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Abstract

Optimal margin Distribution Machine (ODM) is a
newly proposed statistical learning framework root-
ing in the latest margin theory, which demonstrates
better generalization performance than the tradi-
tional large margin based counterparts. However,
it suffers from the ubiquitous scalability problem
regarding both computation time and memory stor-
age as other kernel methods. This paper proposes a
scalable ODM, which can achieve nearly ten times
speedup compared to the original ODM training
method. For nonlinear kernels, we put forward a
novel distribution-aware partition method to make
the local ODM trained on each partition be close
and converge fast to the global one. When linear
kernel is applied, we extend a communication effi-
cient SVRG method to accelerate the training fur-
ther. Extensive empirical studies validate that our
proposed method is highly computational efficient
and almost never worsen the generalization.

1 Introduction
Recently, the study on margin theory [Gao and Zhou, 2013]
demonstrates an upper bound disclosing that maximizing the
minimum margin does not necessarily result in a good per-
formance. Instead, the distribution rather than a single mar-
gin is much more critical. Later on, the study on lower
bound [Grønlund et al., 2019] further proves that the upper
bound is almost optimal up to a logarithmic factor. Inspired
by these insightful works, Zhang and Zhou [2019] propose
the Optimal margin Distribution Machine (ODM), which ex-
plicitly optimizes the margin distribution by maximizing the
mean and minimizing the variance simultaneously and ex-
hibits much better generalization than the traditional large
margin based counterparts. Due to the superiority shown on
both binary and multi-class classification tasks, many works
attempt to extend ODM to more genreal learning settings, just
to list a few, cost-sensitive learning [Zhou and Zhou, 2016;
Cheng et al., 2017], weakly supervised learning [Zhang and
Zhou, 2018a; Zhang and Zhou, 2018b; Luan et al., 2020;
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Zhang and Jin, 2020; Cao et al., 2022], multi-label learn-
ing [Tan et al., 2020; Cao et al., 2021], online learning [Zhang
et al., 2020], and regression [Rastogi et al., 2020]. Plenty
of successes on various learning tasks validate the superior-
ity of this new statistical learning framework. However, with
the dramatic progress of digital technologies, the data gener-
ated devices become as diverse as computers, mobile phones,
smartwatches, cars, etc., and the amount of data created each
day grows tremendously, thus these ODM based extensions
suffer from the scalability problem regarding both computa-
tion time and memory storage as other kernel methods.

There have been many works devoted to accelerating ker-
nel methods, which can be roughly classified into three cate-
gories. The first category is based on approximation, e.g., the
random Fourier feature [Rahimi and Recht, 2007] takes the
trigonometric functions as basis functions to approximate the
kernel mapping, the Nyström method [Williams and Seeger,
2001] generates a low-rank approximations by sampling a
subset of columns, and the coreset [Tan et al., 2019] adap-
tively sketches the whole data by choosing some landmark
points. The second category divides the data into partitions
on which local models are trained and combined to produce
a larger local or global model, e.g., in [Graf et al., 2004;
Hsieh et al., 2014; Singh et al., 2017], a tree architecture
on partitions is designed first, guided by which the solutions
of different partitions are aggregated; in [Yu et al., 2005;
Navia-Vazquez et al., 2006; Loosli et al., 2007], the key in-
stances identification and exchange are further introduced to
accelerate the training; in [Si et al., 2017], both low-rank and
clustering structure of the kernel matrix are taken into ac-
count to get an approximation of kernel matrix. The third cat-
egory is directly applying the distributed-style optimization
method, such as the augmented Lagrangian method [Forero
et al., 2010] and the alternating direction method of multi-
pliers [Boyd et al., 2010], or extending existing solver to a
distributed environment, e.g., distributed SMO [Cao et al.,
2006].

Notice that the random Fourier feature adopts a data-
independent kernel mapping and the Nyström method takes a
data distribution-unaware sampling, hence their performance
are both inferior to the coreset method [Tan et al., 2019],
which inspires us to leverage data as heavily as possible.
Moreover, the distributed off-the-shelf quadratic program-
ming (QP) solvers can be directly applied to train ODM, but
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they are all general approaches thus ignore the intrinsic struc-
ture of the problem and can hardly achieve the greatest effi-
ciency. To take the best of both worlds, this paper proposes
a specially designed scalable ODM (SODM). Specifically,
we put forward a novel data partition method so that ODM
trained on each partition has a solution close to that trained
on the whole data. When some partitions are merged to form
a larger partition, the solution on it can be quickly obtained by
concatenating the previous local solutions as the initial point.
Besides, in the case of the linear kernel, we extend a com-
munication efficient SVRG method to accelerate the training
further. To summarize, the remarkable differences of SODM
compared with existing scalable QP solvers are threefold:

1. SODM incorporates a novel partition strategy, which
makes the local ODM on each partition be close to the
global one so that the training can be accelerated.

2. SODM accelerates the training further when the linear
kernel is applied by extending a communication efficient
SVRG.

3. SODM achieves nearly ten times speedup meanwhile,
maintain ODM’s generalization performance in most sit-
uations.

The rest of this paper is organized as follows. We first in-
troduce some preliminaries, and then present the technical
detail of our method. After that we show the experimental
results and empirical observations. Finally we conclude the
paper with future work.

2 Preliminaries
Throughout the paper, scalars are denoted by normal case let-
ters (e.g., m and M ). Vectors and matrices are denoted by
boldface lower and upper case letters, respectively (e.g., x
and X). The (i, j)-th entry of matrix X is [X]ij . Sets are
designated by upper case letters with mathcal font (e.g., S).
The input space is X ⊆ RN and Y = {1,−1} is the label set.
For any positive integer M , the set of integers {1, . . . ,M}
is denoted by [M ]. For the feature mapping ϕ : X 7→ H
associated to some positive definite kernel κ where H is
the corresponding reproducing kernel Hilbert space (RKHS),
κ(x, z) = ⟨ϕ(x), ϕ(z)⟩H holds for any x and z.

2.1 Optimal Margin Distribution Machine
The traditional large margin based methods maximize the
minimum margin, and the obtained decision boundary is only
determined by a small number of instances with the mini-
mum margin [Schölkopf and Smola, 2001], which may hurt
the generalization performance.

On the other hand, ODM explicitly optimizes the margin
distribution. Given a labeled data set {(xi, yi)}i∈[M ], ODM
is formalized by maximizing the margin mean and minimiz-
ing the margin variance simultaneously:

min
w,ξi,ϵi

p(w) =
1

2
∥w∥2 + λ

2M

∑
i∈[M ]

ξ2i + υϵ2i
(1− θ)2

s.t. 1− θ − ξi ≤ yiw
⊤ϕ(xi) ≤ 1 + θ + ϵi, ∀i ∈ [M ],

where the margin mean has been fixed as 1 since scaling w
does not affect the decision boundary, the hyperparameter λ
is to balance the regularization and empirical loss, the hy-
perparameter υ is for trading-off the two different kinds of
deviation from margin mean, and the hyperparameter θ is in-
troduced to tolerate small deviations no more than θ.

By introducing the Lagrange multipliers ζ,β ∈ RM
+ for

the 2M inequality constraints respectively, the dual problem
of ODM is

min
ζ,β∈RM

+

d(ζ,β) =
1

2
(ζ − β)⊤Q(ζ − β) +

Mc

2
(υ∥ζ∥2

+ ∥β∥2) + (θ − 1)1⊤
Mζ + (θ + 1)1⊤

Mβ, (1)

where [Q]ij = yiyjκ(xi,xj) and c = (1 − θ)2/λυ is a con-
stant. By denoting α = [ζ;β], the dual ODM can be rewrit-
ten as a standard convex QP problem:

min
α∈R2M

+

f(α) =
1

2
α⊤Hα+ b⊤α, (2)

where

H =

[
Q+McυI −Q

−Q Q+McI

]
, b =

[
(θ − 1)1M

(θ + 1)1M

]
.

Notice that Eqn. (2) only involves 2M decoupled box con-
straints α ⪰ 0, thus it can be efficiently solved by a dual
coordinate descent method [Zhang and Zhou, 2019]. To be
specific, in each iteration, only one variable is selected to up-
date while other variables are kept as constants, which yields
the following univariate QP problem of t:

min
t

f(α+ tei) =
1

2
[H]iit

2 + [∇f(α)]it+ f(α), (3)

with a closed-form solution max([α]i − [∇f(α)]i/[H]ii, 0).

3 Proposed Method
SODM works in distributed data level, i.e., dividing the data
into partitions on which local models are trained and used
to find the larger local or global models. For simplicity, we
assume initially there are K = pL partitions with the same
cardinality m, i.e., m = M/K. The data set {(xi, yi)}i∈[M ]

are ordered so that the first m instances are on the first parti-
tion, and the second m instances are on the second partition,
etc. That is for any instance (xi, yi), the index of partition
to which it belongs is P (i) = ⌈i/m⌉ where ⌈·⌉ is the ceil
function.

Suppose {(x(k)
i , y

(k)
i )}i∈[m] is the data of the k-th parti-

tion, the local ODM trained on it is [cf. Eqn. (1)]

min
ζk,βk∈Rm

+

dk(ζk,βk) =
1

2
(ζk − βk)

⊤Q(k)(ζk − βk)

+
mc

2
(υ∥ζk∥2 + ∥βk∥2) + (θ − 1)1⊤

mζk + (θ + 1)1⊤
mβk,

where [Q(k)]ij = y
(k)
i y

(k)
j κ(x

(k)
i ,x

(k)
j ). This problem can

be rewritten as a standard convex QP problem in the same
manner as Eqn. (2), and efficiently solved by dual coordinate
descent method as Eqn. (3).
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Algorithm 1 SODM
Input: Data set D = {(xi, yi)}i∈[M ], partition control pa-
rameter p, number of stratums S, number of iterations L.
Output: The dual solution.

1: Initialize S stratums C1, . . . , CS by Eqn. (7)-(8).
2: Initialize partitions D1, . . . ,DpL by sampling without re-

placement from stratums C1, . . . , CS .
3: Initialize α1, . . . ,αpL as 0.
4: for l = L, . . . , 1 do
5: if all α1, . . . ,αpl converge then
6: return [α1; . . . ;αpl ].
7: end if
8: for k = 1, . . . , pl do
9: Solve the local ODM on Dk by dual coordinate de-

scent with αk as the initial solution.
10: if k ≡ 0 (mod p) then
11: Form new Dk/p by merging Dk−p+1, . . . ,Dk.
12: αk/p = [αk−p+1; . . . ;αk].
13: end if
14: end for
15: end for
16: return [α1; . . . ;αp].

Once the parallel training of pL local ODMs are completed,
we get p solutions. Then we merge every p partitions to form
K/p = pL−1 larger partitions. On each larger partition, a
new local ODM is trained again by dual coordinate descent
method, but the optimization procedure is not executed from
the scratch. Instead, the previous p solutions are concatenated
as the initial point of the optimization. By our proposed novel
partition strategy in Section 3.2, this concatenated solution
is already a good approximation to the optimal solution thus
converges much faster. The above procedure is repeated un-
til the solution converges or all the partitions are merged to-
gether. Algorithm 1 summarizes the pseudo-code of SODM.

3.1 Convergence
In this section, we present a theorem to guarantee the conver-
gence of the proposed method. Notice that the optimization
variables on each partition are decoupled, they can be jointly
optimized by the following problem [cf. Eqn. (1)]

min
ζ,β∈RM

+

d̃(ζ,β) =
1

2
(ζ − β)⊤Q̃(ζ − β) +

mc

2
(υ∥ζ∥2

+ ∥β∥2) + (θ − 1)1⊤
Mζ + (θ + 1)1⊤

Mβ, (4)

where Q̃ = diag(Q(1), . . . ,Q(K)) is a block diagonal ma-
trix. It can be seen that the smaller the K, the more close the
Eqn. (4) to ODM, and when K = 1, it exactly degenerates to
ODM. Therefore, SODM deals with ODM by solving a series
of problems which approaches to it, and the solution of for-
mer problems can be helpful for the optimization of the latter
ones.

Theorem 1. Suppose the optimal solutions of ODM and its
approximate problem, i.e., Eqn. (4), are α⋆ = [ζ⋆;β⋆] and
α̃⋆ = [ζ̃⋆; β̃⋆], respectively, then the gaps between these two

optimal solutions satisfy

0 ≤ d(ζ̃⋆, β̃⋆)− d(ζ⋆,β⋆) ≤ U2(Q+M(M −m)c), (5)

∥α̃⋆ −α⋆∥2 ≤ U2

Mcυ
(Q+M(M −m)c), (6)

where U = max(∥α⋆∥∞, ∥α̃⋆∥∞) upperbounds the infinity
norm of solutions, and Q =

∑
i,j:P (i)̸=P (j) |[Q]ij | is the sum

of the absolute values of Q’s entries which turn to zero in Q̃.

Due to the page limitations, we only provide the sketch of
proof here. The full proof can be found in arXiv version 1.

Proofsketch. The left-hand side of the Eqn. (5) is due to the
optimality of ζ⋆ and β⋆.

By comparing the definition of d(ζ,β) in Eqn. (1) and
d̃(ζ,β) in Eqn. (4), we can find that the only differences are
the change of Q to Q̃ and M to m. Therefore the gap be-
tween d(ζ⋆,β⋆) and d̃(ζ⋆,β⋆) can be upper bounded by U

and Q. The gap between d(ζ̃⋆, β̃⋆) and d̃(ζ̃⋆, β̃⋆) can be up-
per bounded in the same manner. Combining these together
with d̃(ζ̃⋆, β̃⋆) ≤ d̃(ζ⋆,β⋆) can yield the right-hand side of
the Eqn. (5).

Notice that f(α̃⋆) is a quadratic function, hence besides
the gradient g and Hessian matrix H, all its higher derivatives
vanish, and it can be precisely expanded at α⋆ as

f(α⋆) + g⊤(α̃⋆ −α⋆) +
1

2
(α̃⋆ −α⋆)⊤H(α̃⋆ −α⋆),

in which g⊤(α̃⋆ − α⋆) is nonnegative according to the the
first order optimality condition. Furthermore, H can be lower
bounded by the sum of a positive semidefinite matrix and a
scalar matrix:

H ⪰
[
Q −Q
−Q Q

]
+Mcυ

[
I

I

]
.

By putting all these together, we can show that ∥α̃⋆−α⋆∥2 is
upper bounded by f(α̃⋆)−f(α⋆), i.e., d(ζ̃⋆, β̃⋆)−d(ζ⋆,β⋆),
and with the right-hand side of the Eqn. (5), we can derive the
Eqn. (6).

This theorem indicates that the gap between the optimal
solutions and the suboptimal solutions obtained in each itera-
tion depends on M −m and Q. As the iteration going on, the
partitions become larger and larger, then the number of in-
stances m on each partition approaches to the total number of
instances M ; on the other hand, the matrix Q̃ approaches to
Q which makes Q decrease. Therefore, the solution obtained
in each iteration of SODM is getting closer and closer to that
of ODM, that is to say, our proposed algorithm converges.

3.2 Partition Strategy
In this section we detail the partition strategy. It can signif-
icantly affect the optimization efficiency thus plays a more
important role in our proposed method. Up to now, most
partition strategies utilize the clustering algorithms to form

1https://arxiv.org/abs/2305.04837
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the partitions. For example, Hsieh et al. [2014] regards each
cluster of the kernel k-means as a partition. However, ODM
heavily depends on the mean and variance of the training data.
Directly treating clusters as partitions will lead to huge differ-
ence between the distribution of each partition and the whole
data, and consequently huge gap between the local solutions
and global solution.

To preserve the original distribution possibly, we borrow
the idea from stratified sampling, i.e., we first divide the data
set into some homogeneous stratums, and then apply random
sampling within each stratum. To be specific, suppose the
goal is to generate K partitions. We first choose S landmark
points {ϕ(zs)}s∈[S] in RKHS, and then construct one stratum
for each landmark point by assigning the rest of instances to
the stratum in which its nearest landmark point lies, i.e., the
index of stratum containing xi is

φ(i) = argmin
s∈[S]

∥ϕ(xi)− ϕ(zs)∥. (7)

For each stratum Cs, we equally divide it into K pieces by
random sampling without replacement and take one piece
from each stratum to form a partition, hence totally K par-
titions are created.

The remaining question is how to select these landmark
points. Obviously, they should be representative enough to
sketch the whole data distribution. To this end, we exploit the
minimal principal angle between different stratum:

τ = min
i̸=j

{
arccos

⟨ϕ(x), ϕ(z)⟩
∥ϕ(x)∥∥ϕ(z)∥

∣∣∣∣ x ∈ Ci, z ∈ Cj
}
.

Apparently, the larger the angle, the higher variation among
the stratums, and the more representative each partition is,
which is strictly described by the following theorem.
Theorem 2. For shift-invariant kernel κ with κ(x, z) =
κ(x − z), assume κ(0) = r2, that is ∥ϕ(x)∥ = r for any
x. With the partition strategy described above, we have

dk(ζk,βk)− d(ζ⋆,β⋆) ≤ U2M2c+ 2UM

+
U2

2
(M2r2 + r2 cos τ(2C −M2)), ∀k ∈ [K],

where C =
∑

i,j∈[M ] 1φ(i) ̸=φ(j), and U is the same with The-
orem 1.

Proofsketch. We construct the auxiliary data set D̃k by re-
peating each instance in Dk for K times, and then show that
primal ODM on D̃k and Dk have the same optimal objec-
tive. Since the strong duality theorem holds for ODM, we
have dk(ζk,βk) = pk(wk) = p̃k(w) = d̃k(ζ̃k, β̃k). Next
we decompose d̃k(ζ̃k, β̃k)− d(ζ⋆,β⋆) into
1

2
(ζ̃k − β̃k)

⊤Q̃k(ζ̃k − β̃k)−
1

2
(ζ⋆ − β⋆)⊤Q(ζ⋆ − β⋆),

and
Mcυ

2
(∥ζ̃k∥2 − ∥ζ⋆∥2) + Mc

2
(∥β̃k∥2 − ∥β⋆∥2)

+ (θ − 1)1⊤
M (ζ̃k − ζ⋆) + (θ + 1)1⊤

M (β̃k − β⋆).

Putting the upper bounds of these two terms together can con-
clude the proof.

In this theorem, we derive an upper bound of the gap be-
tween the optimal objective value on D and Dk. Notice that
2C > M2 holds for any s ∈ [S] when |Cs| < M/2 is sat-
isfied, a quite mild condition, thus we can get more approx-
imate solution in each partition by maximizing the minimal
principal angle τ in RKHS.

Unfortunately, the resultant maximization problem is diffi-
cult to solve, so we can hardly acquire the optimal landmark
points. But notice that the Gram matrix formed by landmark
points should be diagonally dominant and the more strict the
better, we can resort to maximizing its determinant. Specifi-
cally, suppose z1, ..., zs are given, we seek zs+1 to maximize∣∣∣∣ Ks,s Ks,s+1

K⊤
s,s+1 κ(zs+1, zs+1)

∣∣∣∣ = r2(r2 −K⊤
s,s+1K

−1
s,sKs,s+1),

where Ks,s ∈ Rs×s is the Gram matrix formed by z1, ..., zs,
and Ks,s+1 = [κ(zs+1, z1); ...;κ(zs+1, zs)] is a column vec-
tor. The equality holds due to the Schur’s complement. As for
z1, since any choice makes no difference, we can directly set
it as x1, and generate other landmark points iteratively via

zs+1 = argmin
zs+1

K⊤
s,s+1K

−1
s,sKs,s+1, ∀s ∈ [S − 1]. (8)

It is noteworthy that each partition generated by our pro-
posed strategy extracts proportional instances from each stra-
tum, thus preserves the distribution. Besides, compared with
other partition strategies based on k-means [Singh et al.,
2017], we consider both the original feature space and the
situation when data can hardly be linearly separated. Last but
not least, our partition strategy is computationally efficient.

3.3 Acceleration for Linear Kernel
Dual coordinate descent method requires too many computa-
tion and storage resources, mainly caused by the enormous
kernel matrix. But fortunately, when linear kernel is applied,
we can directly solve the primal form of ODM, avoiding the
computation and storage of kernel matrix.

The objective function of ODM is differentiable and the
gradient of p(w) on instance (xi, yi) is

∇pi(w) = w +
λ(yiw

⊤xi + θ − 1)yixi1i∈I1

(1− θ)2

+
λυ(yiw

⊤xi − θ − 1)yixi1i∈I2

(1− θ)2
,

where I1 = {i | yiw⊤xi < 1− θ} and I2 = {i | yiw⊤xi >
1+θ}. Distributed SVRG (DSVRG) [Lee et al., 2017] can be
exploited in this scenario. It generates a series of extra aux-
iliary data sets sampling from the original data set without
replacement which share the same distribution as the whole
data set, so that an unbiased estimation of the gradient can be
acquired. In each iteration, all nodes (partitions) are joined
together to compute the full gradient first. Then each node
performs the iterative update of SVRG in serial in a “round
robin” fashion, i.e., let all nodes stay idle except one node
performing a certain steps of iterative updates using its lo-
cal auxiliary data and passing the solution to the next node.
Algorithm 2 summarizes the process of DSVRG for SODM.
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Data sets gisette svmguide1 phishing a7a cod-rna ijcnn1 skin-nonskin SUSY

#Instance 7,000 7,089 11,055 32,561 59,535 141,691 245,057 5,000,000
#Feature 5,000 4 68 123 8 22 3 18

Table 1: Data set statistics

Data sets ODM Ca-ODM DiP-ODM DC-ODM SODM

Acc. Acc. Time Acc. Time Acc. Time Acc. Time

gisette .976 .957 90.22 .970 68.02 .964 70.44 .972 59.89
svmguide1 .970 .872 38.90 .903 35.25 .943 50.11 .944 28.74
phishing .941 .880 49.60 .901 52.61 .936 59.47 .938 25.22
a7a .882 .824 68.36 .813 61.24 .815 106.51 .838 32.67
cod-rna N/A .892 499.38 .905 532.68 .931 400.61 .933 55.41
ijcnn1 N/A .889 185.20 .893 182.71 .915 226.26 .927 40.32
skin-nonskin N/A .806 338.73 .830 437.20 .962 407.46 .956 283.36
SUSY N/A .733 4280.23 .744 5678.66 .747 7009.36 .760 1004.33

Table 2: The test accuracy and time cost (in seconds) of different methods using RBF kernel. The best accuracy on each data set is bolded.
N/A means the corresponding method does not return results in 48 hours.

Algorithm 2 Accelerated SODM for linear kernel
Input: Data set D = {(xi, yi)}i∈[M ], number of partitions
K, number of stratums S, number of epoch E, step size η.
Output: Solution w(E) at epoch E.

1: Initialize S stratums C1, . . . , CS by Eqn. (7)-(8).
2: Initialize partitions D1, . . . ,DK by sampling without re-

placement from stratums C1, . . . , CS .
3: Generate the auxiliary array R1, . . . ,RK where Rj =

{i | (xi, yi) ∈ Dj}.
4: for l = 0, 1, . . . , E − 1 do
5: The center node sends w(l) to each node.
6: for each node j = 1, 2, . . . ,K in parallel do
7: h

(l)
j =

∑
i∈Dj

∇pi(w
(l)).

8: end for
9: The center node computes h(l) = 1

M

∑K
j=1 h

(l)
j and

sends it to each node.
10: w

(l+1)
0 = w(l).

11: t = 0.
12: for j = 1, 2, . . . ,K do
13: Sample instances (xi, yi) from Dj where i ∈ Rj .
14: w

(l+1)
t+1 = w

(l+1)
t − η(∇pi(w

(l+1)
t )−∇pi(w

(l)) +

h(l)).
15: t = t+ 1.
16: Rj = Rj\i.
17: if Rj = ∅ then
18: Continue.
19: end if
20: end for
21: w(l+1) = w

(l+1)
t .

22: end for
23: return w(E).

4 Experiments
In this section, we evaluate the proposed algorithms by com-
paring with other SOTA scalable QP solvers.

4.1 Setup
All the experiments are performed on eight real-world data
sets. The statistics of these data sets are summarized in Ta-
ble 1. All features are normalized into the interval [0, 1]. For
each data set, eighty percent of instances are randomly se-
lected as training data, while the rest are testing data. All the
experiments are performed on a Spark [Zaharia et al., 2012]
cluster with one master and five workers. Each machine is
equipped with 16 Intel Xeon E5-2670 CPU cores and 64GB
RAM. Our implementation are available on Github 2.

SODM is compared with three SOTA scalable QP solvers,
i.e., Cascade approach (Ca-ODM) [Graf et al., 2004], DiP
approach (DiP-ODM) [Singh et al., 2017], and DC ap-
proach (DC-ODM) [Hsieh et al., 2014]. Besides, to evaluate
the efficiency of the accelerated SODM for linear kernel, two
SOTA gradient based methods are implementd, i.e., SVRG
method (ODMsvrg) [Johnson and Zhang, 2013] and CSVRG
method (ODMcsvrg) [Tan et al., 2019].

4.2 Results with RBF Kernel
Figure 1 presents the test accuracy and time cost of different
methods with RBF kernel. It can be seen that SODM per-
forms significantly better than other methods. Specifically,
SODM achieves the best test accuracy on 7 data sets and just
slightly worse than DC-ODM on data set skin-nonskin. As
for time cost, SODM achieves the fastest training speed on
all data sets. The detailed test accuracy and time cost are
presented in Table 2. The time cost and test accuracy with
corresponding SVM can be found in arXiv version.

2https://github.com/CGCL-codes/SODM
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Data sets ODM Ca-ODM DiP-ODM DC-ODM SODM

Acc. Acc. Time Acc. Time Acc. Time Acc. Time

gisette .972 .953 82.35 .966 74.36 .968 66.32 .968 28.57
svmguide1 .964 .863 35.27 .898 40.52 .933 41.85 .931 18.93
phishing .937 .894 33.84 .921 38.60 .926 29.04 .933 11.75
a7a .850 .795 47.59 .831 59.17 .833 85.42 .847 16.41
cod-rna .938 .882 435.19 .894 434.77 .890 331.46 .934 17.29
ijcnn1 .913 .896 228.43 .903 208.81 .883 214.66 .920 21.15
skin-nonskin .917 .796 158.12 .903 256.78 .922 340.30 .909 21.15
SUSY .774 .734 3790.37 .738 3829.23 .747 7095.32 .760 178.92

Table 3: The test accuracy and time cost (in seconds) of different methods using linear kernel. The best accuracy on each data set is bolded.
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Figure 1: Comparisons of different methods using RBF kernel. Each point indicates the result when stop at different levels.
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Figure 2: Training speedup ratio with cores increasing from 1 to 32
for SODM

4.3 Results with Linear Kernel
Figure 3 presents the test accuracy and time cost of differ-
ent methods with linear kernel. It can be seen that SODM
shows highly competitive performance compared with other
methods. Specifically, SODM achieves the best test accu-

racy on 6 data sets and just slightly worse than DC-ODM
on data set svmguide1 and skin-nonskin. As for time cost,
SODM achieves faster training speed on all data sets. The
detailed test accuracy and time cost are presented in Ta-
ble 3. In Figure 2, we show the training speedup ratio with
cores increasing from 1 to 32 for linear kernel and RBF ker-
nel, respectively. When 32 cores used, RBF kernel SODM
achieves more than 9 times training speedup while linear ker-
nel SODM achieves over 5 times training speedup.

4.4 Comparison with Gradient Based Methods

Figure 4 compares the test accuracy and time cost between
our acceleration method and other gradient based methods.
We observe that our method can get competitive result.
Meanwhile, our method achieves over 5 times faster speed
than other methods. This indicates that our scalable acceler-
ation method can achieve great training speed while hold the
generalization performance.
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Figure 3: Comparisons of different methods using linear kernel. Each point of SODM indicates the result when every one third of epochs
executed. Other points indicate the result stop at different levels.
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Figure 4: Comparisons of different gradient based methods

5 Conclusion
Although lots of works have been proposed to solve QP prob-
lems, these off-the-shelf solvers usually ignore the intrin-
sic structure of the optimization problem, thus can hardly
achieve the greatest efficiency when directly applied to ODM.
We propose a scalable ODM with a novel partition strategy,
which can retain the first- and second- order statistics in both
the original instance space and the RKHS, leading to signifi-

cant speedup of training. In addition, an accelerating method
is implemented to further improve the training when linear
kernel is used. As shown in the experiments, SODM has great
superiority to other scalable QP solvers in terms of both gen-
eralization performance and time cost. In the future, we will
consider the circumstance in which data is located on differ-
ent devices and can not be gathered together due to the limited
bandwidth or user privacy.
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