
Contrastive Label Enhancement

Yifei Wang , Yiyang Zhou , Jihua Zhu∗ , Xinyuan Liu , Wenbiao Yan and Zhiqiang Tian
School of Software Engineering, Xi’an Jiaotong University, Xi’an, China

{wangyf.ailab,zhouyiyangailab}@gmail.com, zhujh@xjtu.edu.cn,
{xinyuan.liu,wenbiao777}@stu.xjtu.edu.cn, zhiqiangtian@xjtu.edu.cn

Abstract

Label distribution learning (LDL) is a new ma-
chine learning paradigm for solving label ambi-
guity. Since it is difficult to directly obtain label
distributions, many studies are focusing on how
to recover label distributions from logical labels,
dubbed label enhancement (LE). Existing LE meth-
ods estimate label distributions by simply build-
ing a mapping relationship between features and
label distributions under the supervision of logical
labels. They typically overlook the fact that both
features and logical labels are descriptions of the
instance from different views. Therefore, we pro-
pose a novel method called Contrastive Label En-
hancement (ConLE) which integrates features and
logical labels into the unified projection space to
generate high-level features by contrastive learning
strategy. In this approach, features and logical la-
bels belonging to the same sample are pulled closer,
while those of different samples are projected far-
ther away from each other in the projection space.
Subsequently, we leverage the obtained high-level
features to gain label distributions through a well-
designed training strategy that considers the con-
sistency of label attributes. Extensive experiments
on LDL benchmark datasets demonstrate the effec-
tiveness and superiority of our method.

1 Introduction
In recent years, Label Distribution Learning (LDL) [Geng,
2016] has drawn much attention in machine learning, with
its effectiveness demonstrated in various applications [Geng
et al., 2013; Zhang et al., 2015; Qi et al., 2022]. Unlike
single-label learning (SLL) and multi-label learning (MLL)
[Gibaja and Ventura, 2014; Moyano et al., 2019; Zhao et al.,
2022], LDL can provide information on how much each la-
bel describes a sample, which helps to deal with the prob-
lem of label ambiguity [Geng, 2016]. However, Obtaining
label distributions is more challenging than logical labels, as
it requires many annotators to manually indicate the degree to
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Figure 1: An example of label enhancement. Features contain the
full information of samples with many redundancies, while logical
labels possess significant information but are not comprehensive.
The generation of label distributions makes full use of the impor-
tant knowledge in logical labels and supplements the sample details
according to the features.

which each label describes an instance and accurately quan-
tifying this degree remains difficult. Thus, [Xu et al., 2019]
proposed Label Enhancement (LE), leveraging the topologi-
cal information in the feature space and the correlation among
the labels to recover label distributions from logical labels.

More specifically, LE can be seen as a preprocessing of
LDL [Zheng et al., 2021], which takes the logically labeled
datasets as inputs and outputs label distributions. As shown in
Figure 1, this image reflects the complete information of the
sample including some details. Meanwhile, its corresponding
logical labels only highlight the most salient features, such as
the sky, lake, mountain, and forest. Features contain compre-
hensive information about samples with many redundancies,
while logical labels hold arresting information but are not all-
sided. Therefore, it is reasonable to assume that features and
logical labels can be regarded as two descriptions of instances
from different views, possessing complete and salient infor-
mation of samples. The purpose of LE tasks can be simpli-
fied as enhancing the significant knowledge in logical labels
by utilizing detailed features. Subsequently, each label is al-
located a descriptive degree according to its importance.

Most existing LE methods concentrate on establishing the
mapping relationship between features and label distributions
under the guidance of logical labels. Although these previous
works have achieved good performance for LE problem, they
neglect that features and labels are descriptions of two dif-
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ferent dimensions related to the same samples. Furthermore,
logical labels can only indicate the conspicuous information
of each sample without obtaining the label description rank-
ing. The label distributions may appear to be quite different
even if the logical labels present the same results.

To address these issues, we propose the ConLE method
which fuses features and logic labels to generate the high-
level features of samples by contrastive learning strategy.
More specifically, we elaborately train a representation learn-
ing model, which forces the features and logical labels of the
same instance to be close in projection space, while those
of different instances are farther away. By concatenating
the representations of features and logical labels in projec-
tion space, we get high-level features including knowledge
of logic labels and features. Accordingly, label distributions
can be recovered from high-level features by the feature map-
ping network. Since it is expected that the properties of la-
bels in the recovered label distributions should be consistent
with those in the logical labels, we design a training strategy
with label-level consistency to guide the learning of the fea-
ture mapping network.

Our contributions can be delivered as follows:

• Based on our analysis of label enhancement, we recog-
nize that features and logical labels offer distinct per-
spectives on instances, with features providing com-
prehensive information and logical labels highlighting
salient information. In order to leverage the intrinsic rel-
evance between these two views, we propose the Con-
trastive Label Enhancement (ConLE) method, which
unifies features and logical labels in a projection space
to generate high-level features for label enhancement.

• Since all possible labels should have similar properties
in logical labels and label distributions, we design a
training strategy to keep the consistency of label proper-
ties for the generation of label distributions. This strat-
egy not only maintains the attributes of relevant and ir-
relevant labels but also minimizes the distance between
logical labels and label distributions.

• Extensive experiments are conducted on 13 benchmark
datasets, experimental results validate the effectiveness
and superiority of our ConLE compared with several
state-of-the-art LE methods.

2 Related Work
In this section, we mainly introduce the related work of this
paper from two research directions: label enhancement and
contrastive learning.

Label Enhancement. Label enhancement is proposed to
recover label distributions from logical labels and provide
data preparation for LDL. For example, the Graph Laplacian
LE (GLLE) method proposed by [Xu et al., 2021] makes the
learned label distributions close to logical labels while ac-
counting for learning label correlations, making similar sam-
ples have similar label distributions. The method LESC pro-
posed by [Tang et al., 2020] uses low-rank representations to
excavate the underlying information contained in the feature

space. [Xu et al., 2022] proposed LEVI to infer label dis-
tributions from logical labels via variational inference. The
method RLLE formulates label enhancement as a dynamic
decision process and uses prior knowledge to define the tar-
get for LE [Gao et al., 2021]. The kernel-based label en-
hancement (KM) algorithm maps each instance to a high-
dimensional space and uses a kernel function to calculate the
distance between samples and the center of the group, in or-
der to obtain the label description. [Jiang et al., 2006]. The
LE algorithm based on label propagation (LP) recovers label
distributions from logical labels by using the iterative label
propagation technique [Li et al., 2015]. Sequential label en-
hancement (Seq LE) formulates the LE task as a sequential
decision procedure, which is more consistent with the process
of annotating the label distributions in human brains [Gao et
al., 2022]. However, these works neglect the essential con-
nection between features and logical labels. In this paper,
we regard features and logical labels as sample descriptions
from different views, where we can create faithful high-level
features for label enhancement by integrating them into the
unified projection space.

Contrastive Learning. The basic idea of contrastive learn-
ing, an excellent representation learning method, is to map the
original data to a feature space. Within this space, the objec-
tive is to maximize the similarities among positive pairs while
minimizing those among negative pairs. [Grill et al., 2020;
Li et al., 2020]. Currently, contrastive learning has achieved
good results in many machine learning domains [Li et al.,
2021; Dai and Lin, 2017]. Here we primarily introduce sev-
eral contrastive learning methods applied to multi-label learn-
ing. [Wang et al., 2022] designed a multi-label contrastive
learning objective in the multi-label text classification task,
which improves the retrieval process of their KNN-based
method. [Zhang et al., 2022] present a hierarchical multi-
label representation learning framework that can leverage all
available labels and preserve the hierarchical relationship be-
tween classes. [Qian et al., 2022] propose two novel mod-
els to learn discriminative and modality-invariant represen-
tations for cross-modal retrieval. [Bai et al., 2022] propose
a novel contrastive learning boosted multi-label prediction
model based on a Gaussian mixture variational autoencoder
(C-GMVAE), which learns a multimodal prior space and em-
ploys a contrastive loss. For ConLE, the descriptions of one
identical sample are regarded as positive pairs and those of
different samples are negative pairs. We pull positive pairs
close and negative pairs farther away in projection space by
contrastive learning to obtain good highlevel features, which
is really beneficial for the LE process.

3 The ConLE Approach
In this paper, we use the following notations. The set of in-
stances is denoted by X = {x1, x2, ..., xn} ∈ Rdim1×n,
where dim1 is the dimensionality of each instance and
n is the number of instances. Y = {y1, y2, ..., yc} de-
notes the complete set of labels, where c is the number of
classes. For an instance xi, its logical label is represented
by Li = (ly1

xi
, ly2

xi
, . . . , lyc

xi
)T, where l

yj
xi can only take val-

ues of 0 or 1. The label distribution for xi is denoted by
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Figure 2: Framework of the proposed ConLE. ConLE approaches the LE problem by regarding features (X) and logical labels (L) as sample
descriptions from two views. It uses two mapping networks (F1 and F2) to project X and L into a unified projection space, which results in
two representations Z and Q. These representations are then concatenated into high-level features (H). To obtain good high-level features,
ConLE utilizes a contrastive learning strategy that brings two representations of the same sample closer together while pushing representations
of different samples farther apart from each other. Additionally, ConLE employs a reliable training strategy to generate label distributions
D from high-level features H by the feature mapping network F3. This strategy minimizes the distance between logical labels and label
distributions, ensuring that the restored label distributions are close to the existing logical labels. Meanwhile, it also demands the description
degree of relevant labels marked as 1 in the logical labels is larger than that of the irrelevant labels marked as 0. In this way, ConLE can
guarantee the consistency of label attributes in logical labels and label distributions.

Di = (dy1
xi
, dy2

xi
, . . . , dyc

xi
)T, where d

yj
xi depicts the degree to

which xi belongs to label yj . It is worth noting that the sum
of all label description degrees for xi is equal to 1. The pur-
pose of LE tasks is to recover the label distribution Di of xi

from the logical label Li and transform the logically labeled
dataset S = {(xi, Li)|1 ≤ i ≤ n} into the LDL training
set E = {(xi, Di)|1 ≤ i ≤ n}. The proposed Contrastive
Label Enhancement (ConLE) in this paper contains two im-
portant components: the generation of high-level features by
contrastive learning and the training strategy with label-level
consistency for LE. Overall, the loss function of ConLE can
be formulated as follows:

LConLE = lcon + latt. (1)

where lcon denotes the contrastive loss for high-level features,
latt indicates the loss of training strategy with label-level con-
sistency. The framework of ConLE and the detailed proce-
dure of these two parts is shown in Figure 2.

3.1 The Generation of High-Level Features by
Contrastive Learning

The first section provides a detailed analysis of the essence
of LE tasks. We regard features and logic labels as two de-
scriptions of samples. Features contain complete informa-
tion, while logic labels capture prominent details. Label dis-
tributions show the description degree of each label. We can’t
simply focus on the salient information in logical labels, but

make good use of salient information and supplement the de-
tailed information according to the original features. To effec-
tively excavate the knowledge of features and logical labels,
we adopt the contrastive learning of sample-level consistency.

To reduce the information loss induced by contrastive loss,
we do not directly conduct contrastive learning on the feature
matrix [Li et al., 2021]. Instead, we project the features (X)
and logical labels (L) of all samples into a unified projection
space via two mapping networks (F1(·; θ),F2(·;ϕ)), and then
get the representations Z and Q. Specifically, the representa-
tions of features and logic labels in the projection space can
be obtained by the following formula:

Zm = F1(xm; θ), (2)
Qm = F2(Lm;ϕ), (3)

where xm and Lm represent the features and logical labels of
the m-th sample, Zm and Qm denote their embedded repre-
sentations in the dim2-dimensional space. θ and ϕ refer to
the corresponding network parameters.

Contrastive learning aims to maximize the similarities of
positive pairs while minimizing those of negative ones. In this
paper, we construct positive and negative pairs at the instance
level with Z and Q where {Zm, Qm} is positive pair and leave
other (n − 1) pairs to be negative. The cosine similarity is
utilized to measure the closeness degree between pairs:

h(Zm, Qm) =
(Zm)(Qm)T

||Zm|| ||Qm||
. (4)
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To optimize pairwise similarities without losing their gen-
erality, the form of instance-level contrastive loss between
Zm and Qm is defined as:

lm = lZm
+ lQm

, (5)

where lZm
denotes the contrastive loss for Zm and lQm

indi-
cates loss of Qm. Specifically, the item lZm

is defined as:

lZm
= −log

e(h(Zm,Qm)/τI)∑n
s=1,s̸=m[e(h(Zm,Zs)/τI) + e(h(Zm,Qs)/τI)]

,

(6)
and the item lQm is formulated as:

lQm
= −log

e(h(Qm,Zm)/τI)∑n
s=1,s̸=m[e(h(Qm,Qs)/τI) + e(h(Qm,Zs)/τI)]

,

(7)
where τI is the instance-level temperature parameter to con-
trol the softness. Further, the instance-level contrastive loss is
computed across all samples as:

lcon =
1

n

∑n
m=1lm. (8)

The expressions Z and Q updated by contrastive learning
strategy will be concatenated as high-level features H , which
are taken as inputs of the feature mapping network to learn
the label distributions:

H = concat(Z,Q). (9)

3.2 The Training Strategy With Label-Level
Consistency for LE

Based on the obtained high-level features, we introduce a fea-
ture mapping network F3 to generate label distributions. In
other words, we have the following formula:

Dm = F3(Hm;φ), (10)

where Dm is the recovered label distribution of the m-th sam-
ple and Hm is the high-level feature, and φ denote the param-
eter of feature mapping network F3 .

In ConLE, we consider the consistency of label attributes
in logical labels and label distributions. Firstly, because of re-
covered label distributions should be close to existing logical
labels, we expect to minimize the distance between logical
labels and the recovered label distributions, which is normal-
ized by the softmax normalization form. This criterion can be
defined as:

ldis =
n∑

m=1

||F3(Hm;φ)− Lm||2, (11)

where Dm and Lm represents the recovered label distribution
and logic label of the m-th sample. Moreover, logical labels
divide all possible labels into relevant labels marked 1 and ir-
relevant labels marked 0 for each sample. We hope to ensure
that the attributes of relevant and irrelevant labels are con-
sistent in label distributions and logical labels. This idea is
considered in many multi-label learning methods [Kanehira
and Harada, 2016; Yan et al., 2016]. Under their inspiration,
we apply a threshold strategy to ensure that the description

Algorithm 1 The optimization of ConLE
Input: Training instances X = {x1, x2, ..., xn}; Logical

labels L = {L1, L2, ..., Ln}; Temperature parameter τI
Output: label distributions D = {D1, D2, ..., Dn}
1: Random Initialize θ, ϕ and φ;
2: while not converged do
3: Obtain {Zm, Qm}nm=1 by Eq. (2) and Eq. (3);
4: Obtain the high-level features H by Eq. (9);
5: Obtain label distributions D by Eq. (10);
6: Optimize θ, ϕ, φ through Eq. (1);
7: end while
8: return D

degree of relevant labels should be greater than that of irrele-
vant labels in the recovered label distributions. This strategy
can be written as follows:

dy
+

xm
− dy

−

xm
> 0

s.t. y+ ∈ Pm, y− ∈ Nm

(12)

where Pm is used to indicate the set of relevant labels in xm,
Nm represents the set of irrelevant labels in xm, dy

+

xm
and dy

−

xm

are the prediction results of LE process.
In this way, we can get the loss function of threshold strat-

egy:

lthr =
1

n

n∑
m=1

∑
y+∈Pm

∑
y−∈Nm

[max(dy
−

xm
−dy

+

xm
+ ϵ, 0)], (13)

where ϵ is a hyperparameter that determines the threshold.
The formula can be simplified to:

lthr =
1

n

∑n
m=1[max(max dy

−

xm
−min dy

+

xm
+ ϵ, 0)], (14)

Finally, the loss function of training strategy for label-level
consistency can be formulated as follows:

latt = λ1ldis + λ2lthr, (15)
where λ1 and λ1 are two trade-off parameters.

This designed training strategy can guarantee that label at-
tributes are the same in the logical labels and label distri-
butions, thus obtaining a better feature mapping network to
recover label distributions. The full optimization process of
ConLE is summarized in Algorithm 1.

4 Experiments
4.1 Datasets
We conduct comprehensive experiments on 13 real-world
datasets to verify the effectiveness of our method. To be spe-
cific, SJAFFE dataset [Lyons et al., 1998] and SBU-3DFE
dataset [Yin et al., 2006] are obtained from the two facial
expression databases, JAFFE and BU-3DFE. Each image in
datasets is rated for six different emotions (i.e., happiness,
sadness, surprise, fear, anger, and disgust) using 5-level scale.
The Natural Scene dataset is collected from 2000 natural
scene images. Dataset Movie is about the user rating for 7755
movies. Yeast datasets are derived from biological experi-
ments on gene expression levels of budding yeast at different
time points [Eisen et al., 1998]. The basic statistics of these
datasets are shown in Table 1.
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No. Dataset Examples Features Labels

1 SJAFFE 213 243 6
2 SBU-3DFE 2500 243 6
3 Natural-Scene 2000 294 9
4 Movie 7755 1869 5
5 Yeast-alpha 2465 24 18
6 Yeast-cdc 2465 24 15
7 Yeast-elu 2465 24 14
8 Yeast-diau 2465 24 7
9 Yeast-dtt 2465 24 4

10 Yeast-heat 2465 24 6
11 Yeast-cold 2465 24 4
12 Yeast-spo 2465 24 6
13 Yeast-spo5 2465 24 3

Table 1: Statistics of the 13 datasets.

Measure Formula

Kullback-Leibler↓ Dis1(D, D̂) =
∑c

j=1 dj ln
dj

d̂j

Chebyshev↓ Dis2(D, D̂) = maxj |dj − d̂j |

Clark↓ Dis3(D, D̂) =

√∑c
j=1

(dj−d̂j)
2

(dj+d̂j)
2

Canberra↓ Dis4(D, D̂) =
∑c

j=1

|dj−d̂j |2

dj+d̂j

Cosine↑ Sim1(D, D̂) =
∑c

j=1 dj d̂j√∑c
j=1 d2j

√∑c
j=1 d̂j

2

Intersection↑ Sim2(D, D̂) =
∑c

j=1 min(dj , d̂j)

Table 2: Introduction to evalution measures.

4.2 Evaluation Measures
The performance of the LE algorithm is usually calculated
by distance or similarity between the recovered label distri-
butions and the real label distributions. According to [Geng,
2016], we select six measures to evaluate the recovery perfor-
mance, i.e., Kullback-Leibler divergence (K-L)↓, Chebyshev
distance (Cheb)↓, Clark distance (Clark)↓, Canberra metric
(Canber)↓, Cosine coefficient (Cosine)↑ and Intersection sim-
ilarity (Intersec)↑. The first four are distance measures and
the last two are similarity measures. The formulae for these
six measures are summarized in Table 2.

4.3 Comparison Methods
We compare ConLE with six advanced LE methods, includ-
ing FCM [Gayar et al., 2006], KM [Jiang et al., 2006], LP [Li
et al., 2015], GLLE [Xu et al., 2021], LEVI-MLP [Xu et al.,
2022] and LESC [Tang et al., 2020]. The following are the
datails of comparison algorithms used in our experiments:

1) FCM: This method makes use of membership degree to
determine which cluster each instance belongs to according
to fuzzy C-means clustering.

2) KM: It is a kernel-based algorithm that uses the fuzzy
SVM to get the radius and center, obtaining the membership
degree as the final label distribution.

3) LP: This approach applies label propagation (LP) in
semi-supervised learning to label enhancement, employing
graph models to construct a label propagation matrix and gen-
erate label distributions.

4) GLLE: The algorithm recovers label distributions in the
feature space guided by the topological information.

5) LEVI-MLP: It regards label distributions as potential
vectors and infers them from the logical labels in the training
datasets by using variational inference.

6) LESC: This method utilizes the low-rank representation
to capture the global relationship of samples and predict im-
plicit label correlation to achieve label enhancement.

4.4 Experimental Results
Implementation Details. In ConLE, we adopt the SGD
optimizer [Ruder, 2016] for optimization and utilize the
LeakyReLU activation function [Maas et al., 2013] to imple-
ment the networks. The code of this method is implemented
by PyTorch [Paszke et al., 2019] on one NVIDIA Geforce
GTX 2080ti GPU with 11GB memory. All experiments for
our selected comparison algorithms follow the optimal set-
tings mentioned in their papers and we run the programs us-
ing the code provided by their relevant authors. All algo-
rithms are evaluated by ten times ten-fold cross-validation for
fairness. When comparing with other algorithms, the hyper-
parameters of ConLE are set as follows: λ1 is set to 0.5, λ2 is
set to 1 and the temperature parameter τI is 0.5.

Recovery Performance. The detailed comparison results
are presented in Table 3, with the best performance on each
dataset highlighted in bold. For each evaluation metric, ↓
shows the smaller the better while ↑ shows the larger the bet-
ter. The average rankings of each algorithm across all the
datasets are shown in the last row of each table.

The experimental results clearly indicate that our ConLE
method exhibits superior recovery performance compared to
the other six advanced LE algorithms. Specifically, ConLE
can achieve the ranking of 1.00, 1.23, 1.00, 1.07, 1.15 and
1.00 respectively for the six evaluation metrics. ConLE ob-
tains excellent performance both on large-scale datasets such
as movie and small-scale datasets such as SJAFFE. ConLE
can attain significant improvements both in comparison with
algorithm adaption and specialized algorithms by exploring
the description consistency of features and logical labels in
the same sample. We integrate features and logical labels into
the unified projection space to generate high-level features
and keep the consistency of label attributes in the process of
label enhancement.

Ablation Studies. Our ConLE method consists of two main
components: generating high-level features by contrastive
learning and a training strategy with label-level consistency
for LE. Ablation studies are conducted to verify the effective-
ness of the two modules in our method.

Therefore, we first remove the part of ConLE that generates
high-level features and get a comparison algorithm ConLEh,
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Metrics Kullback-Leibler ↓ Chebyshev ↓
Methods FCM KM LP GLLE LEVI-MLP LESC ConLE FCM KM LP GLLE LEVI-MLP LESC ConLE
SJAFFE 0.107 0.558 0.077 0.050 0.031 0.029 0.028 0.132 0.214 0.107 0.087 0.073 0.069 0.069

SBU-3DFE 0.199 0.583 0.108 0.069 0.042 0.064 0.039 0.230 0.234 0.161 0.122 0.092 0.122 0.082
Natural-Scene 3.131 3.009 1.680 2.663 0.928 1.166 0.757 0.368 0.306 0.275 0.335 0.324 0.341 0.314

Movie 0.381 0.452 0.177 0.123 0.081 0.120 0.060 0.230 0.234 0.161 0.122 0.109 0.121 0.097
Yeast-alpha 0.100 0.630 0.121 0.013 0.006 0.008 0.005 0.044 0.063 0.040 0.020 0.013 0.015 0.013

Yeast-cdc 0.091 0.530 0.013 0.014 0.006 0.010 0.004 0.051 0.076 0.042 0.022 0.015 0.019 0.014
Yeast-elu 0.059 0.609 0.012 0.013 0.007 0.009 0.004 0.052 0.078 0.044 0.023 0.017 0.019 0.013

Yeast-diau 0.159 0.538 0.127 0.027 0.011 0.017 0.009 0.124 0.152 0.099 0.053 0.033 0.042 0.031
Yeast-dtt 0.065 0.617 0.103 0.013 0.011 0.010 0.009 0.097 0.257 0.128 0.052 0.051 0.043 0.047

Yeast-heat 0.147 0.586 0.089 0.017 0.008 0.015 0.007 0.169 0.175 0.086 0.049 0.033 0.046 0.031
Yeast-cold 0.113 0.586 0.103 0.019 0.011 0.015 0.009 0.141 0.252 0.137 0.066 0.051 0.056 0.044
Yeast-spo 0.110 0.562 0.084 0.029 0.014 0.028 0.013 0.130 0.175 0.090 0.062 0.045 0.060 0.042

Yeast-spo5 0.123 0.334 0.042 0.034 0.015 0.031 0.013 0.162 0.277 0.114 0.099 0.067 0.092 0.060
Avg.Rank 5.92 6.92 4.92 4.23 2.15 2.84 1.00 6.00 6.61 4.53 4.15 2.30 3.07 1.23

Metrics Clark ↓ Canberra ↓
Datasets FCM KM LP GLLE LEVI-MLP LESC ConLE FCM KM LP GLLE LEVI-MLP LESC ConLE
SJAFFE 0.522 1.874 0.451 0.377 0.285 0.276 0.269 1.081 4.010 1.064 0.781 0.587 0.561 0.545

SBU-3DFE 0.482 1.907 0.580 0.391 0.304 0.378 0.297 1.020 4.121 1.245 0.828 0.635 0.799 0.670
Natural-Scene 2.486 2.448 2.482 2.460 2.454 2.464 2.450 6.974 6.795 6.790 6.851 6.801 6.878 6.708

Movie 0.859 1.766 0.913 0.569 0.548 0.564 0.463 1.664 3.444 1.720 1.045 0.968 1.034 0.837
Yeast-alpha 0.821 3.153 1.185 0.337 0.219 0.253 0.214 2.883 11.809 4.544 1.134 0.732 0.846 0.696

Yeast-cdc 0.739 2.885 1.014 0.306 0.209 0.251 0.178 2.415 9.875 3.644 0.959 0.642 0.765 0.505
Yeast-elu 0.579 2.768 0.973 0.295 0.222 0.241 0.165 1.689 9.110 3.381 0.902 0.674 0.727 0.480

Yeast-diau 0.838 1.886 0.788 0.296 0.191 0.224 0.175 1.895 4.261 1.748 0.671 0.421 0.480 0.365
Yeast-dtt 0.329 1.477 0.499 0.143 0.140 0.119 0.114 0.501 2.594 0.941 0.248 0.247 0.206 0.199

Yeast-heat 0.580 1.802 0.568 0.213 0.147 0.199 0.136 1.157 3.849 1.293 0.430 0.295 0.401 0.268
Yeast-cold 0.433 1.472 0.503 0.176 0.140 0.152 0.119 0.734 2.566 0.924 0.305 0.243 0.263 0.203
Yeast-spo 0.520 1.811 0.558 0.266 0.187 0.258 0.177 0.998 3.854 1.231 0.548 0.372 0.533 0.353

Yeast-spo5 0.395 1.059 0.274 0.197 0.136 0.185 0.127 0.563 1.382 0.401 0.305 0.208 0.284 0.192
Avg.Rank 5.15 6.84 5.53 4.07 2.30 3.07 1.00 5.30 6.69 5.53 4.07 2.15 3.07 1.07

Metrics Cosine ↑ Intersection ↑
Datasets FCM KM LP GLLE LEVI-MLP LESC ConLE FCM KM LP GLLE LEVI-MLP LESC ConLE
SJAFFE 0.906 0.827 0.941 0.958 0.973 0.970 0.972 0.821 0.593 0.837 0.872 0.899 0.905 0.907

SBU-3DFE 0.912 0.812 0.922 0.927 0.957 0.932 0.963 0.827 0.579 0.810 0.850 0.882 0.855 0.886
Natural-Scene 0.593 0.748 0.860 0.778 0.712 0.760 0.804 0.312 0.416 0.451 0.522 0.441 0.510 0.537

Movie 0.773 0.880 0.929 0.936 0.955 0.937 0.964 0.677 0.649 0.778 0.831 0.850 0.833 0.871
Yeast-alpha 0.922 0.751 0.911 0.987 0.995 0.992 0.995 0.844 0.532 0.774 0.938 0.960 0.953 0.961

Yeast-cdc 0.929 0.754 0.916 0.987 0.994 0.991 0.995 0.847 0.533 0.779 0.937 0.958 0.950 0.966
Yeast-elu 0.950 0.758 0.918 0.987 0.993 0.991 0.996 0.883 0.539 0.782 0.936 0.952 0.949 0.966

Yeast-diau 0.882 0.799 0.915 0.975 0.990 0.985 0.991 0.760 0.588 0.788 0.906 0.942 0.933 0.949
Yeast-dtt 0.959 0.759 0.921 0.988 0.990 0.991 0.992 0.894 0.541 0.786 0.939 0.939 0.949 0.950

Yeast-heat 0.883 0.779 0.932 0.984 0.992 0.986 0.993 0.807 0.559 0.805 0.929 0.952 0.934 0.956
Yeast-cold 0.922 0.779 0.925 0.982 0.990 0.986 0.991 0.833 0.559 0.794 0.924 0.940 0.935 0.950
Yeast-spo 0.909 0.800 0.939 0.974 0.988 0.975 0.989 0.836 0.575 0.819 0.909 0.940 0.912 0.942

Yeast-spo5 0.922 0.882 0.969 0.971 0.987 0.974 0.988 0.838 0.724 0.886 0.901 0.933 0.908 0.939
Avg.Rank 5.84 6.30 4.76 4.00 2.00 2.76 1.15 5.46 6.92 5.46 3.92 2.38 2.92 1.00

Table 3: Recovery results evaluated by six measures.

whose loss function can be written as:

LConLEh
= λ1ldis + λ2lthr, (16)

In ConLEh, we only explore the consistency information of
label attributes without considering the description consis-
tency of features and labels.

Secondly, we need to remove the strategy that ensures the
consistency of label attributes. To ensure the normal training
process, we still keep the strategy of minimizing the distance
between label distributions and logical labels. The loss func-
tion of the comparison function ConLEl:

LConLEl
= λ1ldis + lcon. (17)

Table 4 provides the recovery results of ConLEh, ConLEl

and ConLE. Due to the limitation of space, only the repre-
sentative results measured on Kullback-Leibler, Clark, Can-
berra and Intersection are shown in the table. From the ex-
perimental results, we can observe that ConLE is superior to
ConLEh and ConLEl in all cases. Compared with ConLEh,

ConLE considers the inherent relationship between features
and logical labels. It grasps the description consistency of
samples and constructs high-level features for training. Com-
pared with ConLEl, ConLE considers label-level consistency
of logical labels and label distributions. It makes that each
relevant label in the logical labels has a greater description
degree in the label distributions. Therefore, our experimental
results have verified that both modules of ConLE play essen-
tial roles in achieving excellent recovery performance. The
integration of these modules in the complete ConLE method
has been demonstrated to be highly effective.

Parameters Sensitivity. To investigate the sensitivity of
ConLE to hyperparameters, we performed experiments on
SBU-3DFE with different values of the two trade-off hyper-
parameters λ1 and λ2. In this experiment, we fix one hyper-
parameter and choose another hyperparameter from {0.1, 0.3,
0.5, 0.8 ,1, 5, 10}. As shown in Figure 3, we can observe that
the ConLE method can obtain satisfactory recovery results
and our model is insensitive to λ1 and λ2.
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Metrics Kullback-Leibler ↓ Clark ↓ Canberra ↓ Intersection ↑
Methods ConLEh ConLEl ConLE ConLEh ConLEl ConLE ConLEh ConLEl ConLE ConLEh ConLEl ConLE
SJAFFE 0.399 0.044 0.028 0.320 0.305 0.269 0.651 0.713 0.545 0.888 0.892 0.907

SBU-3DFE 0.051 0.060 0.039 0.365 0.405 0.297 0.767 0.850 0.670 0.867 0.842 0.886
Natural-Scene 0.795 0.773 0.757 2.463 2.443 2.450 6.802 6.695 6.708 0.497 0.503 0.537

Movie 0.073 0.068 0.060 0.517 0.491 0.463 0.923 0.877 0.837 0.858 0.866 0.871
Yeast-alpha 0.007 0.010 0.005 0.244 0.342 0.214 0.728 0.799 0.696 0.920 0.891 0.961

Yeast-cdc 0.006 0.006 0.004 0.210 0.231 0.178 0.618 0.609 0.505 0.959 0.960 0.966
Yeast-elu 0.006 0.007 0.004 0.199 0.204 0.165 0.582 0.599 0.480 0.959 0.955 0.966

Yeast-diau 0.018 0.014 0.009 0.248 0.198 0.175 0.509 0.405 0.365 0.930 0.937 0.949
Yeast-dtt 0.013 0.015 0.009 0.156 0.201 0.114 0.298 0.349 0.199 0.942 0.930 0.950

Yeast-heat 0.016 0.012 0.007 0.302 0.267 0.136 0.412 0.370 0.268 0.929 0.941 0.956
Yeast-cold 0.012 0.011 0.009 0.190 0.162 0.119 0.331 0.286 0.203 0.939 0.931 0.950
Yeast-spo 0.019 0.016 0.013 0.285 0.246 0.177 0.443 0.406 0.353 0.914 0.927 0.942

Yeast-spo5 0.014 0.015 0.013 0.157 0.172 0.127 0.248 0.230 0.192 0.923 0.929 0.939

Table 4: Recovery results of ConLEh, ConLEl and ConLE on 13 real-world datasets.

Figure 3: Influence of parameters λ1 and λ2 on dataset SBU-3DFE.

Figure 4: Convergence curve on dataset Movie.

Convergence Analysis. To illustrate the convergence of
ConLE, we present an experiment conducted on Movie
dataset by Canberra↓ as an example, with the corresponding
convergence curve depicted in Figure 4. The value of the ob-
jective function decreases and the performance increases with

more iterations. Finally, they tend to be stable. The properties
remain the same for all datasets.

5 Conclusion

In this work, we propose Contrastive Label Enhancement
(ConLE), a novel method to cope with the (Label Enhance-
ment) LE problem. ConLE regards features and logic labels
as descriptions from different views, and then elegantly in-
tegrates them to generate high-level features by contrastive
learning. Additionally, ConLE employs a training strategy
that considers the consistency of label attributes to estimate
the label distributions from high-level features. Experimental
results on 13 datasets demonstrate its superior performance
over other state-of-the-art methods.
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