I iterations
for i = 1 to I do
// Parallel executions at clients
for each client Ck do

if i > 1 then
update Pk with W (i−1) fetched from the server

end if
// Train ℓ-th T-layer and the output
layer of the local model and obtain the
weights
W

(i)
k ← MLM Train(Dk, Pk, ℓ, ek)

upload W
(i)
k to the server

end for
// Merge clients’ weights at server
W (i) ← Merge(W

(i)
1 , . . . ,W

(i)
N)

determine the next layer index number ℓ
sent W (i) and ℓ to each client

end for

process is formalized in Algorithm 1.
S1 Each client Ck fetches the parameters of the global

model from the server and persists the fetched param-
eters in the local parameter pool. Simultaneously, an
index number ℓ is received from the server, which indi-
cates the specific ℓ-th T-layer to be trained and updated
for the local model at Ck. The determination of the layer
index number ℓ is to be detailed in Section 3.3.

S2 With the other layers including the embedding layer kept
frozen, the ℓ-th T-layer and the output layer at each client
Ck are trained using the local data Dk. Specifically, the
MLM task [Devlin et al., 2019] is performed for a num-
ber ek of epochs (cf. MLM Train(Dk, Pk, ℓ, ek) in Al-
gorithm 1). How to train the ℓ-th T-layer in the small-
capacity local model will be presented in Section 3.3.

S3 Each client Ck uploads the weights of the trained ℓ-th
T-layer and the output layer to the server.

S4 The server merges the weights uploaded by all clients.
There are many approaches for merging the weights
in FL, such as FedAvg [McMahan et al., 2017], Fed-
Prox [Li et al., 2020a], and FedAdam [Reddi et al.,
2020]. In our implementation, we choose the typical ap-
proach FedAvg, which obtains the merged weights W (i)

at the i-th FL training iteration as follows.

W (i) =
1

N

∑N

k=1
W

(i)
k , (1)

where W
(i)
k is the weights uploaded by client Ck at the

i-th iteration.
S5 The server updates the global model using the merged

weights and determines the next index number ℓ.
S6 Resume to S1 if the current FL training iteration number

i does not exceed the user-specified threshold I . Oth-
erwise, we terminate the further pre-training process,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4346

T-Layer

T-Layer

T-Layer

T-Layer

T-Layer

T-Layer

Parameter
Pool

l

T-Layer
T-Layer
T-Layer
T-Layer
T-Layer
T-Layer

T-Layer

Server

C1
S1:
Download
new weights
and the index
number, and
create local
mode Lk

S2:
Train local model
 l-th Layer

S3:
Upload weights

S4:
Merge weights

S5:
Update weights and
determines l

S6:
Resume to S1
or terminate

Local Model

T-Layer

T-Layer Training Transformer Layers

T-Layer Frozen Transformer Layers

l Layer Index Number

Global
Model

Local Data

Em
bedding

O
utput T-Layer Global Transformer Layers

Embedding

Output

Output Output
l=2

(Updated)

Parameter
Pool

l

T-Layer
T-Layer
T-Layer
T-Layer
T-Layer
T-Layer

CK
Local Model

Local Data Embedding

Output

Parameter
Pool

l

T-Layer
T-Layer
T-Layer
T-Layer
T-Layer
T-Layer

CN
Local Model

Local Data Embedding

Output

T-Layer
Output

Figure 1: FEDBFPT framework where the FL-based further pre-training process with the current layer index number ℓ = 2 is depicted. For
all local models, the 0-th and 1-st T-layers have been trained and synchronized with the global model at the server.

and consequently, the further pre-trained global model
is ready to be fine-tuned for downstream tasks.

To minimize computational expenses for clients with lim-
ited resources, we opt to train only a single T-layer and output
layer while keeping the remaining parts of the model frozen.
However, choosing which T-layer to train (i.e., determining ℓ)
and how to efficiently train on smaller capacity local models
(cf. step S2) are critical procedures. To resolve these, we pro-
pose the Progressive Learning with Sampled Deeper Layers
(PL-SDL) method in Section 3.3.

3.3 Progressive Learning with Sampled Deeper
Layers (PL-SDL)

As introduced in Section 3.2, a local model uses fewer T-
layers than the global model due to the resource constraints of
the clients. In this sense, we must train the model parameters
more efficiently. This requests us to find and train partial T-
layers that have a higher potential to boost the global model’s
final performance. Previous studies [Jawahar et al., 2019;
Hao et al., 2019; Manginas et al., 2020; Wang et al., 2022b]
have pointed out shallower T-layers of the BERT model ex-
cel at capturing phrase-level information, which plays a more
important role in the pre-training, compared to those deeper
T-layers. Inspired by this, we decide to focus on training the
shallower T-layers of the local models and only upload the
corresponding weights to the server. More specifically, in
each FL iteration, we choose only one specific T-layer 1 and
synchronize the training results of the clients with the global
model. As outlined in the cost analysis to be discussed in Sec-
tion 4, this approach effectively reduces both computational
and communication costs for individual clients.

1It is feasible to train more than one T-layer at an iteration. How-
ever, our preliminary experiments show that this does not bring
much performance gain but increase the client’s computational and
communication cost significantly.

In line with Progressive Learning [Wang et al., 2022a], we
train the T-layers one by one, starting from the most shallow
T-layer and working our way to the deeper T-layers. This ap-
proach raises two technical questions: (1) how to determine
the index number of the T-layer to be trained in each itera-
tion and (2) how to handle the rest of the T-layers when pre-
training the local model with limited capacity. We discuss the
questions below with a running example in Figure 2.

Determination of the Layer Index Number. Our prelim-
inary experiments indicate that shallower T-layers are more
cost-effective to train. Therefore, for a given number I of
FL iterations to train the model, we propose assigning more
iterations to shallower T-layers. Specifically, we assign the
first ⌈I/2⌉ FL iterations to train the 0-th T-layer of the local
model, the next half of the remaining (I − ⌈I/2⌉) FL itera-
tions to train the 1-th T-layer, and so on. Once the FL iter-
ations assigned to the ℓ-th T-layer are completed, the server
increments ℓ by 1, with ℓ always being smaller than mL

k , the
number of T-layers in client Ck. This mechanism prioritizes
training the most important T-layers in the overall FL process.

Handling the Rest T-layers. Before training the ℓ-th T-
layer in the client Ck, the rest (mL

k − 1) T-layers must be
selected from the local parameter pool. In simpler terms, the
0-th to the (ℓ − 1)-th T-layers are mapped from the corre-
sponding T-layers in the parameter pool. On the other hand,
the deeper T-layers, i.e., the (ℓ + 1)-th to the (mL

k − 1)-th
T-layers, are randomly sampled from the (ℓ + 1)-th to the
(mG−1)-th T-layers in the parameter pool; it should be noted
that the mapped layer number of a shallower T-layer must be
no larger than that of a deeper T-layer. Take the local model
training in Figure 2 as an example, suppose ℓ = 2, mL

k = 6,
and mG = 12; the shallower layers, i.e., the 0-th to 2-nd T-
layers are directly mapped from the local parameter pool; for
the sampled deeper layers from the 3-rd to 5-th T-layers, a
possible mappling list could be [5, 5, 9], while [5, 9, 5] is not.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4347

l

T-Layer
T-Layer
T-Layer
T-Layer
T-Layer
T-Layer

T-Layer
T-Layer
T-Layer

T-Layer
T-Layer

Layer I
Ouput weights

Iteration E

Parameter Pool

Embedding

T-Layer

Output Output

Embedding

Output

Local datasets

MLM training

Directly
mapping

Sampling and
mapping
Sampled

deep layer:
[5, 5, 9]

Local model

Figure 2: Local model training with the layer index number ℓ = 2,
number of local T-layers mL

k = 6, and number of global T-layers
mG = 12. The 2-nd T-layers and those beneath are mapped directly
from the T-layers stored in the parameter pool. The deeper T-layer
(the 3-rd to 5-th T-layers) are mapped from the sampled T-layers (the
3-rd to 11-th T-layers). The embedding and output layers are also
directly mapped from the counterparts stored in the parameter pool.

4 Cost Analysis
We perform a theoretical analysis of the computational cost
and communication cost of FEDBFPT in Section 4.1 and
Section 4.2, respectively. To ease the theoretical analysis, the
following setups are established:

• To accurately assess the impact of the local model on
the global model during FL iterations, we assume that
all clients use the same learning rate, batch size, sen-
tence length, and other hyperparameters and train the
local models for the same number of epochs ek locally.

• To accurately assess the effect of adjustments to the local
model on the costs at the client, we analyze a specific
client. As a result, the size of the local dataset Dk and
any effects from external factors such as the hardware
specification are excluded.

4.1 Computational Cost
Given a BERT model, let V be the vocabulary size, S the
sentence length, H the word vector dimension size, C the
number of classifications, and m the number of T-layers. A
local BERT model differs from a global BERT model only in
the number of T-layers m. We use mG and mL

k to differen-
tiate the number of T-layers in the global model and the k-th
local model. A previous study [Vaswani et al., 2017] breaks
down the computation cost of a BERT model into the follow-
ing several parts:

• Embedding in a time complexity of O((V + S) ·H);
• Self-attention in a time complexity of O(m · S2 ·H2);
• Feed Forward in a time complexity of O(m · S2 ·H2);
• Add&Norm in a time complexity of O(m · S ·H).

W

Xl-1

*

b

+ Xl

ForwardForward

Backward

Backward

Backward

Backward

Figure 3: Example of neural network calculations. The yellow circle
represents a forward propagation calculation whereas the green line
represents a backward calculation to update weights and bias.

In training a BERT model, two calculation processes are
involved, namely the forward propagation to obtain results,
and the backward propagation to update model parameters.
An example is illustrated in Figure 3.

Based on the above information, we have the overall time
complexity of the model as follows. First, the embedding
time cost is in the complexity of O((V + S) ·H). Then, the
forward propagation time cost, including Self-attention, Feed
Forward, and Add&Norm, is in O(mf · (S2 ·H2+S2 ·H2+
S · H)) ≈ O(mf · S2 · H2) where mf denotes the number
of T-layers participating in forward propagation. Third, the
backward propagation time cost, similar to the forward coun-
terpart, is in O(mb·S2 ·H2) where mb refers to the number of
T-layers participating in backward propagation. Finally, the
overall time cost is in O((V + S) ·H +mf · S2 ·H2 +mb ·
S2 ·H2) and we have (V + S) ·H ≪ (mf +mb) · S2 ·H2.

In FEDBFPT, we have mf = mb = mG (typically 12) for
the global model and mf = mL

k (typically 6) and mb = 1 for
the local model. Comparing the global model and the local
model, it is clear that FEDBFPT saves a lot of computations.

4.2 Communication Cost
Following studies [Vaswani et al., 2017; Devlin et al., 2019],
we list the space complexity of the parameter size of different
components in a BERT model as follows.

• Embedding: O((V + S) ·H);
• T-layers: O(m · (3 ·H2 + 4H · (2H + 1));
• Output: O(H · C).
If transmitting the model parameters fully in each itera-

tion, the communication cost will be in the complexity of
O((V + S) ·H +mb · (3 ·H2 + 4H · (2H + 1)) +H · C).
Here, we use mb, the number of T-layers in backward prop-
agation, because only these T-layers will be uploaded to
the global model in FL. Instead, our proposed FEDBFPT
only transmits as few as one T-layer and the output layer
to the server for updating. In this sense, a large fraction of
parameters to be transmitted are saved for each client given
that mb is usually 12 or more for the global model.

5 Experiments
5.1 Setup
We outline the main implementation details of our approach.
We use Pytorch 1.11 [Paszke et al., 2019] and an NVIDIA
RTX A6000 with 49140 MB Video Memory for training.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4348

The base model is selected as the BERT-base-uncased [De-
vlin et al., 2019]. Each client performs further pre-training
on the base model through the proposed FEDBFPT frame-
work, resulting in a final global model for downstream tasks.
To simulate the FL setting, we generate 6 clients and build
a local BERT model for each client. The dataset for pre-
training is evenly partitioned and then stored in these clients.
The uniform and skewed distributions of local datasets are
compared in Section 5.4. For comparison use, we also
gather the local datasets at the server for centralized fur-
ther pre-training. The supplementary materials, including the
codebase, datasets, and more experiments results are made
available online [Wang et al., 2023]. We use the S2ORC
dataset [Lo et al., 2020], which contains many general-
purpose corpora for NLP and text mining research over scien-
tific papers, for MLM further pre-training, and then fine-tune
the global BERT model on classification (CLS) and Named
Entity Recognition (NER) tasks of corresponding scientific
domains. In particular, we use the JNLPBA dataset [Collier
and Kim, 2004] in the Biology domain for NER and the Sci-
ERC [Luan et al., 2018] dataset in the Computer Science
domain for NER, and the Rct-20k [Beltagy et al., 2019] 2

dataset in the Medicine domain for CLS for fine-tuning. For
MLM training, the corpus in the corresponding domain is se-
lected from S2ORC. For a direct comparison with previous
studies, accuracy and F1 are considered as the effectiveness
metric for CLS and NER, respectively. Corresponding to the
costs defined in Section 3.1, we measure the computational
cost as the time to perform one epoch of MLM training on the
S2ORC domain subset with batch size 256 and learning rate
5 × 10−5, and the communication cost as the storage space
occupied by the trained parameters per client.

5.2 Overall Comparisons
We include the following baseline methods for comparing
with the proposed FEDBFPT:

• BERT is the original bert-based-uncased pre-trained
model without any further pre-training.

• BERT-C is a global model resulting from further pre-
training on the gathered dataset on the server side.

• BERT-FL is a model resulting from the FL-based fur-
ther pre-training where all local models are the same as
the global model.

• DistilBERT [Sanh et al., 2019] is a lightweight model
using prediction-based distillation on BERT.

• TinyBERT [Jiao et al., 2020] is another lightweight
model using layer-wise distillation on BERT. We test
both the 6- and 4-layer checkpoints, which are denoted
as TinyBERT-6 and TinyBERT-4, respectively.

Table 2 reports the computational and communication cost
of a client when using different approaches for BERT further
pre-training. In this section, the best and the second best mea-
sures in tables are bold and underlined, respectively.

After further pre-training, we fine-tune the resultant mod-
els on downstream tasks for specific domains. The F1 or ac-
curacy measures are reported in Table 3, while detailed coun-
terparts with increased training epochs are shown in Figure 4.

2Rct-20k is very large, and we used 2% of it to fine-tune.

Models Computational Cost (unit) Communication Cost (unit: MB)

BERT 1237.37 (-) N/A
BERT-C 1237.37 (-) N/A
BERT-FL 1237.37 (-) 417.83 (-)
DistilBERT 1241.18 (100.31%) 255.55 (61.16%)
TinyBERT-6 784.45 (63.40%) 255.57 (61.17%)
TinyBERT-4 373.59 (30.19%) 54.88 (13.13%)
FEDBFPT (ours) 577.85 (46.70%) 29.42 (7.04%)

Table 2: Costs in Further Pre-Training (The cost ratios compared to
BERT-FL are indicated in parentheses)

Models JNLPBA (F1) SciERC (F1) Rct-20k (Accuracy)

BERT 0.7181 0.6223 0.8248
BERT-C 0.7244 0.6499 0.8121
BERT-FL 0.7224 0.6330 0.8185
DistillBERT 0.6556 0.4891 0.7787
TinyBERT-6 0.7085 0.6089 0.8073
TinyBERT-4 0.6732 0.5664 0.7994
FEDBFPT (ours) 0.7198 0.6421 0.8312

Table 3: F1 or Accuracy Measures on Downstream Tasks

According to the experimental results, FEDBFPT achieves
comparable effectiveness to BERT-FL 3 while only using
46.70% of the computational cost and 7.04% of the com-
munication cost of BERT-FL, an FL-based approach. Our
method outperforms other lightweight BERT models and
requires fewer resources. We accomplish this by using a
smaller model on clients and updating and uploading only one
T-layer and the output layer. Additionally, we utilize the PL-
SDL method (cf. Section 3.3), which prioritizes training the
more important T-layers (i.e., the shallower T-layers) of the
global model and helps these shallower T-layers gain more
knowledge from the deeper T-layers through sampling and
mapping. All these contribute to the decent model perfor-
mance of FEDBFPT with limited resources.

5.3 Ablation Study
We include the following variants for the ablation study:

• FEDBFPT-ALL that always trains all layers of the lo-
cal model;

• FEDBFPT\PL that only trains the first T-layer of the
local model without Progressive Learning;

• FEDBFPT\M that always uses the first mL
k T-layers in

the parameter pool to build the local model without a
mapping process.

• FEDBFPT\S that conducts a new deeper layer sam-
pling only when ℓ increments. In contrast, FEDBFPT
samples deeper layers in every FL iteration.

• FEDBFPT\SP that assigns the i-th iteration to the ℓ-th
T-layer (i ≤ mL

k) for training.
Using the SciERC dataset in the computer science domain

as our case study, we report the costs and F1 in Table 4.
The results disclose that our proposed framework, which

utilizes PL-SDL, can efficiently complete further pre-training
with a minimal amount of resources. The PL-SDL method

3We conducted a t-test via fine-tuning FEDBFPT and BERT-FL
for downstream tasks over 10 random seeds. The obtained p-values,
i.e., 0.2922 on JNLPBA, 0.4173 on SciERC, and 0.4511 on Rct-20k
all pass the t-test, showing that the two methods are comparable.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4349

1 3 5 7 9 11 13 15
Epochs

0.60

0.65

0.70

F1
JNLPBA

Bert
Bert-Center
Bert-FL
DistillBert

TinyBert-4
TinyBert-6
Ours

(a) JNLPBA (Biology)

1 3 5 7 9 11 13 15
Epochs

0.40

0.45

0.50

0.55

0.60

0.65

F1

SciERC

Bert
Bert-Center
Bert-FL
DistillBert

TinyBert-4
TinyBert-6
Ours

(b) SciERC (CS)

1 3 5 7 9 11 13 15
Epochs

0.74

0.76

0.78

0.80

0.82

Ac
cu
ra
cy

Rct-20k

Bert
Bert-Center
Bert-FL
DistillBert

TinyBert-4
TinyBert-6
Ours

(c) Rct-20k (Medicine)

Figure 4: The F1 (on JNLPBA and SciERC) and accuracy (on Ret-20k) measures vs training epochs.

Models Computational Cost Communication Cost F1
(unit: second) (unit: MB)

FEDBFPT-ALL 786.86 (63.59%) 255.57 (61.17%) 0.6393
FEDBFPT\PL 577.85 (46.70%) 29.42 (7.04%) 0.6407
FEDBFPT\M 577.85 (46.70%) 29.42 (7.04%) 0.6239
FEDBFPT\S 577.85 (46.70%) 29.42 (7.04%) 0.6038
FEDBFPT\SP 577.85 (46.70%) 29.42 (7.04%) 0.6418
FEDBFPT (ours) 577.85 (46.70%) 29.42 (7.04%) 0.6421

Table 4: Ablation Study

Models Computational Cost Communication Cost F1
(unit: second) (unit: MB)

FEDBFPT-4 463.87 (37.49%) 29.42 (7.04%) 0.6201
FEDBFPT-8 693.62 (56.05%) 29.42 (7.04%) 0.6267
FEDBFPT-6 (ours) 577.85 (46.70%) 29.42 (7.04%) 0.6421

Table 5: Effect of Varying the Number of Trained T-layers

specifically prioritizes training the shallower T-layers of the
local model, allowing them to gain more knowledge from
deeper T-layers through sampling and mapping. This is par-
ticularly important when working with limited resources, as
it ensures that the shallower T-layers receive the necessary
information to improve their performance. Additionally, we
found that sampling and mapping deeper T-layers on each it-
eration are crucial for achieving good performance.

5.4 Parameter Study
Effect of the Number of Trained T-layers
We test the effect of varying the number of trained T-layers in
the local models and report the cost and F1 measures of the
SciERC in Table 5. FEDBFPT-4 and FEDBFPT-8 use local
models with 4 and 8 T-layers in the clients, respectively.

The results show that the value of 6 we chose effectively
balances the trade-off between overhead and performance.
Besides, our approach of focusing more on the shallow lay-
ers during the further pre-training phase and utilizing medium
numbers of T-layers on the local model is effective in allow-
ing the local model to gain more knowledge.

Effect of Skewed Local Datasets
To create a more realistic simulation, we introduce a nor-
mal distribution to determine the sizes of datasets assigned
to clients. Each client receives a subset of the centralized

Datasets JNLPBA (F1) SciERC (F1) Rct-20k (Accuracy)

Uniform Datasets 0.7198 0.6421 0.8312
Skewed Datasets 0.7188 0.6309 0.8232

Table 6: Skewed Datasets

dataset according to the proportions specified by the normal
distribution. The server then merges parameters by assigning
weights that are proportional to the sizes of the clients’ data.
Importantly, the total sum of the partitioned datasets remains
unchanged.

The results of FEDBFPT, shown in Table 6, demonstrate
that while the uneven distribution may result in some loss of
model performance, our method still performs well. We could
further improve performance by using different numbers of
trained T-layers for different clients in the future. Neverthe-
less, our method has lower computational and communica-
tion costs compared to other models, regardless of the data
distribution, as shown in the aforementioned experiments.

6 Conclusion and Future Work
In this study, we have built upon previous research to in-
vestigate the role of the shallow layer in federated learn-
ing (FL) based BERT further pre-training. To combat the
limited computational and communication resources on the
client side in FL, we proposed a novel framework, referred to
as FEDBFPT, which allows for training a single transformer
layer of a global BERT model on clients. Moreover, we pro-
posed the Progressive Learning with Sampled Deeper Layers
(PL-SDL) method as a means of effectively and efficiently
training the local BERT model with a focus on the shallower
layers. Through experiments on a variety of corpora across
domains, including biology, computer science, and medicine,
we have demonstrated that our proposed FEDBFPT in com-
bination with PL-SDL, is capable of achieving accuracy lev-
els comparable to traditional FL methods while significantly
reducing computational and communication costs.

In future work, we plan to implement various-sized local
models across clients to handle Non-IID (non-independent
and identically distributed) data. We also aim to adapt
FEDBFPT for downstream tasks by focusing on specific lay-
ers that play a crucial role in fine-tuning specific tasks.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4350

Acknowledgements
This work is supported by the National Key R&D Pro-
gram of China (No.2022YFB3304100) and by the Zhejiang
University-China Zheshang Bank Co., Ltd. Joint Research
Center.

References
[Alistarh et al., 2017] Dan Alistarh, Demjan Grubic, Jerry

Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization
and encoding. NeurIPS, 30, 2017.

[Beltagy et al., 2019] Iz Beltagy, Kyle Lo, and Arman Co-
han. Scibert: A pretrained language model for scientific
text. In EMNLP-IJCNLP, pages 3615–3620, 2019.

[Collier and Kim, 2004] Nigel Collier and Jin-Dong Kim.
Introduction to the bio-entity recognition task at JNLPBA.
In NLPBA/BioNLP, pages 73–78, 2004.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In NAACL-HLT, pages 4171–4186, 2019.

[Fu et al., 2020] Fangcheng Fu, Yuzheng Hu, Yihan He, Ji-
awei Jiang, Yingxia Shao, Ce Zhang, and Bin Cui. Don’t
waste your bits! squeeze activations and gradients for deep
neural networks via tinyscript. In ICML, pages 3304–
3314, 2020.

[Hao et al., 2019] Yaru Hao, Li Dong, Furu Wei, and Ke Xu.
Visualizing and understanding the effectiveness of bert. In
EMNLP-IJCNLP, pages 4143–4152, 2019.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Jawahar et al., 2019] Ganesh Jawahar, Benoı̂t Sagot, and
Djamé Seddah. What does bert learn about the structure
of language? In ACL, 2019.

[Jiao et al., 2020] Xiaoqi Jiao, Yichun Yin, Lifeng Shang,
Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tinybert: Distilling BERT for natural language un-
derstanding. In EMNLP, 2020.

[Karras et al., 2018] Tero Karras, Timo Aila, Samuli Laine,
and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. In ICLR, 2018.

[Konečnỳ et al., 2016] Jakub Konečnỳ, H Brendan McMa-
han, X Yu Felix, Peter Richtarik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[Lee et al., 2020] Jinhyuk Lee, Wonjin Yoon, Sungdong
Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. BioBERT: A pre-trained biomedical lan-
guage representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240, 2020.

[Li and Wang, 2019] Daliang Li and Junpu Wang. Fedmd:
Heterogenous federated learning via model distillation.
arXiv preprint arXiv:1910.03581, 2019.

[Li et al., 2020a] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. ML-
Sys, 2:429–450, 2020.

[Li et al., 2020b] Zhiyuan Li, Jaideep Vitthal Murkute,
Prashnna Kumar Gyawali, and Linwei Wang. Progressive
learning and disentanglement of hierarchical representa-
tions. In ICLR, 2020.

[Lin et al., 2018] Yujun Lin, Song Han, Huizi Mao,
Yu Wang, and Bill Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed train-
ing. In ICLR, 2018.

[Lin et al., 2020] Tao Lin, Lingjing Kong, Sebastian U Stich,
and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. NeurIPS, 33:2351–2363,
2020.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[Lo et al., 2020] Kyle Lo, Lucy Lu Wang, Mark Neumann,
Rodney Kinney, and Daniel Weld. S2ORC: The semantic
scholar open research corpus. In ACL, pages 4969–4983,
2020.

[Luan et al., 2018] Yi Luan, Luheng He, Mari Ostendorf,
and Hannaneh Hajishirzi. Multi-task identification of en-
tities, relations, and coreference for scientific knowledge
graph construction. In EMNLP, pages 3219–3232, 2018.

[Manginas et al., 2020] Nikolaos Manginas, Ilias Chalkidis,
and Prodromos Malakasiotis. Layer-wise guided training
for BERT: Learning incrementally refined document rep-
resentations. arXiv preprint arXiv:2010.05763, 2020.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In AISTATS, pages 1273–1282,
2017.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. NeurIPS, 32, 2019.

[Peters et al., 2018] Matthew E. Peters, Mark Neumann,
Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In ACL, 2018.

[Radford et al., 2018] Alec Radford, Karthik Narasimhan,
Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. Technical report,
OpenAI, 2018.

[Raghu et al., 2017] Maithra Raghu, Justin Gilmer, Jason
Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vec-
tor canonical correlation analysis for deep learning dynam-
ics and interpretability. NeurIPS, 30, 2017.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4351

[Reddi et al., 2020] Sashank Reddi, Zachary Charles,
Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečnỳ, Sanjiv Kumar, and H Brendan McMa-
han. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[Sanh et al., 2019] Victor Sanh, Lysandre Debut, Julien
Chaumond, and Thomas Wolf. Distilbert, a distilled ver-
sion of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

[Stich et al., 2018] Sebastian U Stich, Jean-Baptiste Cordon-
nier, and Martin Jaggi. Sparsified SGD with memory.
NeurIPS, 31, 2018.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. NeurIPS, 30, 2017.

[Wang et al., 2018] Yifan Wang, Federico Perazzi, Brian
McWilliams, Alexander Sorkine-Hornung, Olga Sorkine-
Hornung, and Christopher Schroers. A fully progres-
sive approach to single-image super-resolution. In CVPR
Workshops, pages 864–873, 2018.

[Wang et al., 2022a] Hui-Po Wang, Sebastian Stich, Yang
He, and Mario Fritz. ProgFed: Effective, communication,
and computation efficient federated learning by progres-
sive training. In ICML, pages 23034–23054, 2022.

[Wang et al., 2022b] Jue Wang, Ke Chen, Gang Chen, Lidan
Shou, and Julian McAuley. SkipBERT: Efficient inference
with shallow layer skipping. In ACL, pages 7287–7301,
2022.

[Wang et al., 2023] Xin’ao Wang, Huan Li, Ke Chen, and
Lidan Shou. Code, datasets, and supplementary materials.
https://github.com/Hanzhouu/FedBFPT, 2023. Accessed:
2023-05-23.

[Wu et al., 2020] Rongliang Wu, Gongjie Zhang, Shijian Lu,
and Tao Chen. Cascade EF-GAN: Progressive facial ex-
pression editing with local focuses. In CVPR, pages 5021–
5030, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4352

https://github.com/Hanzhouu/FedBFPT

	Introduction
	Related Work
	FedBFPT
	Definitions and Notation
	Framework Overview
	Progressive Learning with Sampled Deeper Layers (PL-SDL)

	Cost Analysis
	Computational Cost
	Communication Cost

	Experiments
	Setup
	Overall Comparisons
	Ablation Study
	Parameter Study
	Effect of the Number of Trained T-layers
	Effect of Skewed Local Datasets

	Conclusion and Future Work

