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Abstract
Recently, adversarial metric learning has been pro-
posed to enhance the robustness of the learned dis-
tance metric against adversarial perturbations. De-
spite rapid progress in validating its effectiveness
empirically, theoretical guarantees on adversarial
robustness and generalization are far less under-
stood. To fill this gap, this paper focuses on un-
veiling the generalization properties of adversar-
ial metric learning by developing the uniform con-
vergence analysis techniques. Based on the ca-
pacity estimation of covering numbers, we estab-
lish the first high-probability generalization bounds
with order O(n− 1

2 ) for adversarial metric learn-
ing with pairwise perturbations and general losses,
where n is the number of training samples. More-
over, we obtain the refined generalization bounds
with order O(n−1) for the smooth loss by using lo-
cal Rademacher complexity, which is faster than
the previous result of adversarial pairwise learn-
ing, e.g., adversarial bipartite ranking. Experimen-
tal evaluation on real-world datasets validates our
theoretical findings.

1 Introduction
The robustness of metric learning against adversarial per-
turbations has attracted increasing attention in the machine
learning literature, where abundant adversarial algorithms
have been proposed from various application motivations,
e.g., [Huang et al., 2019; Bouniot et al., 2020; Liu et
al., 2022]. Despite the previous adversarial metric learn-
ing enjoys the adversarial robustness [Madry et al., 2018;
Kurakin et al., 2018; Carlini and Wagner, 2017] empirically,
its generalization guarantee is touched scarcely in theory. In
this paper, our goal is to fill this theoretical gap and provide
the sharper high-probability generalization bounds of adver-
sarial metric learning from the lens of statistical learning the-
ory [Vapnik, 1999; Mohri et al., 2018].

Although theoretical foundations of metric learning have
been well understood in [Huai et al., 2019; Lei et al., 2020;
Ye et al., 2019], there are two-fold challenges in establishing
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generalization analysis for adversarial counterparts. The first
one is caused by the joint perturbations on sample pairs [Huai
et al., 2022], which is more complicated than the case of
the single-sample perturbation [Yin et al., 2019; Xing et al.,
2021; Mustafa et al., 2022]. The other arises from the non-
smoothness and non-differentiable optimization objective as-
sociated with the adversarial loss function [Xing et al., 2021;
Xiao et al., 2022], which leads to the standard analysis tech-
niques (e.g., [Cao et al., 2016]) inapplicable.

To surmount the above challenges, we introduce the ℓ∞
covering number [Reeve and Kaban, 2020; Mustafa et al.,
2022] to measure the complexity of function space with pair-
wise perturbations and employ a general loss class to approx-
imate the adversarial loss class on training samples to tackle
the non-smoothness problem. In addition to providing gener-
alization guarantees for adversarial metric learning, we also
validate our theoretical findings through experimental analy-
sis on real-world datasets. In summary, the main contribu-
tions of this paper are listed as follows:

• We establish the high-probability generalization bounds
with order O(n− 1

2 ) for adversarial metric learning with
pairwise perturbations, where n is the sample size.
Indeed, our high probability bounds are beneficial to
understand the robustness of optimization algorithms
[Bousquet et al., 2020; Klochkov and Zhivotovskiy,
2021; Li and Liu, 2021] and are different from the ex-
isting bounds in expectation [Xing et al., 2021; Farnia
and Ozdaglar, 2021; Xiao et al., 2022]. These devel-
oped learning bounds are valid for general adversarial
perturbations measured by ℓr-norm (r ≥ 1), and adapt
to linear metric learning models and deep metric learn-
ing models simultaneously. To the best of our knowl-
edge, this is the first-ever-known generalization bounds
for metric learning with pairwise perturbations.

• Under the self-bounding Lipschitz assumption [Reeve
and Kaban, 2020] of loss function, we provide the
sharper generalization bound with the order O(n−1) by
developing the concentration estimation technique asso-
ciated with the local Rademacher complexity [Bartlett
et al., 2005]. As a by-product, the current generalization
bounds with respect to the non-adversarial metric learn-
ing assure faster rates than the previous generalization
analysis in [Huai et al., 2019; Lei et al., 2020].
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Perturbation Object Task Reference Perturbation Way Analysis Tool Learning Bound

Single sample

Classification

Yin et al. (2019)
ℓ∞-norm additive Rademacher complexity O(1/

√
n)

Khim and Loh (2018)

Tu et al. (2019) ℓr-norm additive Rademacher complexity O(1/
√
n)

Mustafa (2022)
ℓr-norm additive Covering number O(1/

√
n)

Spatial transformation Local Rademacher complexity ∗O(1/n)

Optimization
Xing et al. (2021)

ℓr-norm additive Algorithmic stability ⋆O(1/n)
Xiao et al. (2022)

Bipartite Ranking Mo et al. (2022) ℓr-norm additive Rademacher complexity O(1/
√
n)

Sample pair Metric Learning Ours ℓr-norm additive
Covering number O(1/

√
n)

Local Rademacher complexity ∗O(1/n)

Table 1: Summary of generalization analysis for adversarial learning (∗-optimization bound; ⋆-generalization bound in expectation).

2 Related Work

Adversarial Metric Learning. Adversarial metric learn-
ing plays a vital role in applications ranging from person
re-identification [Dai et al., 2018; Bouniot et al., 2020;
Liu et al., 2022] to zero-shot learning [Chen and Deng, 2019;
Huang et al., 2019] and cross-modal retrieval [Xu et al.,
2019]. Since metric learning methods learn on the original
samples are limited in their capacity to distinguish ambiguous
samples, adversarial learning methods are proposed to facil-
itate robust metric learning (see Appendix A). Although ad-
versarial metric learning has shown empirical effectiveness,
theoretical aspects of adversarial robustness has not been ex-
haustively studied.

Adversarial Generalization. The nonsmoothness and non-
differentiability with respect to adversarial loss are central
difficulties in the generalization analysis of adversarial learn-
ing. To overcome these obstacles, Xing et al. (2021) propose
a noise injection method to avoid non-differentiability, and
establish stability upper bound and lower bound for a generic
adversarial training algorithm. Xiao et al. (2022) tackle
the non-smooth problem by considering the η-approximate
smoothness on adversarial loss. Based on this, they derive
stability-based generalization bounds for stochastic gradient
descent on the general class, which covers the adversarial
loss. Tu et al. (2019) fit the adversarial learning problem
into the minimax framework by introducing a transport map
between distributions. They derive a new risk bound for the
minimax problem through the lens of covering numbers under
the Lipschitz assumption. Mo et al. (2022) extend the prior
work of Tu et al. (2019) to pairwise learning and establish the
generalization bounds for adversarial bipartite ranking. Yin
et al. (2019) and Khim et al. (2018) derive a surrogate upper
bound on the adversarial loss, and then show upper bounds
for the adversarial Rademacher complexity of the surrogate.
All the above generalization analysis are limited to adversar-
ial learning with pointwise perturbation. To the best of our
knowledge, there is no the related generalization analysis for
adversarial learning with pairwise perturbation. This paper
try to fill this gap. Table 1 summarizes the related work on
adversarial learning.

3 Preliminaries
This section introduces the main notations used in this pa-
per, the necessary backgrounds on adversarial metric learning
[Wang et al., 2020; Liu et al., 2022; Yang et al., 2021], and
some theoretical techniques and structural results used for the
generalization analysis.

3.1 Notations
We denote vectors as lowercase letters (e.g., x) and matrices
as uppercase letters (e.g., X). We write ∥w∥p to denote the
ℓp-norm of a vector w ∈ Rn. The dual norm of w is denoted
by a star (i.e., ∥w∥p∗ ). For a matrix W ∈ Rn×n with columns
Wi, i ∈ [n], the matrix (p, q)-norm is defined by ∥W∥p,q =
∥(∥W1∥p, . . . , ∥Wn∥p)∥q .

3.2 Adversarial Metric Learning
Let S = {(xi, yi)}ni=1 be a set of training samples drawn
according to an unknown distribution P , where xi ∈ Rd is
the d dimensional feature vector and yi ∈ R is the class la-
bel. The d × n input feature matrix is denoted by X = (xi :

i ∈ [n]). Given a mapping f : Rd → Rd′
, which maps

the d-dimensional input into an embedding space with d′-
dimension, then the distance between samples xi and xj is
measured by

Df (xi, xj) := (f(xi)− f(xj))
T (f(xi)− f(xj)). (1)

The target of metric learning is to learn an adequate f such
that reflects the similarity between sample pairs [Wang et al.,
2020; Huai et al., 2022]. The widely adopted method of seek-
ing such f is to minimize the following empirical risk over the
given training samples

En(f) =
1

n(n− 1)

∑
i̸=j

ℓ(τ(yi, yj)(1−Df (xi, xj))), (2)

where ℓ : R → R+ is a given loss function such as the hinge
loss function, and τ(yi, yj) ∈ {−1, 1} indicates whether two
samples are affiliated to the same class, i.e., τ(yi, yj) = 1 if
yi = yj , and τ(yi, yj) = −1 otherwise.

However, in the presence of adversaries, there will be im-
perceptible perturbations on the input samples that lead to
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maximizaing empirical risk (2). Throughout this paper, we
assume that the perturbation θ is adversarially chosen in the
ℓr-ball B(ε) ⊆ Rd of radius ε, for an arbitrary r ≥ 1. Given
a sample pair (xi, yi), (xj , yj) and a learned mapping f , the
adversary selects valid perturbations θ∗i and θ∗j by [Huai et
al., 2022]

θ∗i , θ
∗
j = arg max

θi,θj∈B(ε)
ℓ(τ(yi, yj)(1−Df (xi+θi, xj+θj))),

and the adversarial loss ℓadv((xi, yi), (xj , yj); f) of f at
(xi, yi), (xj , yj) can be written as

max
θi,θj∈B(ε)

ℓ(τ(yi, yj)(1−Df (xi + θi, xj + θj))). (3)

We then have the following adversarial empirical risk Ẽn(f)
1

n(n− 1)

∑
i̸=j

max
θi,θj∈B(ε)

ℓ(τ(yi, yj)(1−Df (xi + θi, xj + θj))),

and the adversarial expected risk Ẽ(f)

EP
[

max
θi,θj∈B(ε)

ℓ(τ(yi, yj)(1−Df (xi + θi, xj + θj)))
]
.

The adversarial empirical risk Ẽn(f) measures the ability of f
to place similar samples nearby and separate dissimilar sam-
ples on the training samples with adversarial perturbations.
The adversarial expected risk Ẽ(f) measures how well f gen-
eralizes to unseen adversarial samples. In this paper, we are
interested in the difference between Ẽn(f) and Ẽ(f). Our
main tool for bounding the generalization error for adversar-
ial metric learning (i.e., Ẽ(f) − Ẽn(f)) is the ℓ∞-covering
number defined below.
Definition 1 (ℓ∞-covering number). Let υ > 0 and let (A, ∥·
∥∞) be a metric space. We say that C ⊆ A is an (υ,∥ · ∥∞)-
covering of A if

sup
a∈A

inf
c∈C

∥a− c∥∞ ≤ υ.

Then, the ℓ∞-covering number of A is the minimum cardinal-
ity of any subset covers A at scale υ, denoted as N∞(υ,A).

As a special case of Zhang et al. (2002), Definition 1
generally characterizes the complexity of the function space
measured by the infinite norm [Reeve and Kaban, 2020;
Mustafa et al., 2022].

Let the mapping f be selected from the hypothesis class
F := {x 7→ fW (x) : x ∈ Rd,W ∈ Rd×d′}. The class of
adversarial loss functions (3) is written as

Ladv := {(xi, yi), (xj , yj) 7→ ℓadv((xi, yi), (xj , yj); f) : f ∈ F}.
(4)

We have the following relationship between the general-
ization error (i.e., Ẽ(f) − Ẽn(f)) and ℓ∞-covering num-
ber of adversarial loss class Ladv on the training sample S
(i.e., N∞(Ladv, υ, S)), which extends the previous results of
Bartlett et al. (2017) to adversarial learning.
Lemma 1. Let Ladv be the adversarial loss class defined in
(4) and bounded by 1. Then, for any δ ∈ (0, 1), with proba-
bility at least 1 − δ over a sample S of size n, the following

holds for all f ∈ F

Ẽ(f)− Ẽn(f) ≤ 3

√
log(2/δ)

2n
+

inf
α>0

( 8α√
n
+

24

n

∫ √
n

α

√
logN∞(Ladv, υ, S)dυ

)
.

Lemma 1 allows us to control the generalization error by
bounding the ℓ∞-covering number of the adversarial loss
class on training samples. However, deriving an upper bound
on N∞(Ladv, υ, S) is intractable due to the outer maximiza-
tion of loss functions in class Ladv and the joint action of
pairwise perturbations θi, θj . Our approach is to approximate
the loss class Ladv on sample S by the following class L̃adv

L̃adv := {((xi, θi), yi), ((xj , θj), yj) 7→ ℓ(τ(yi, yj)

(1−Df (xi + θi, xj + θj))) : f ∈ F}, (5)
and incorporate perturbations θi, θj into the argument. Based
on this, we reduce the problem of measuring the complexity
of the adversarial loss class on training samples to measuring
the complexity of a general loss class. Some necessary Lips-
chitz conditions are introduced for our theoretical analysis.
Definition 2. Let ∥ · ∥ denote a norm metric, and ξ, ζ ≥ 0.
For a loss function ℓ : F → R and a distance function Df :
Rd × Rd → R parametrized by f ∈ F ,

1) the loss function ℓ is ξ-Lipschitz if, for ∀f, f ′ ∈ F
|ℓ(f)− ℓ(f ′)| ≤ ξ∥f − f ′∥,

2) the distance function Df is the Muti-variate Lipschitz
continuity if, for ∀θi, θj , θ′i, θ′j ∈ Rd

|Df (θi, θj)−Df (θ
′
i, θ

′
j)| ≤ ζ∥(θi, θj)− (θ′i, θ

′
j)∥.

The Lipschitzness on the loss function in Definition 2
is a mild condition, which is satisfied by some common
losses, e.g., the hinge loss and logistic loss [Yin et al., 2019;
Tu et al., 2019; Lei et al., 2020]. By utilizing this Lips-
chitzness and the notion of Multi-variate Lipschitz continuity
[Zantedeschi et al., 2016], we have the Lipschitzness on the
functions θi, θj 7→ ℓ(τ(yi, yj)(1 − Df (xi + θi, xj + θj)))
for f ∈ F , which is necessary and fulfilled by most attacks
[Madry et al., 2018; Awasthi et al., 2021].

We now present our first main result as follows.
Theorem 1. Let θi, θj 7→ ℓ(τ(yi, yj)(1 −Df (xi + θi, xj +
θj))) be the Lipschitzness with constant L. Let CB(3υ/4L)
be a 3υ/4L-cover of B(ε), and define the adversarial sample
set

S̃ = {((xi, θi), yi) : i ∈ [n], θi ∈ CB(3υ/4L)}.
Then, we have

N∞(Ladv, υ, S) ≤ N∞(L̃adv, υ/4, S̃).

Detailed proofs are contained in Appendix C.2. Theorem
1 illustrates that the ℓ∞ covering number of adversarial loss
class Ladv on set S can be bounded by the ℓ∞ covering num-
ber of class L̃adv on adversarial set S̃, which extends the
Lemma 4.4 of Mustafa, Lei and Kloft (2022) for adversar-
ial pointwise learning to adversarial pairwise learning. It will
be served to derive high-probability generalization bounds of
adversarial metric learning.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4399



4 The Generalization Bounds for Adversarial
Metric Learning

In this section, we provide a sharp characterization of the gen-
eralization for two commonly-used adversarial metric learn-
ing models: the linear and deep metric learning models. The
adversarial perturbation is measured in ℓr-norm. Moreover,
we establish fast generalization bounds for adversarial metric
learning through the local Rademacher complexity under the
smooth Lipschitz assumption on loss functions.

4.1 Linear Metirc Learning Model
We consider the following linear hypothesis class:

F := {xi 7→ Wxi : W ∈ Rd×d′
, ∥W∥p,1 ≤ Λ}.

For any linear mapping f ∈ F , the distance metric function
is defined by

Df (xi, xj) = (xi − xj)
TWTW (xi − xj). (6)

The Lipschitz constant of the function θi, θj 7→ ℓ(τ(yi, yj)
(1−Df (xi+θi, xj+θj))) required in Theorem 1 is provided
in the following lemma.
Lemma 2. Let Df be the linear distance function defined
in (6). Then, for any sample pair (xi, yi) and (xj , yj), the
function θi, θj 7→ ℓ(τ(yi, yj)(1 − Df (xi + θi, xj + θj)))
is 4ξΛ2Ψ-Lipschitz, where 4Λ2Ψ is the Multi-variate Lips-
chitz constant of the function θi, θj 7→ Df (xi + θi, xj + θj),
and Ψ is max(1, d1−

1
p−

1
r )(∥X∥r,∞ + ε).

The proof is provided in Appendix.D.1. Based on the Lip-
schitzness of the adversarial loss function in Lemma 2, we
obtain an upper bound on the covering number of the loss
class L̃adv on the sample S̃ in the theorem below.

Theorem 2. With the notation in Lemma 2. Let L̃adv be de-
fined in (5) and S̃ be defined in Theorem 1. Then, for υ > 0,
we have

logN∞(L̃adv, υ/4, S̃) ≤ C
ξ2Λ4Ψ̂2

υ2
Llog,

where

Llog = log

(
4
⌈32ξΛ2Ψ̂

υ
+ 1
⌉
n
(16ξΛ2εΨ

υ

)d
+ 1

)
,

Ψ = max(1, d1−
1
p−

1
r )(∥X∥r,∞+ ε), Ψ̂ = max(1, d1−

1
p−

1
r )

(∥X∥r,∞ + ε)2 and C is a constant.
The detailed proof is contained in Appendix D.1. Based on

Theorem 2 and Lemma 1, we establish the following high-
probability generalization bound.
Theorem 3. With the notation above. For any fixed ξ > 0
and all f ∈ F , with probability at least 1− δ, we have

Ẽ(f)− Ẽn(f) ≤ 3

√
log(2/δ)

2n
+

8

n3/2
+ C

ξΛ2Ψ̂ log(n)

n

×

√
log

(
4
⌈
32nξΛ2Ψ̂ + 1

⌉
n
(
16nξΛ2εΨ

)d
+ 1

)
.

where Ψ̂ = max(1, d1−
1
p−

1
r )(∥X∥r,∞ + ε)2 and C is a con-

stant.

The proof of this theorem is provided in Appendix D.2.
Remark 1. The generalization bound in Therorem 3 suffers
from additional dimension dependent terms as compared to
its non-adversarial counterpart. The first d1−

1
p−

1
r depen-

dence in Ψ̂ is due to the mismatch between the norm on the
input x and the norm in the ball B(ε). Indeed, we have used
the inequality ∥xi + θi∥p∗ ≤ max(1, d1−

1
p−

1
r )∥xi + θi∥r in

Awasthi et al. (2021), where 1− 1/p = 1/p∗. If 1
p + 1

r ≥ 1,

Ψ̂ is dimension independent, which implies that one should
choose a p-norm regularizer on W (i.e., the weight matrix),
where p ∈ [1, r∗]. The second

√
d dependence in square root

of the third term on the right side of Therorem 3, is attributed
to the complexity of the perturbation ball B(ε). For example,
if B(ε) is contained in a low dimensional space d′ < d, the
dependence is reduced to O(

√
d′). This motivates the map-

ping f to project the input x ∈ Rd into a low-dimensional
subspace to reduce the effective dimensionality of adversar-
ial perturbations.
Remark 2. Theorem 3 is a high-probability generalization
bound for adversarial metric learning in the linear case, mo-
tivated by the recent analyses in the adversarial pointwise
learning (Awasthi et al. 2021; Mustafa, Lei and Kloft 2022).
In contrast with prior work of Mustafa et al. (2022) that
studies ℓ∞-norm perturbations, we consider the general case
where the perturbations are measured in ℓr-norm. More-
over, our theoretical analysis is novel since it is the first
touch for adversarial pairwise learning with pairwise pertur-
bations than existing work [Yin et al., 2019; Mo et al., 2022;
Mustafa et al., 2022].
Remark 3. Setting ε = 0, we obtain a standard risk bound
for linear metric learning in non-adversarial case; see (7).
Although the bound (7) with order O(1/

√
n) is similar to the

generalization bounds in Cao at al. (2016), Ye et al. (2019),
and Let et al. (2020), our result applies to a wider range of
loss functions such as hinge loss and logistic loss.

E(f)− En(f) ≤ 3

√
log(2/δ)

2n
+

8

n3/2
+ C

ξΛ2∥X∥2p∗,∞

n

×

√
log

(
4
⌈
32nξΛ2∥X∥2p∗,∞ + 1

⌉
n+ 1

)
log(n). (7)

4.2 Deep Metirc Learning Model
Let the mapping f be a L-layer neural network parametrized
by the weights W = {W l ∈ Rhl×hl−1}Ll=1, where hl is the
number of neurons in the l-th layer of the network and h0 =
d. Given the input sample xi ∈ Rd, the output of the final
layer in the network can be written as

f(xi) = WLρ(WL−1ρ(· · · ρ(W 1xi))), (8)

where ρ(·) denotes the non-linear 1-Lipschitz activation func-
tion. We consider norm-bounded networks with the following
hypothesis class

F := {xi 7→ f(xi) : f ∈ F , ∥W l∥F ≤ bl, ∥W l∥σ ≤ sl},
where ∥ · ∥σ represents spectral norm and ∥ · ∥F denotes the
Frobenius norm.
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As with the linear case, we first establish the Lipschitzness
of the function θi, θj 7→ ℓ(τ(yi, yj)(1−Df (xi+θi, xj+θj))).
The results are summarized in the following lemma.

Lemma 3. Let f ∈ F be the neural network defined in (8)
and Df be the distance metric function defined as (1). For
all (xi, yi), (xj , yj) and f ∈ F , the function ℓ(τ(yi, yj)(1 −
Df (xi + θi, xj + θj))) is 4ξ

∏L
l=1 s

2
l Ψ-Lipschitz in θi, θj ,

where 4
∏L

l=1 s
2
l Ψ is the Multi-variate Lipschitz constant

of the function θi, θj 7→ Df (xi + θi, xj + θj), and Ψ is
max(1, d1−

1
p−

1
r )(∥X∥r,∞ + ε).

The proof is given in Appendix E. With this lemma, we es-
tablish the following upper bound on the ℓ∞-covering num-
ber of the class L̃adv in nonlinear cases.

Theorem 4. With the notation in Lemma 3. Let L̃adv be de-
fined in (5) and S̃ be defined in Theorem 1. Then, for ϵ > 0,
we have

logN∞(L̃adv, υ/4, S̃) ≤
Cξ2Ψ̂2L4

υ2

L∏
l=1

s4l

(
L∑

l=1

b2l
s2l

)2

Llog,

where

Llog = log

(⌈C1ξΨ̂Γ2

υ
+C2

⌉
nĥ
(16ξ∏L

l=1 s
2
l εΨ

υ

)d
+1

)
,

Ψ = max(1, d1−
1
p−

1
r )(∥X∥r,∞ + ε), Ψ̂ = max(1, d1−

1
p−

1
r )

(∥X∥r,∞ + ε)2, Γ = maxl∈[L](
∏L

i=1 si)bl/sl, ĥ =
maxl∈[L] hl, and C,C1, C2 are universal constants.

The proof is given in Appendix E. By combining Theorem
4 with Lemma 1, we obtain the following sharp bound with
high probability.

Theorem 5. With the notation in Theorem 4. For any fixed
ξ > 0 and all f ∈ F , with probability at least 1− δ, we have

Ẽ(f)− Ẽn(f)

≤ 3

√
log( 2δ )

2n
+

8

n3/2
+

CξΨ̂L2

n

L∏
l=1

s2l

L∑
l=1

b2l
s2l

log(n)L̃log,

where L̃log is defined by√√√√log

(⌈
C1nξΨ̂Γ2 + C2

⌉
nĥ
(
16nξ

L∏
l=1

s2l εΨ
)d

+ 1

)
.

Remark 4. Similar to the linear case, the bound in Theorem
5 has max(1, d1−

1
p−

1
r ) and

√
d dependencies. The first is

in Ψ̂, which arises from the mismatch of norms and can be
avoided by simply picking the appropriate norm regulariza-
tion (ℓp) on the weight matrices (W ) as discussed above. The
second

√
d dependence in L̃log. As discussed in the linear

case, a projection on a low-dimensional represent space can
help alleviate such dependence incurred by the complexity of
the adversarial perturbation ball B(ε).

Remark 5. Theorem 5 provides generalization guarantees
for adversarial metric learning in nonlinear case. The
bounds in Yin et al. (2019) and Awasthi et al. (2021) ap-
ply only to a one-hidden-layer neural network. This contrasts
with our bound, which applies to multi-layer networks. While
the bounds in Khim and Loh (2018) and Mustafa, Lei and
Klof (2022) apply to multi-layer networks, they are only ap-
plicable to pointwise learning and the single-sample pertur-
bation case.
Remark 6. Similar to the linear case, Theorem 5 can recover
the non-adversarial generalization bound (9) by setting ε =

0. The bound (9) is of the order O(
√
d log(ĥ)/

√
n), where ĥ

is the width of the hidden layer. The generalization bound in
Huai et al. (2019) grows as O(

√
ĥ), while ours is O(log(ĥ)).

E(f)− En(f)

≤ 3

√
log(2/δ)

2n
+

8

n3/2
+

Cξ∥X∥2p∗,∞L2

n

L∏
l=1

s2l

L∑
l=1

b2l
s2l

×
√

log
(⌈

C1nξΓ2∥X∥2p∗,∞ + C2

⌉
nĥ+ 1

)
log(n). (9)

4.3 Optimistic Bounds
Optimistic bounds have been studied in [Srebro et al., 2010;
Reeve and Kaban, 2020], where they have resulted in fast-
rate generalization bounds for smooth losses under low-noise
conditions. We aim to extend these approaches to adver-
sarial metric learning. Our results are based on the local
Rademacher complexity [Bartlett et al., 2005] with respect
to sample pairs [Cao et al., 2016].
Definition 3 (Local Rademacher complexity). Let H : X ×
X → R be a hypothesis class. Given a sample S =
{(x1, y1), . . . , (xn, yn)} of size n, The local Rademacher
complexity is the worst-case Rademacher complexity of H
on S of cardinality n, that is, Rn(H) := sup|S|≤n RS(H),
where RS(H) is the empirical Rademacher complexity with
respect to sample pairs defined by

RS(H) =
1

⌊n/2⌋
Eσ

[
sup
h∈H

⌊n/2⌋∑
i=1

σih(xi, x⌊n/2⌋+i)
]
,

where σ1, . . . , σn are i.i.d Rademacher random variables
with P{σi = 1} = P{σi = −1} = 1

2 .

Let D̃ := {((xi, θi), yi), ((xj , θj), yj) 7→ Df (xi+θi, xj+

θj) : f ∈ F}. The local class D̃|γ = {((xi, θi), yi), ((xj , θj)

, yj) 7→ Df (xi + θi, xj + θj) : f ∈ F , Ẽn(f) ≤ γ} ⊂ D̃
is defined as the set of function Df ∈ D̃ with the adversar-
ial empirical error at most γ. Similarly, the local adversar-
ial loss class is defined as Ladv|γ := {(xi, yi), (xj , yj) 7→
maxθi,θj∈B(ε) ℓ(τ(yi, yj)(1 − Df (xi + θi, xj + θj))) : f ∈
F , Ẽn(f) ≤ γ}.

We introduce the self-bounding Lipschitz [Reeve and Ka-
ban, 2020] for the loss function, which assumes that the loss
function is smooth. Srebro et al. (2010) show that such
smoothness condition can give rise to an optimistic bound
having a fast rate O(n−1) in the realisable case. Under
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smoothness assumption, we derive an upper bound on the lo-
cal Rademacher complexity of adversarial loss class, which
serves as a key step in developing fast-rate bounds.

Lemma 4. Let Ladv|γ and D̃ be defined as above. Suppose
that for any f ∈ F , ∥f∥∞ ≤ B, and the loss ℓ is (λ, η)-
self-bounding Lipschitz bounded by b. Further let θi, θj 7→
ℓ(τ(yi, yj)(1 − Df (xi + θi, xj + θj))) be ∥ · ∥-Lipschitz
with constant L and S̃ = {((xi, θi), yi) : i ∈ [n], θi ∈
CB(

3υ
λ(2γ)η8L )}. Suppose further that n 7→

√
nR|S̃|(D̃) is

non-decreasing. Then, we have

Rn(Ladv|γ) ≤ λ(γ)ηR|S̃|(D̃)

√
|S̃|/nΩ

where Ω grows at the order of

O
(
log3/2

( |S̃|
R|S̃|(D̃)

)
− log3/2

(B2|S̃|λ
b1−η

))
The detailed proof is provided in Appendix F.1. Based on

Lemma 4 and the sub-root property in [Bartlett et al., 2005],
fast generalization bounds adversarial metric learning with
smooth losses are given in the following theorem.
Theorem 6. With the above notation and assumption of
Lemma 4, for all f ∈ F , with probability at least 1 − δ,
we have

Ẽ(f)− Ẽn(f) ≤ 106λ2R2
|S̃|(D̃)Ω2|S̃|/n

+
48b

n
(log(1/δ) + log(log(n)))

+

√
Ẽn(f)

(
8λ2R2

|S̃|(D̃)Ω2|S̃|/n+K
)

where K = 4b
n (log(1/δ) + log(log(n))).

Remark 7. The convergence rate of the generalization bound
in Theorem 6 grows as R2

|S̃|(D̃). For the majority of func-
tion classes (e.g., linear models [Yin et al., 2019]), the
Rademacher complexity is at least O(n−1/2). The second
term would then grow as O(n−1), while the fourth term
would grow at the usual O(n−1/2) rate. However, if Ẽn(f) =
0, the fourth term vanishes, thus achieving a fast rate of con-
vergence at least O(n−1).
Remark 8. We establish the fast-rate generalization bound
with high probability for metric learning in non-adversarial
case,

E(f) ≤ En(f) + 106λ2R2
n(D)Ω̂2 +

48b

n
(log(1/δ)

+ log(log(n))) +

√
En(f)

(
8λ2R2

n(D)Ω̂2 +K
)
,

where D is the class of distance function and Ω̂ grows at
the order O(log3/2( n

Rn(D) ) − log3/2(B
2nλ

b1−η )). It extends the
previous optimistic results [Srebro et al., 2010] of pointwise
learning to pairwise learning. In contrast with the bounds
of order O(n−1/2) [Cao et al., 2016; Huai et al., 2019;
Lei et al., 2020], this is the improved result.

Dataset Size (n) Dimension (d)
Wine 178 13
Spambase 4601 58
MNIST 70000 784
CIFAR-10 60000 3072

Table 2: The details of the adopted datasets.

5 Experiments
5.1 Experimental Setup
Datasets. We adopt the following real-world datasets for
experiments: the Wine1, Spambase2, MNIST3 and CIFAR-
104 datasets. Table 2 provides details of dimension (d) and
size (n). Note that the input for adversarial metric learning
models is a set of sample pairs rather than single samples.
For the original dataset with single samples, we make one-
by-one matching to form n(n − 1) sample pairs, and then
randomly select n pairs to construct the new dataset. The pair
composed of samples with the same category is assigned to
label 1, and the other is assigned to 0. We randomly split the
new dataset into training, validation and test sets with a ratio
of 6 : 2 : 2, where the validation set is used for early stopping
to prevent overfitting of model.
Model and Attack Settings. We use one-layer neural net-
works without nonlinear activation as the linear model. De-
note the number of units in the output layer by d′. We utilize
five-layer feed-forward neural networks with ReLU activa-
tion [Hahnloser et al., 2000] as the non-linear model, where
the number of the units in each layer is (512, 256, 128, 64, d′).
All models trained with the Adam optimizer. The learning
rates of the linear model and the nonlinear model are set as
1e− 2 and 1e− 3, respectively.

We apply ℓ∞ PGD attack [Madry et al., 2018] adversarial
training to minimize the following objective function
min
fW

∑
i̸=j

max
θi,θj∈B(ε)

ℓ(τ(yi, yj)(1−DfW (xi + θi, xj + θj))) + λ∥W 1∥1,

where ℓ(·) is cross entropy loss, fW is the mapping function
parameterized by W = {W l ∈ Rhl×hl−1}Ll=1, where hl is
the number of neurons in the l-th layer of the network (es-
pecially, h0 = d, hL = d′), and λ ≥ 0 is the regularization
parameter. Then, we run PGD attack to check the general-
ization error. Similar to Yin et al. (2019), the generalization
error is approximately calculated by

|adversarial train accuracy − adversarial test accuracy|.
(10)

During the training and test phases, the adversarial samples
are generated by PGD algorithm with step size ε/5, where ε
is the maximum magnitude of the allowed perturbations that
varies in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. Overall,
each experiment is independently repeated 10 times, and av-
erage generalization error with standard deviation of adver-
sarial metric learning models are reported.

1https://archive.ics.uci.edu/ml/datasets/wine/
2https://archive.ics.uci.edu/ml/datasets/spambase/
3http://yann.lecun.com/exdb/mnist/
4https://www.kaggle.com/competitions/cifar-10/data
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Figure 1: The generalization error (10) (mean and standard de-
viation over 10 runs) for different dimensional outputs (d′) of
adversarial metric learning models. ε denotes the perturbation
bound. Subfigures (a) and (b) present results for linear models. Sub-
figures (c) and (d) present results for nonlinear models on adopted
datasets.

5.2 Experiment Results
Theorem 3 and 5 suggest that projecting the input feature to
low-dimensional output and applying appropriate regulariza-
tion to the weights of models, can reduce the generalization
error of adversarial metric learning models. Here, we conduct
linear and non-linear experiments to validate these theoretical
findings.
The Effect of the Output Dimension. To investigate the
effect of the output dimension on the generalization perfor-
mance, we train models with different dimensional outputs.
In the linear case, we consider three cases where the output
dimension (i.e., d′) is set as d, ⌈d/2⌉ and ⌈d/3⌉, respectively.
For the nonlinear case, the output dimension of the final layer
of neural networks is set as 512, 128 and 32, respectively.
Figure 1 plots the generalization errors (10) of linear and non-
linear models on the adopted datasets. As we can see, the
fewer the output features, the smaller the generalization error,
which suggests that projecting input into the low-dimension
feature space can potentially reduce the generalization gap of
adversarial metric learning models.
The Effect of Regularization. We evaluate the effect of the
weight parameters on the generalization of adversarial metric
learning models by comparing the performance of the models
with and without regularization. We employ linear and non-
linear models with output dimensions d and 32, respectively,
and apply the L1 regularization to W 1 (i.e., the weights of
the first layer of models). The regularization parameter λ is
set as 0, 0.01 and 0.02. Note that λ = 0 indicates the model
trained without regularization. The generalization errors (10)
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Figure 2: The generalization error (10) (mean and standard devi-
ation over 10 runs) for adversarial metric learning models with
(λ ̸= 0) and without (λ = 0) L1 regularization. λ denotes regular-
ization parameter, and ε denotes the perturbation bound. Subfigures
(a) and (b) present results for linear models. Subfigures (c) and (d)
present results for nonlinear models on adopted datasets.

of linear and nonlinear models on the adopted datasets are
presented in Figure 2. We can see that generalization gap
of the model with regularization is smaller than that of the
model without regularization, thus we conclude that applying
L1-norm regularization to adversarial metric learning models
is helpful for reducing generalization error.

6 Conclusions
This paper presents a detailed study of the generalization
properties of adversarial metric learning under ℓr adversar-
ial perturbations. We derive the high-probability generaliza-
tion bounds for adversarial metric learning with pairwise per-
turbations by developing the uniform convergence analysis
techniques. Our results apply to both linear and deep met-
ric learning models, as well as to various loss functions. To
our knowledge, this is the first generalization analysis for ad-
versarial pairwise learning with pairwise perturbations. We
further extended our analysis to the case of smooth losses,
and establish a fast generalization bound at a rate of O(n−1)
by the local Rademacher complexity. In future work, we will
investigate the generalization properties of models under non-
additive attacks.
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