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Abstract

The recent rise in popularity of Hyperparameter
Optimization (HPO) for deep learning has high-
lighted the role that good hyperparameter (HP)
space design can play in training strong mod-
els. In turn, designing a good HP space is criti-
cally dependent on understanding the role of dif-
ferent HPs. This motivates research on HP Impor-
tance (HPI), e.g., with the popular method of func-
tional ANOVA (f-ANOVA). However, the original
f-ANOVA formulation is inapplicable to the sub-
spaces most relevant to algorithm designers, such
as those defined by top performance. To over-
come this issue, we derive a novel formulation
of f-ANOVA for arbitrary subspaces and propose
an algorithm that uses Pearson divergence (PED)
to enable a closed-form calculation of HPI. We
demonstrate that this new algorithm, dubbed PED-
ANOVA, is able to successfully identify important
HPs in different subspaces while also being ex-
tremely computationally efficient. See https://arxiv.
org/abs/2304.10255 for the latest version with Ap-
pendix.

1 Introduction
Following on the heels of widespread adoption of deep learn-
ing models in various industries and areas of research, Hyper-
parameter Optimization (HPO) [Bergstra and Bengio, 2012;
Snoek et al., 2012; Bergstra et al., 2011; Lindauer et al.,
2022; Watanabe, 2023] for deep learning has gained increas-
ing prominence as the path forward for making deep learning
more accessible and robust. In particular, recent research has
highlighted the role that good hyperparameter (HP) space de-
sign can play in training strong models [Chen et al., 2018;
Melis et al., 2018; Henderson et al., 2018]. In practice, while
a large search space is necessary to find high-performance
models [Zimmer et al., 2021], a reduced search space that
retains only important HPs is essential for efficiently finding
them [Perrone et al., 2019]. Therefore, it is crucial to under-
stand the role that different HPs play in a search space.

This is the driving force behind previous research into the
quantification of HP Importance (HPI) [Hutter et al., 2014;
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Figure 1: An example where the trend of HPI changes in the global
and local space (top-10%). The horizontal axis is the x1-axis, the
vertical axis is the x2-axis, and f(x1, x2) is the objective func-
tion to analyze (darker is better). Left: the normalized contour
plot of f(x1, x2) in global space; both x1 and x2 appear to variate
f(x1, x2) equally. The red circle is the promising domain we would
like to explore. Right: the normalized contour plot of f(x1, x2) in
the local space (the red circle in global space); f(x1, x2) variates
only by x1, and thus x1 is more important. Such a trend cannot be
captured by existing methods.

Biedenkapp et al., 2017], which still remains a largely un-
derstudied section of HPO research. Several HPO frame-
works [Biedenkapp et al., 2018; Akiba et al., 2019; Sass
et al., 2022] have previously utilized functional ANOVA (f-
ANOVA) [Hooker, 2007; Hutter et al., 2014] to provide a
better interpretation of the role of different HPs, but the orig-
inal f-ANOVA formulation is not very practical for the inter-
pretation of specific subspaces of a search space. Such sub-
spaces are often of particular interest to algorithm develop-
ers due to various properties, for example, the “local space”
visualized in Figure 1 could represent a region of high per-
formance. Nevertheless, prior works [Hutter et al., 2014;
Biedenkapp et al., 2018] have attempted to overcome this and
quantify HPI in specific subspaces using f-ANOVA. How-
ever, since their formulation did not constrain the calcula-
tions to subspaces of high interest, we argue that the results
are biased towards unimportant subspaces. At the same time,
obtaining an unbiased quantification of HPI in specific sub-
spaces of interest, which we refer to as local spaces in con-
trast to the full global space, is mathematically non-trivial.

To overcome this issue, we first formally define local HPI
as HPI in a local space and we derive a novel formulation
of f-ANOVA to compute local HPI for arbitrary local spaces.
Still, our formulation would require Monte-Carlo sampling
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(a) The true γ-set of f(x1, x2) = x21 + x22 (b) An empirical γ-set PDF using KDE of f(x) = sinx

Figure 2: Conceptual visualizations of the γ-set and the γ-set PDF. Left: the true γ-set in a 2D example. Darker is better in the figure and
we colored the top-10% in red, which is the γ-set X γ (γ = 0.1) in this example. Right: the true γ-set and the γ-set PDF in a 1D example.
The green dotted line shows the γ-quantile value fγ , which achieves the top-20% in this example, and the red solid lines are the γ-set X γ

(γ = 0.2). The red dotted spaces below show the true γ-set PDF p(x|X γ), but since we do not have the analytical form in practice, this PDF
is estimated by KDE (the blue solid line).

in general and it is computationally intractable. Therefore,
we show that local HPI is tractable without a Monte-Carlo
sampling under some constraints and propose an algorithm
that uses Pearson divergence (PED, [Pearson, 1900]) to en-
able a closed-form computation of HPI. In a series of exper-
iments, we first verify that our algorithm correctly provides
global and local HPI in a toy function. Then we demonstrate
that our algorithm takes only less than a second for 105 data
points while the prior f-ANOVA [Hutter et al., 2014] would
take more than a week.

To provide a solid picture of how to use our method, we
perform analysis on JAHS-Bench-201 [Bansal et al., 2022],
which has one of the largest search spaces among HPO
benchmarks. In the analysis, we find that it is suboptimal
to design a search space relying only on global HPI because
we potentially miss important HPs in a local space if the
global HPI of these HPs are dominated by the most impor-
tant HP. We demonstrate that local HPI plays a crucial role to
avoid this issue. Furthermore, our method has several other
possible applications such as (1) post-hoc analysis for HPO,
(2) adaptive (e.g., meta-learned) search space reductions for
faster HPO, and (3) exploratory data analysis. We discuss
these in more detail in Appendix E, along with the advantages
and limitations of our method.

In summary, the contributions of this paper are to:

1. reformulate local HPI mathematically and derive the
general formula of local HPI,

2. provide a closed-form calculation for local HPI using
PED that handles even 108 data points in a minute, and

3. benchmark performance compared with the original f-
ANOVA.

To facilitate reproducibility, our implementation is available
at https://github.com/nabenabe0928/local-anova/.

2 Background & Related Work
2.1 Preliminaries
Throughout this paper, we use the following terms:

1. γ-quantile value fγ : The function value fγ ∈ R that
achieves the top-γ quantile with respect to the objective
function f : X → R to analyze in the global space X ,

2. γ-set X γ : A set of configurations X γ that achieves the
top-γ quantile in the global space X , and

3. Marginal γ-set PDF pd(xd|X γ): The marginal PDF of
the γ-set PDF p(x|X γ):

pd(xd|X γ) :=
∫
x−d∈X−d

p(x|X γ)dx−d. (1)

We provide the formal definitions in Appendix B and the con-
ceptual visualizations in Figure 2. Note that X := X1×· · ·×
XD is the search space, Xd ⊆ R for d ∈ [D] := {1, . . . , D}
is the domain of the d-th HP, xs ∼ Xs ⊆ R|s| denotes xs is
sampled from the uniform distribution on Xs where s ⊆ [D],
and X−d ⊆ RD−1 is X without the d-th dimension. Further-
more, we consistently denote the PDF of the uniform distri-
bution as uniform PDF and follow the assumptions stated in
Appendix C.1.

2.2 f-ANOVA
In this section, we describe f-ANOVA for one-dimensional
effects and refer to more details about the general version in
Appendix A.3. Suppose we would like to quantify HPI of a
function f(x) defined on X , then global HPI [Hooker, 2007]
requires (see Figure 3 for the intuition):

1. Global mean:

m := Ex∼X [f(x)], (2)

2. Marginal mean:

fd(xd) := Ex−d∼X−d [f(x|xd)], (3)
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(a) The contour plot of
f(x1, x2) = x21 + x22/10 and
the marginal means for each
dimension.

(b) The conceptual visual-
ization of global HPI on
f(x1, x2) = x21 + x22/10.

Figure 3: The conceptual visualization of global HPI on
f(x1, x2) = x21 + x22/10. Left: the landscape of f(x1, x2) (darker
is better) and the marginal means f1(x1) and f2(x2). The color does
not change a lot in the vertical direction (the x2-axis) while it does
in the horizontal direction (the x1-axis). Right: the marginal means
and the mean value in the same plane. As the marginal mean f1
(the red dashed line) has a large variance, x1 is more important. On
the other hand, as the marginal mean f2 (the blue dashed line) has a
small variance, x2 is less important.

3. Marginal variance:

vd := Exd∼Xd [(fd(xd)−m)2]. (4)

Note that f(x|xd) implies that we fix the d-th HP of x to xd.
When we denote the global variance as v0, the ratio vd/v0 is
the global HPI of the d-th HP and in essence, the magnitude
of the marginal variance represents the relative importance.

2.3 Local f-ANOVA in Prior Works
To the best of our knowledge, there are two papers that men-
tion local HPI (and both use f-ANOVA). Hutter et al. [2014]
mentioned local HPI can be quantified by taking:

g(x) := min(f(x), fγ); (5)

however, since this measure is biased depending on the global
space design as discussed in Appendix B.4.1, we need to con-
sider the integral only over a local space as stated in Sec-
tion 3.1. Biedenkapp et al. [2018] proposed the following
HPI measure:

md := Exd∼Xd [f(x|x
opt
−d)],

vd := Exd∼Xd [(f(x|x
opt
−d)−md)

2],
(6)

where xopt ∈ RD is the optimized setting and xopt
−d ∈ RD−1

is xopt without the d-th dimension. The authors mention that
this measure is a local HPI measure; however, this measure is
also not a local HPI measure in our definition and we show
that this is the case using a toy example in Appendix B.4.2.

3 Local f-ANOVA Using Pearson Divergence
In this section, we first provide the definition of local HPI
and describe how to define a local space. For simplicity, we
name this local space definition as Lebesgue split 1. Then

1The name comes from the fact that we define a local space by a
function value as in the Lebesgue integral in contrast to the defini-
tion of a local space by bounds for each dimension, which we name
Riemann split.

we introduce fast algorithm using PED between two KDEs to
compute local HPI and benchmark the speed of the algorithm
compared to the f-ANOVA implementation based on random
forests [Hutter et al., 2014]. Notice that since higher orders of
HPI require exponential amounts of computations and usually
lack interpretability, our discussion does not focus on higher
orders; however, we derive the formula for higher orders and
show them in Eqs. (47), (52) in Appendix C. The theoretical
details for this section are available in Appendix B.

3.1 Local Hyperparameter Importance
In this section, we assume that we have a set of (sorted)
observations D := {(xn, f(xn))}Nn=1 such that f(x1) ≤
· · · ≤ f(xN ). Then, the top-γ-quantile observations are
Dγ = {(xn, f(xn))}dγNen=1 and the γ-quantile value is fγ :=
f(xdγNe).

Local Space Defined by Lebesgue Split
To begin with, we formally define local HPI:

Definition 1 (Local HPI) Given a subspace X ? ⊆ X , local
HPI is global HPI vd/v0 in the subspace X ?.

Recall that vd is the marginal variance of the d-th HP and v0
is the global variance. Based on Definition 1, the prior works
on making f-ANOVA local discussed in Section 2.3 are not
local HPI measures; see Appendix B.4 for more details. As
our local HPI obviously depends on the choice of X ?, local
HPI is a very general concept; therefore, we focus on the so-
called Lebesgue split to specify a local space in this paper. In
the Lebesgue split, we obtain a local space X ? as follows:

1. Fix a threshold f? (we use the γ-quantile value fγ in
this paper instead), and

2. Obtain the sublevel set X ? := {x ∈ X |f(x) ≤ f?}
based on f? (X ? becomes the γ-set X γ when f? = fγ).

Recall that the definitions of the γ-quantile value and the γ-
set are available in Section 2.1. More intuitively, the red do-
mains in Figure 2 are the local space of each example. In
this paper, we use f(xdγNe) as fγ . The advantages of the
Lebesgue split are to:

1. require only one parameter f? while the Riemann split,
which we split along each dimension by specifying
bounds, requires at least 2×D parameters,

2. be able to focus on the analysis in promising domains
where we are interested, and

3. be able to remove the sampling bias caused by a non-
uniform sampler when using the formula of local HPI.

We further discuss the strengths and drawbacks of the
Lebesgue split compared to the Riemann split in Ap-
pendix B.5.

Formula of Local Hyperparameter Importance
Now we discuss the computation of local HPI. In Eqs. (2)–
(4), we take the expectation over the uniform distribution of
the global space X . In the same vein, it is natural to con-
sider the expectation over the uniform distribution of the local
space X γ for local HPI as well. Although the computation is
not obvious, we can compute the expectation of a measurable
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(a) The contour plot of
f(x1, x2) and the marginal
γ′-set PDFs.

(b) The conceptual visualiza-
tion of global HPI by PED.

Figure 4: The conceptual visualization of global HPI using PED
on f(x1, x2) = x21 + x22/100. As we consider global HPI in
this example, the γ-set PDF is the uniform PDF. Left: the land-
scape of f(x1, x2) (darker is better) and the marginal γ′-set PDFs
p1(x1|Dγ′) (= p1, the red dashed line) and p2(x2|Dγ′) (= p2, the
blue dashed line). The dots represent observations (datasets) and the
red dots achieve the top-γ′ quantile. p1, p2 are estimated by Eq. (15)
using the red dots. Right: the marginal γ′-set PDFs in the same
plane. While p1 (the red dashed line) sharply peaks at the center, p2
(blue dashed line) is close to the uniform PDF. This implies that the
latter is closer to the uniform PDF, and thus x2 is less important.

function f(x) over the local spaceX γ if we use the following
trick:

1

γ
Ex∼X [f(x)I[x ∈ X γ ]], (7)

where γ = Ex∼X [I[x ∈ X γ ]] is a normalization constant.
Recall that x ∈ X γ and f(x) ≤ fγ are equivalent. Similarly,
the marginal mean of f(x) is computed as follows:

1

V γd (xd)
Ex−d∼X−d [f(x|xd)I[x ∈ X γ |xd]], (8)

where V γd (xd) := Ex−d∼X−d [I[x ∈ X γ |xd]] is a normal-
ization constant. Then local HPI is generally computed as
follows:

1. Local mean:

mγ :=
1

γ
Ex∼X [f(x)I[x ∈ X γ ]], (9)

2. Local marginal mean:

fγd (xd) :=
1

V γd (xd)
Ex−d∼X−d [f(x|xd)I[x ∈ X γ |xd]],

(10)

3. Local marginal variance:

vγd := Exd∼V γd [(f
γ
d (xd)−m

γ)2]. (11)

Note that xd ∼ V γd implies that xd is sampled from the dis-
tribution of the PDF V γd (xd)/Z where Z ∈ R+ is the nor-
malization constant. As the series of computations requires
a Monte-Carlo sampling in a D − 1 dimensional space, the
time complexity incurs the curse of dimensionality. In the
next section, we introduce fast algorithm to compute local
HPI in exchange for the scale ignorance.

Algorithm 1 Local PED-ANOVA

D = {(xn, f(xn))}Nn=1 (Dataset to analyze), γ, γ′
(User-defined quantiles of top domains)

1: . See Appendices E.2, E.3 for practical usages
2: Sort D in ascending order by f
3: . |Dγ | ≥ 2 and |Dγ′ | ≥ 2 must hold
4: Pick the top-γ and -γ′ quantile observations Dγ ,Dγ′

5: for d = 1, . . . , D do
6: Count occurrences of unique values c(n)d

7: Build KDEs pd(·|Dγ), pd(·|Dγ
′
) by Eq. (15)

8: Compute vγd by Eq. (16)
9: return {vγd}Dd=1

3.2 Fast Algorithm by Pearson Divergence
If we analyze the binary function b(x|X γ′) := I[x ∈ X γ′ ] =
I[f(x) ≤ fγ

′
] instead of f(x), HPI can be efficiently com-

puted where γ′(< γ) is another quantile to define the binary
function in the local space X γ . First, we prove the following
theorem:
Theorem 1 Given the binary function b(x|X γ′) and the γ′-
and γ-set PDFs p(x|X γ′), p(x|X γ) where γ′ < γ, the local
marginal variance of each dimension d ∈ [D] is:

vγd =

(
γ′

γ

)2

DPE(pd(·|X γ
′
)‖pd(·|X γ)). (12)

The proof is provided in Appendix C.3 and higher orders of
HPI can be computed by Eq. (52) in Appendix C.3. Note that
PED between the PDFs p, q defined on Xd is computed as:

DPE(p‖q) := Exd∼q(xd)
[(

p(xd)

q(xd)
− 1

)2]
. (13)

As we do not have the ground truth of the marginal γ′- and
γ-set PDFs, we replace them with KDEs. The tricks of this
computation are that (1) the marginal γ-set PDF can be easily
estimated by (1D) KDE as follows and (2) we only need to
take the average in 1D space:

pd(xd|Dγ) :=
1

dγNe

dγNe∑
n=1

k(xn,d, xd). (14)

Note that xn,d ∈ Xd is the d-th dimension of xn and k is
a kernel function. Although the query of this function still
requires O(N), the time complexity scales down to O(nd)
where nd ∈ Z+ is the number of unique values in the d-th
HP if we use the following compression:

pd(xd|Dγ) =
1

dγNe

nd∑
n=1

c
(n)
d k(x

(n)
d , xd) (15)

where x(n)d is the n-th unique value in the d-th HP and c(n)d
is the occurrences of this value in Dγ . Note that we dis-
cretize a continuous HP xd ∈ [L,R](L < R) (if exists)
as xd ∈ {L + n(R − L)/(nd − 1)}nd−1n=0 to apply Eq. (15)
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Figure 5: The comparison of global HPI between our algorithm
(Left) and Optuna f-ANOVA (Right). HPI is averaged over 10 runs
with different random seeds. The horizontal axis shows the num-
ber of data points N and the vertical axis shows the cumulative HPI
ratio. HPI ratio is computed by vd/

∑D
d′=1 vd′ and the weak color

band between each plot shows the HPI ratio of each HP.

and the discretization error of marginal variances is bounded
by O( 1

nd
) under some assumptions. Since we can avoid

Monte-Carlo samplings with the discretization and the total
time complexity is reduced to O(N + n2d), this is a trade-off;
see Proposition 2 in Appendix C.4 for more details. Hence
Eq. (11) is approximated as the following closed-form:

vγd '
(
γ′

γ

)2 nd∑
n=1

pd(x
(n)
d |Dγ)
Z

(
pd(x

(n)
d |Dγ

′
)

pd(x
(n)
d |Dγ)

− 1

)2

(16)
where Z :=

∑nd
n=1 pd(x

(n)
d |Dγ) is a normalization constant

and the time complexity of this computation is O(n2d). Algo-
rithm 1 shows the pseudocode for the local HPI computation.
Note that global HPI, whose computation is detailed in Ap-
pendix B.2, can be computed by replacing pd(·|Dγ) with the
uniform PDF in the d-th dimension ud(xd) (or pd(·|Dγ) with
γ = 1, i.e. pd(·|D), as discussed in Appendix E.2 when col-
lecting D by a non-uniform sampler). Figure 4 presents an
example of global HPI with our method on a 2D toy function.

4 Performance Validation
4.1 Setup
In this section, we consistently use the following function:

f(x1, x2, x3, x4) =
4∑
d=1

wd(xd)× x2d (17)

where xd ∈ [−5, 5] for all d ∈ {1, 2, 3, 4} and the weights
wd : R→W follow:

wd(x) =

{
Wd−1 (|x| ≥ 1)
Wd+2 mod 4 (otherwise)

. (18)

and W := {Wd}3d=0 = {50, 5−1, 5−2, 5−3}. This function
has different trends of HPI in global and local spaces. While
the order of HPI is x1, x2, x3, x4 in the global space, it is
x2, x3, x4, x1 in the local space {x ∈ X |∀d ∈ [4], |xd| < 1}.

In this experiment, we discretized the HPs with nd = 1001
and all samples were drawn from the uniform distribution.
Furthermore, all experiments were run on the hardware with
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Figure 6: The benchmark of query speed of our method and f-
ANOVA with respect to the number of data points N . Each set-
ting was run with 10 different seeds and the weak color bands show
the standard error. As f-ANOVA requires much more computation,
we estimated the evolution and provided the estimation by the black
dotted line.

Intel Core i7-10700 and we used the f-ANOVA implementa-
tion with the default parameter setting by Optuna 2. Note that
the Optuna implementation is based on Hutter et al. [2014].

4.2 Effect of Scale Ignorance in Global HPI
Since PED-ANOVA uses I[f(x) ≤ f?] instead of f(x), it
cannot capture scale information. On the other hand, since
our objective is to identify important HPs, we would like to
test if PED-ANOVA can identify important HPs. In the ex-
periment, we used γ′ = 0.1. Figure 5 shows the cumulative
global HPI ratio of each method. As seen in the figure, while
both methods could identify the most important HP x1, we
can see the difference in the HPI of x2. While PED-ANOVA
tells us x2 has about 20% of contribution to achieve the top-
10%, f-ANOVA tells us x2 has about 3% of contribution. This
difference comes from whether we ignore the scale of the ob-
jective function or not. Since f-ANOVA considers scale and it
magnifies the contribution in the tail of the function, it dilutes
the HPI of x2, which has less weight in the tail. Note that
“tail” refers to the domains that cause a lot of variations, yet
not critical for the final result, in the objective function f and
|xd| ≥ 1 is the tail in our case; more details in Appendix B.6.
On the other hand, the HPI of x1 by PED-ANOVA is not
strongly biased by the tail due to the scale ignorance na-
ture. This leads to more importance in x2. Although our
method loses scale information, the ignorance of scale allows
us to abandon the information from the tail and focus only
on the information from the promising domain, which is γ′-
set in our case. Furthermore, this remarkable property makes
the meaning of HPI, which is how important each HP is to
achieve the top-γ′ quantile, very clear and practitioners can
extract the nuance of each HP for specific local spaces.

4.3 Query Speed
As mentioned previously, one of the benefits of our method is
the query speed, and we would like to benchmark how quick
our method is in this section. In the experiment, we used
γ′ = 0.1. Figure 6 presents the runtime with respect to the
number of data points. While f-ANOVA requires more than a

2https://github.com/optuna/optuna
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Figure 7: The validation of the local importance measure. The black dashed lines show the marginal γ-set PDFs and the red lines show the
marginal γ′-set PDFs for each dimension. The percentage (HPI ratio) was computed by vd/

∑D
d′=1 vd′ . Top row: the plots of the uniform

PDFs (γ = 1) and the marginal γ′ = 0.1-set PDFs. These are used to compute global HPI. Bottom row: the plots of the marginal γ = 0.1-set
PDFs and the marginal γ′ = 0.01-set PDFs. Those are used to compute local HPI in the top-10% domain.

minute with 103 data points and more than a week with 105

data points, our method provides the results in a minute even
with 108 data points. In Appendix D.2, we test our method
with higher dimensionality to see the number of data points
required for convergence.

4.4 Local Importance Measure
Finally, we check if our method can successfully identify im-
portant HPs in promising domains. The objective function
f(x) is designed so that while x1 is important and x3 is trivial
in the global space, x1 is less important and x3 is important
in the local space. The goal of this experiment is to check
whether our method can provide this insight. In the experi-
ment, we used N = 104.

Figure 7 shows the results. As discussed already, global
HPI could identify the order of HPI appropriately. For lo-
cal HPI, our method could tell us that x2, x3 are the most
important HPs in the local space and x1 is less important as
expected. Note that since the γ = 0.1-set already narrows
down the domain of x2, but not x3, this dilutes the HPI of x2
and increases the HPI of x3. Prior works cannot provide this
interpretation as discussed in Appendix B.4.

5 Real-World Usecase by JAHS-Bench-201
5.1 Setup
In order to further verify our proposed algorithm against a
real-world application, we applied PED-ANOVA to analyze
the search space of JAHS-Bench-201 [Bansal et al., 2022],
which is a surrogate benchmark for HPO and has a very large
search space in the context of extant HPO benchmarks. We
constructed the dataset D in Algorithm 1 by querying JAHS-
Bench-201 for the validation accuracy, i.e. f(x), of N lat-
tice points, where N = 41,343,750, generated by discretiz-
ing the JAHS-Bench-201 search space (see Table 2 of Ap-
pendix D.1). Although JAHS-Bench-201 can be queried for
model performance metrics on 3 different image classifica-
tion datasets, for the sake of brevity, we discuss only the ex-
periments performed on CIFAR10 here and include the re-
sults on the other datasets in Appendix D.3. Due to the com-
putational complexity of f-ANOVA, we could use only 104

HPI ratio (%)
Hyperparameter Normal Global 0.1 Global 0.01 Local

Original Ours Original Ours Original Ours

Learning rate 1.36 9.11 10.20 6.62 3.59 4.09
Weight decay 0.96 2.19 0.68 2.56 0.31 3.00
Activation function 0.01 0.12 0.21 0.26 0.41 0.40
TrivialAugment 0.00 4.33 3.83 13.22 8.27 28.33
Depth multiplier 0.06 0.66 0.58 2.47 0.63 6.90
Width multiplier 1.60 60.22 73.59 35.26 71.75 9.07

Operation 1 (Op.1) 11.86 6.65 3.45 11.95 3.81 13.38
Operation 2 (Op.2) 4.04 2.36 1.42 5.00 2.51 6.97
Operation 3 (Op.3) 64.73 5.63 1.14 5.25 1.73 5.50
Operation 4 (Op.4) 0.09 0.84 0.83 1.62 1.09 2.09
Operation 5 (Op.5) 4.00 2.19 1.04 4.72 1.29 6.76
Operation 6 (Op.6) 11.29 5.71 3.02 11.06 4.61 13.52

Table 1: HPI of CIFAR10 in JAHS-Bench-201. The ratio of HPI by
percentage (HPI ratio) computed by vd/

∑D
d′=1 vd′ . The top-3 HPs

are bolded. Cols. 1,3,5 (Original): HPI by f-ANOVA on g(x) :=

min(f(x), fγ
′
). Cols. 2,4,6 (Ours): HPI by PED-ANOVA.

data points for it, in contrast to PED-ANOVA, and calculated
the mean of HPI over 10 independent runs. Since the surro-
gate models in JAHS-Bench-201 are trained XGBoost models
and XGBoost’s outputs are deterministic, we query each lat-
tice point only once. In the analysis, we would like to answer
the following research questions (RQs):

RQ1: Does global HPI of our method provide the same im-
portant HPs as f-ANOVA with Eq. (5)?

RQ2: Is the scale ignorance necessary for matching the in-
tuition of achieving the top-γ′ quantile?

RQ3: Does local HPI help detect potentially important HPs
or trivial HPs?

In order to answer RQs, we provide Table 1 with the HPI
of each HP in CIFAR10 of JAHS-Bench-201 and Fig-
ure 8 to visualize the γ = 0.1- and γ = 0.01-set PDFs
as the blue and the red shadows, respectively. Strictly
speaking, discrete probability distributions are not PDFs
due to discrete space; however, we use the term γ-set
PDF for the sake of consistency. We applied f-ANOVA to
f(x) (Normal), min(f(x), fγ

′=0.1) (Global 0.1), and
min(f(x), fγ

′=0.01) (Global 0.01), and PED-ANOVA
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Figure 8: The distributions of important HPs of CIFAR10 in JAHS-Bench-201. The red shadows show the γ = 0.01-set PDFs, the blue
shadows show the γ = 0.1-set PDFs, and the black dashed lines show the uniform PDFs. PED between a black line and a blue shadow is
Global 0.1, PED between a black line and a red shadow is Global 0.01, and PED between a red shadow and a blue shadow is Local
in Table 1. The titles for each figure show the names of each HP and the details of HPs are available in Appendix D.1. Notice that C1 – C5
correspond to the order of Table 2 and the overlap between the red and the blue shadows looks purple although they are separated shadows.

with γ′ = 0.1 (Global 0.1), γ′ = 0.01 (Global
0.01), and γ = 0.1, γ′ = 0.01 (Local). Recall that
Global 0.1 and Global 0.01 for f-ANOVA are based
on Eq. (5) and fγ

′=0.1 means fd|D|/10e given a dataset sorted
by fn. Although we used the uniform PDF to compute global
HPI in this experiment, practitoners should use pd(·|D)(γ =
1) instead of the uniform PDF for the post-hoc analysis of
HPO when using a non-uniform sampler (e.g. Bayesian
optimization) to remove sampling bias as discussed in Ap-
pendix E.2.

5.2 Analysis & Interpretation
To answer RQ1, we compare the column (Global
0.1, Ours) to (Global 0.1, Original) and the
column (Global 0.01, Ours) to (Global 0.01,
Original) in Table 1. We observe that both PED-ANOVA
and f-ANOVA indicated the same top-2 important HPs al-
though the 3rd-best HPs slightly varied. This result further
verifies the validation in Section 4.2.

To answer RQ2, we discuss the results of (Global
0.1, Ours) and (Global 0.01, Ours) in the con-
text of (Normal, Original) to assess the impact that
the tail of f(x) discussed in Section 4.2 has on f-ANOVA.
The most important takeaway from this comparison is the
misclassification of Op.3 as the most important and of
TrivialAugment as the least important HP to optimize
over by the original f-ANOVA in the global setting. As
can be verified by looking at the γ-set PDFs, even for γ =
0.01, Op.3’s values are distributed very evenly even when
TrivialAugment and Width multiplier have al-
ready shown convergence. This clearly indicates that Op.3
is not very important to optimize for achieving the top-1%
performance and may or may not become relevant in even
higher quantile regimes. At the same time, both columns’ val-
ues agree on the importance of Op.1 and Op.6. Therefore,
to answer RQ2, scale invariance indeed helps to successfully
identify HPI for HPs that would have been misclassified by
the (Normal, Original) setting.

Finally, for RQ3, we compare the column (Global
0.01, Ours) to (Local, Ours). We observe that
the HPI of Width multiplier drops sharply from the
Global 0.01 setting to the Local setting. Simulta-
neously, the HPI of TrivialAugment increases sharply
across the same. This suggests that optimizing Width
multiplier is no longer important when moving from
the top-10% to the top-1% performance but optimizing
TrivialAugment is very important. The reason behind
this change becomes clear when we observe the change
in γ-set PDFs of the two HPs in Figure 8. Both the γ-
set PDFs for Width multiplier are sharply peaked
at 16, indicating that no further optimization is needed
on Width multiplier. However, the γ-set PDFs for
TrivialAugment only start peaking at the value True
for the γ = 0.01-set PDF. This clearly demonstrates that
local HPI is necessary for deriving the correct interpretation
in the top-γ′ quantiles, since (Local, Ours) successfully
identifies the relative importance of optimizing the two HPs.
Last but not least, if both global and local HPI with wished
quantiles γ, γ′ exhibits low values, removing such HPs, e.g.
Activation function, is expected to have a less nega-
tive impact although it is insecure to remove HPs, e.g. Op.1,
only by looking at global HPI.

6 Conclusions
In this paper, we reformulated f-ANOVA for local HPI and in-
troduced the fast algorithm to compute local HPI by PED. In
the series of experiments on a toy function, we confirmed that
our method can quantify both global and local HPI appropri-
ately, and efficiently compute HPI in a second with 105 data
points while the prior work takes several days. In the analysis
of JAHS-Bench-201, we provided a concrete example of how
to use our method on benchmark datasets and showed that
only using global HPI could be misleading. Due to the space
limit, we defer a discussion of practical usecases and limita-
tions of our method to Appendix E. Our implementation is
available at https://github.com/nabenabe0928/local-anova/.
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