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Abstract

As a powerful tool for data representation, deep
NMF has attracted much attention in recent years.
Current deep NMF builds the multi-layer structure
by decomposing either basis matrix or feature ma-
trix into multiple factors, and probably complicates
the learning process when data is insufficient or
exhibits simple structure. To overcome the limi-
tations, a novel method called Generalized Deep
Non-negative Matrix Factorization (GDNMF) is
proposed, which generalizes several NMF and deep
NMF methods in a unified framework. GDNMF si-
multaneously performs decomposition on both fea-
tures and bases, which learns a hierarchical data
representation based on multi-level basis. To fur-
ther improve the latent representation and enhance
its flexibility, GDNMF mutually reinforces shallow
linear model and deep non-linear model. Moreover,
semi-supervised GDNMF is proposed by treating
partial label information as soft constraints in the
multi-layer structure. An efficient two-phase opti-
mization algorithm is developed, and experiments
on five real-world datesets verify its superior per-
formance compared with state-of-the-art methods.

1 Introduction
Data processing and analysis are of great importance in artifi-
cial intelligence area, and have a wide range of applications,
such as face recognition [Karczmarek et al., 2019], computer
vision [Buckler et al., 2018] and signal processing [Baraniuk,
2011]. However, a large amount of data collected from real-
word applications is often accompanied with irrelevant and
redundant information, and the data usually exhibits high-
dimensionality. Such data probably results in a high com-
putational cost in applications, and harms the generalization
ability of a learning algorithm. To recover the latent repre-
sentation and reduce the redundancy, various dimension re-
duction methods have been proposed, such as Principal Com-
ponent Analysis (PCA) [Moore, 1981], Locally Preserving
Projection (LPP) [He and Niyogi, 2003], Linear Discriminant
Analysis (LDA) [Li and Yuan, 2004] and Non-negative Ma-
trix Factorization (NMF) [Lee and Seung, 1999].

As a popular and promising dimensionality reduction
method, NMF decomposes a non-negative data matrix X into
a product of two non-negative matrices: the latent basis ma-
trix W and the latent feature matrix H, and treats the fea-
ture matrix as the latent attribute representation of the origi-
nal data. Due to the non-negativity constraints, NMF enables
to learn part-based representation by only allowing additive
combination, that leads to better interpretability in practice.
As a variant of NMF, semi-NMF [Ding et al., 2008] re-
laxes non-negativity constraints on the basis matrix and the
data matrix, which extends the applicability of NMF when
the data is not strictly positive. It can be interpreted from
the clustering perspective: the basis matrix contains clus-
ter centroids, while the feature matrix indicates the cluster
assignment. In addition to the above unsupervised NMF
methods, semi-supervised NMF seeks to utilize the super-
vised prior label information in data. According to differ-
ent ways of using the supervised information, these methods
can be roughly categorized into hard constriant methods and
soft constriant methods [Chen et al., 2022]. The hard con-
straint methods [Liu et al., 2011; Meng et al., 2019] learn ex-
actly same representation for samples with same labels. In
contrast, the soft constraint methods [Babaee et al., 2016;
Lan et al., 2014] utilize partial label information by soft reg-
ularization, that allows for similar but distinct representations
for samples associated with same labels.

The above methods essentially employ a single-layer struc-
ture, that only takes the shallow information of data into ac-
count. However, it is possible that data contains complex hi-
erarchical structure information, which conventional single-
layered methods cannot extract. Therefore, deep NMF in a
multi-layer structure has been proposed [Wisdom et al., 2017;
Liu et al., 2017]. These methods build the multi-layer net-
work by further decomposing either the feature matrix or
the basis matrix into multiple components [Trigeorgis et al.,
2016; Zhao et al., 2021]. They extract latent hierarchical fea-
tures from the complex data, and obtain a multi-layer feature
or basis representation. In addition, semi-supervised deep
NMF [Trigeorgis et al., 2016; Meng et al., 2019] is pro-
posed to further improve the performance by using a lim-
ited number of labels. Much success has been achieved by
deep NMF, however, there are still some limitations. 1) Most
deep NMF methods focus on feature decomposition, which
fails to model high-level and local basis that consists of low-
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level representations, while recently proposed deep basis de-
composition ignores the multi-layer feature representation of
data. 2) Current NMF-based methods employ either deep or
shallow models, but the shallow model cannot capture hier-
archical representations, while the deep model does not al-
ways perform well when data is insufficient or exhibits sim-
ple representation. 3) Most deep NMF [Zhao et al., 2021]
models are unsupervised and thus ignore the prior label in-
formation. Even though a few semi-supervised deep NMF
models [Meng et al., 2019] are proposed, they usually im-
pose hard constraint such that samples from the same class
have exactly the same multi-layer representation, which is too
restrictive in practice. Some graph regularized methods [Tri-
georgis et al., 2016] implement soft constraint, but they need
a quadratic complexity w.r.t. the number of samples, making
it intractable on large-scale data.

To overcome these limitations, Generalized Deep Non-
Negative Matrix Factorization (GDNMF) is proposed, which
generalizes several NMF and Deep NMF methods in a uni-
fied framework. GDNMF enables to extract hierarchical fea-
ture representations based on multi-level basis, by conduct-
ing both feature and basis decomposition (For Limitation 1).
To further improve the latent representation, it mutually re-
inforces the shallow model and the deep model, such that
both simple linear information and complex non-linear struc-
ture can be saved (For Limitation 2). Moreover, by treating
the supervised information as soft constraints in multi-layer
data representation, semi-supervised GDNMF is proposed to
utilize the labels in a discriminative manner (For Limitation
3). An efficient optimization algorithm is developed in lin-
ear complexity w.r.t. the data size, and experimental results
on five real-world datasets demonstrate its superior perfor-
mance compared with state-of-the-art NMF-based methods.
The contributions are summarized as follows:

1. A novel Deep NMF method, named GDNMF, is pro-
posed by simultaneously performing deep factorization
on features and bases, which enables to learn a hierar-
chical data representation based on multi-level basis.

2. GDNMF incorporates linear shallow model and non-
linear deep model in a single architecture, which is flex-
ible enough to handle various practical applications and
unifies several NMF and deep NMF methods.

3. Semi-supervised GDNMF is developed to use the lim-
ited label information in a discriminative way.

4. Extensive experiments on various real-world datasets
verify the effectiveness of GDNMF.

2 Related Works
2.1 Non-Negative Matrix Factorization (NMF)
For a non-negative data matrix X ∈ Rp×n

+ , NMF [Lee and
Seung, 1999] decomposes X into a product of two low-
dimensional non-negative matrices W and H. Semi-NMF
[Ding et al., 2008] relaxes the non-negativity constraints on
the data matrix X and the basis matrix W, leading to a
wider range of applications. To encode geometrical informa-
tion, GNMF [Cai et al., 2010] constructs an affinity graph
over samples, and obtains improved generalization ability.

SeaNMF [Shi et al., 2018] uses a block coordinate descent
algorithm, and incorporates the word-context semantic corre-
lations into the model to discover topics for the short texts.
IWNS-NMF [Sabzalian and Abolghasemi, 2018] is proposed
to find localized and part-based representations. NMF-LCAG
[Yi et al., 2019] introduces a locality constrained graph to
discover the latent manifold structure of the data, where the
weight matrix of graph and low-dimensional features of data
can be learned together. KLS-NMF [Peng et al., 2021a] re-
veals inherent geometric property of the data, by learning lo-
cal similarity and clustering in a mutually reinforcing way.

For semi-supervised NMF, CNMF [Liu et al., 2011] uti-
lizes the partial label information as hard constriant, making
samples from the same class share the same low-dimensional
representations, and thus it guarantees that data with the same
labels are grouped into the same clusters. Different from
CNMF, DNMF [Babaee et al., 2016] utilizes the label in-
formation via a discriminative regularization, which does not
necessarily map the samples with the same label into an iden-
tical latent representation. RDNMF-SLC [Tong et al., 2019]
decomposes the data matrix into three matrices: basis matrix,
auxiliary matrix and soft label constraint matrix, and learns a
disciminative and robust feature representation. PCMF [Chen
et al., 2019] seeks to make the data points from the same class
more likely to be merged together in the latent space. CSNMF
[Peng et al., 2021b] adopts a correntropy based loss function
in constrained NMF to suppress the influence of outliers.

2.2 Deep NMF
Deep NMF has been proposed to explore hierarchical features
from the complex data, which improves performance in terms
of data representation and clustering. [Trigeorgis et al., 2016]
proposes Deep semi-NMF (DSNMF), which progressively
decomposes the original data matrix X into m+ 1 factors by
X ≈ W1W2 · · ·WmHm. It automatically learns a hierar-
chy of representations for clustering. Different from DSNMF,
that factorizes the feature matrix layer by layer, [Zhao et al.,
2021] proposes the deep nonnegative basis matrix factoriza-
tion (DNBMF) that performs deep factorization on the un-
derlying basis matrix by X = WmHm · · ·H2H1. To make
the basis vectors sparse, RDNBMF [Zhao et al., 2021] im-
poses a sparse-inducing regularization term on each layer, and
achieves better performance in experiments. In GSDNMF
[Fang et al., 2018], the L1 regularizers on both endmember
and abundance matrices are imposed to promote sparsity, and
the graph regularization in each layer is incorporated to re-
main the geometric structure. PDNMF [Zhao et al., 2022]
adds a basis image reconstruction step to the successive steps
of factorization, which helps the basis image to maintain ro-
bust feature representation. To enhance the discriminativity
of learned features, DDSNnet [Wang et al., 2021] adpots sim-
ilarity measurements between input data and hidden features
as a regularization term, which is beneficial to preserve in-
trinsic information of original data.

Recently, semi-supervised Deep NMF methods have been
proposed to take advantage of the limited prior information.
Deep Weakly-Supervised Factorization (Deep WSF) [Trige-
orgis et al., 2016] constructs a Laplacian matrix based on the
prior label knowledge and uses it to regularize the objective
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function. SGDNMF [Meng et al., 2019] utilizes the dual-
hypergraph Laplacian regularization to capture the high-order
relations among data points and enforce the partial label in-
formation via a label constraint matrix. By introducing both
the global loss and the central loss of the soft label constraint
matrix, Deep DRNMF-SLC [Tong et al., 2019] acquires a hi-
erarchical and discriminative data representation. Based on
hierarchical non-linear feature extraction, JDSNMF [Moon
and Lee, 2021] captures shared latent features from the com-
plex multi-omics data.

Existing deep NMF methods focus on decomposing either
the feature matrix or the basis matrix, and are typically con-
strained in either shallow architectures or deep architectures
with hard constraints of labels. In contrast, the proposed
GDNMF progressively factorizes both features and bases, so
that hierarchical feature representation based on multi-level
basis can be extracted. Moreover, it incorporates linear shal-
low model and non-linear deep model in a unified architec-
ture, and is extended to utilize the label prior information in a
discriminative manner.

3 Preliminary
3.1 Notations
The original data is presented as X = [x1,x2, · · · ,xn] ∈
Rp×n, where the i-th column xi denotes a sample with p fea-
tures. Let Y ∈ {0, 1}c×n represent the label matrix and c
denote the number of classes. In the semi-supervised setting,
only the first q samples (columns) of Y are labeled, and the
rest (n−q) columns are zero. Let X̂ denote the reconstructed
X i.e., X̂ = WH, where W ∈ Rp×k and H ∈ Rk×n denote
the basis matrix and the feature matrix, respectively, and k is
the latent dimension. Tr(·) denotes the matrix trace, ∥ · ∥F
is the Frobenius norm with ∥X∥F =

√
Tr(XTX), and ⊙

denotes the element-wise product.

3.2 Deep NMF with Feature Decomposition
DSNMF [Trigeorgis et al., 2016] decomposes the feature ma-
trix H into m layers according to:

X̂ = W1W2 · · ·WmHm, (1)

where Hi = Wi+1Hi+1, i = 1, 2, · · · ,m − 1, Wi is the
basis matrix of the i-th layer, and Hi is the corresponding
feature matrix. Compared with shallow NMF, DSNMF en-
ables to capture a better low-dimensional data representation.
Non-linear DSNMF introduces a non-linear squashing func-
tion between successive layers to approximate the non-linear
manifold in the data. However, only the basis matrix W1

learned in the first layer is directly related to the original data,
which only reflects the shallow local information, and thus
DSNMF cannot model high-level and local basis.

3.3 Deep NMF with Basis Decomposition
Different from deep feature factorization, DNBMF [Zhao et
al., 2021] decomposes the basis matrix W by

X̂ = WmHm · · ·H2H1, (2)

where Wi = Wi+1Hi+1, i = 1, 2, · · · ,m − 1. By per-
forming deep factorization on the basis matrix, it obtains the

underlying basis matrix which can reflect the deep local char-
acteristics of the samples. However, since only the feature
matrix H1 in the first layer is directly related to X, it ignores
hierarchical data representation.

4 Methodology
4.1 Deep Feature and Basis Decomposition
Currently, no deep feature decomposition method considers
the high-level and local basis, while no deep basis counter-
part can capture the hierarchical feature representation. To
overcome the limitation, we propose to simultaneously de-
compose features and bases in deep NMF. Specifically, at the
first layer of the deep model, we decompose the data matrix
X ∈ Rp×n into three matrices: F1 ∈ Rp×k1 , S1 ∈ Rk1×k2

and G1 ∈ Rk2×n, and reconstruct X by

X̂ = F1S1G1,

s.t. F1 ≥ 0,S1 ≥ 0,G1 ≥ 0,
(3)

where F1 is the basis matrix, G1 is the feature matrix and S1

is an auxiliary matrix that stores the interactions between F1

and G1. Then the following deep factorization can be con-
ducted for both basis matrix F1 and feature matrix G1. For
basis decomposition, we iteratively decompose the basis ma-
trix F1 layer by layer, according to Fi ≈ Fi+1S

L
i+1, where

Fi is the basis matrix at the i-th layer, and SL
i is the cor-

responding auxiliary matrix. Thus, the basis decomposition
can be expressed as:

F̂1 = Fm1
SL
m1

SL
m1−1 · · ·SL

2 ,

s.t. Fi ≥ 0, SL
i ≥ 0, i = 1, 2, · · · ,m1,

(4)

where m1 is the number of layers for basis decomposition.
Similarly, for feature decomposition, we iteratively decom-
pose the feature matrix G1 layer by layer, according to Gi ≈
SR
i+1Gi+1, where Gi is the feature matrix at the i-th layer,

and SR
i is the corresponding auxiliary matrix. Thus, the fea-

ture decomposition can be expressed as:

Ĝ1 = SR
2 S

R
3 · · ·SR

m2
Gm2

.

s.t. Gi ≥ 0, SR
i ≥ 0, i = 1, 2, · · · ,m2,

(5)

where m2 is the number of layers for feature decomposition.
Since real-word data may exhibit deep non-linear hierar-

chical structures, the linear decomposition may fail to cap-
ture possible non-linearity among different levels of the latent
features and bases. To address this problem and enhance the
model’s expressibility, a non-linear function g(·) 1 is intro-
duced for the transformation between successive layers, i.e.
F̂i = g(Fi+1S

L
i+1), and Ĝi = g(SR

i+1Gi+1). Then the opti-
mization problem is formulated as:

min
F,S,G≥0

1

2
∥X− F̂1S1Ĝ1∥2F ,

s.t. F̂1 = g(g(g(Fm1
SL
m1

)SL
m1−1) · · ·SL

2 ),

Ĝ1 = g(SR
2 g(· · ·SR

m2−1g(S
R
m2

Gm2))).

(6)

1Some commonly used non-linear functions include x2,
sigmoid(x) and tanh(x). In experiments, we set g(x) = x2.
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Figure 1: Example of the frameworks of the proposed method. For simplicity, we employ a two-layer structure for both feature and basis
factorization. NMF in (3) reconstructs X by X̂ = F1S1G1, and Deep FBD in (6) simultaneously conducts decomposition on feature G1 and
basis F1 by Ĝ1 = g(SR

2 G2) and F̂1 = g(F2S
L
2 ), respectively. GDNMF in (7) uses the summation of deep nonlinear F̂1S1Ĝ1 and shallow

linear WG2 to reconstruct X. GD2NMF in (10) utilizes the prior label information Y based on the reconstruction Ŷ = UĜ1 +VG2.

The non-linear function g(·) applied between successive lay-
ers helps to extract features of classes that are non-linearly
separable in the initial input space, which enhances the
model’s expressibility and improves the data representation.
Moreover, Deep Feature and Basis Decomposition (Deep
FBD) conducts deep decomposition on the basis matrix and
the feature matrix simultaneously, which learns a hierarchical
data representation based on multi-level basis. Fig. 1 shows
an example of Deep FBD.

4.2 Incorporating Shallow and Deep Models
Deep NMF shows its performance advantage compared with
classical NMF in previous works [Trigeorgis et al., 2016;
Zhao et al., 2021], as it can deal with complex data and ob-
tain hierarchical structure of latent representations. However,
when data is insufficient or essentially exhibits a simple la-
tent structure, which can be easily modeled by a linear map-
ping, the deep structure in deep NMF may complicate the
learning process, usually at high computational cost. To ad-
dress this problem, we propose to incorporate shallow lin-
ear model and deep non-linear model together in a unified
architecture, to capture various types of information during
data representation. To this end, instead of directly minimiz-
ing the difference between X and its reconstruction F̂1S1Ĝ1

in (6), an extra linear representation of feature decomposi-
tion Gm2

from the last layer is used to approximate the dif-
ference X − F̂1S1Ĝ1. Therefore, we formulate the opti-
mization problem of Generalized Deep Non-Negative Matrix
Factorization (GDNMF) as:

min
F,S,G,W≥0

1

2
∥X− F̂1S1Ĝ1 −WGm2

∥2F ,

s.t. F̂1 = g(g(g(Fm1S
L
m1

)SL
m1−1) · · ·SL

2 ),

Ĝ1 = g(SR
2 g(· · ·SR

m2−1g(S
R
m2

Gm2
))).

(7)

In (7), F̂1S1Ĝ1 is obtained by a deep nonlinear model to
capture non-linear complex hierarchical information, while
WGm is modeled by a shallow linear model to capture lin-
ear information, with W being the linear basis matrix. Obvi-
ously, when the non-linear part is omitted, GDNMF becomes
NMF [Lee and Seung, 1999]. When the linear part is omit-
ted, GDNMF becomes DSNMF [Trigeorgis et al., 2016] and
DNBMF [Zhao et al., 2021] once m1 = 1 and m2 = 1,
respectively. In this way, GDNMF unifies and generalizes
several existing NMF and Deep NMF methods, and thus it is
flexible enough to handle various practical applications.

4.3 Semi-Supervised GDNMF
GDNMF actually ignores the prior label information, but
utilizing such label information is the key for performance
improvement. In this section, we propose Generalized
Discriminative Deep Non-Negative Matrix Factorization
(GD2NMF) to use the limited labeled data in the semi-
supervised setting.

Similar with the reconstruction of X in GDNMF, we con-
sider that both deep information and shallow information con-
tribute to the reconstruction of Y. Specifically, Y is recon-
structed by a summation of linear transformations of deep
nonlinear data representation Gm2

and shallow linear data
representation G1. To this end, we propose a discriminative
regularization that is expressed as:

∥(Y −UĜ1 −VGm2
)Q∥2F , (8)

where U and V are weight matrices, and Q is an auxiliary
matrix defined as

Q =

[
Iq×q

0

]
n×n

. (9)

In the semi-supervised setting, only the first q samples are
associated with labels (q < n), and introducing Q helps (8) to
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focus on the reconstruction of the labeled ones. By combining
(7) and (8), we obtain the optimization problem of GD2NMF:

min
F,S,G≥0
W,U,V≥0

=
1

2
∥X− F̂1S1Ĝ1 −WGm2∥2F

+
α

2
∥(Y −UĜ1 −VGm2

)Q∥2F ,

s.t. F̂1 = g(g(g(Fm1
SL
m1

)SL
m1−1) · · ·SL

2 ),

Ĝ1 = g(SR
2 g(· · ·SR

m2−1g(S
R
m2

Gm2
))),

(10)

where α is a positive hyperparameter that makes a trade-
off between unsupervised information and supervised infor-
mation. Thanks to a soft constraint regularization, samples
from the same class have similar hierarchical latent represen-
tations, rather than exactly the same multi-layer representa-
tion which is too restrictive in practice. Therefore, GD2NMF
not only conducts factorization on features and bases by a
joint architecture consisting of both shallow and deep models,
but also utilizes label information in a discriminative manner,
leading to improved generalization. An example of the frame-
works of both GDNMF and GD2NMF is shown in Fig. 1.

5 Optimization Algorithm
In this section, we present the optimization algorithm for
GD2NMF in (10), and the optimization algorithm of GDNMF
can be simply developed by setting α = 0. The algorithm
is divided into two stages: pre-training and fine-tune. For
pre-training, we solve the sub-problems independently for all
layers. Afterwards, we initialize the model in (10) by the pre-
trained weights and fine-tune it by an alternating algorithm
with gradient backpropagation.

5.1 Pre-Training
In pre-training, for basis decomposition we solve the follow-
ing sub-problem layer by layer,

min
Fi+1,SL

i+1≥0

1

2
∥Fi − g(Fi+1S

L
i+1)∥2F . (11)

It is a non-convex problem with non-negative constraint, so
we fix Fi+1 to update SL

i+1, and vice versa, leading to

Fi+1 = Fi+1 ⊙
g−1(Fi)(S

L
i+1)

T

Fi+1SL
i+1(S

L
i+1)

T
, (12)

SL
i+1 = SL

i+1 ⊙
(Fi+1)

T g−1(Fi)

(Fi+1)TFi+1SL
i+1

. (13)

For feature decomposition, we independently solve a similar
sub-problem for the i-th layer, i.e.,

min
Gi+1,SR

i+1≥0

1

2
∥Gi − g(SR

i+1Gi+1)∥2F . (14)

Similarly, the closed form solutions are:

SR
i+1 = SR

i+1 ⊙
g−1(Gi)G

T
i+1

SR
i+1Gi+1GT

i+1

, (15)

Gi+1 = Gi+1 ⊙
(SR

i+1)
T g−1(Gi)

(SR
i+1)

TSR
i+1Gi+1

. (16)

5.2 Fine-Tune
In the fine-tune stage, we solve the optimization problem of
GD2NMF in (10) based on alternating optimization. Let O
denote the objective value in (10). The algorithm repeats the
following steps until convergence.

Update F

To optimize (10) over F, we solve the following sub-problem:

min
F≥0

1

2
∥X− F̂1S1Ĝ1 −WGm2

∥2F ,

s.t. F̂1 = g(g(g(Fm1S
L
m1

)SL
m1−1) · · ·SL

2 ),

Ĝ1 = g(SR
2 g(· · ·SR

m2−1g(S
R
m2

Gm2
))).

(17)

Based on the chain rule of derivatives, we get the gradient
w.r.t. F for the i-th layer,

∇FiO =
∂Oobj

∂Fi
=

∂Oobj

∂FiSL
i

(SL
i )

T

=

[
∂Oobj

∂g(FiSL
i )

⊙ g
′
(FiS

L
i )

]
(SL

i )
T

=
[
∇Fi−1O ⊙ g

′
(FiS

L
i )
]
(SL

i )
T ,

(18)

and the derivative w.r.t. F1:

∇F1O = −(X− F1S1G1 −WGm2)G
T
1 S

T
1 . (19)

Update S

Similarly, we can get the gradients w.r.t. SL
i and SR

i based on
the chain rule,

∇SL
i
O = FT

i

[
∇Fi−1

O ⊙ g
′
(FiS

L
i )
]
, (20)

∇SR
i
O =

[
∇Gi−1

O ⊙ g
′
(SR

i Gi)
]
GT

i , (21)

∇S1O = −FT
1 (X− F1S1G1 −WGm2

)GT
1 . (22)

Update G

The gradient w.r.t. Gi based on the chain rule is obtained as,

∇G1
O = −(F1S1)

T (X− F1S1G1 −WGm2
)

− αPT
1 (Y −UG1 −VGm2)QQT .

∇GiO = (SR
i )

T
[
∇Gi−1O ⊙ g

′
(SR

i Gi)
]
, 1 < i < m2.

∇Gm2
O = (SR

m2
)T

[
∇Gm2−1O ⊙ g

′
(SR

m2
Gm2)

]
−WT (X− F1S1G1 −WGm2)

− αPT (Y −UG1 −VGm2
)QQT .

(23)

These gradients on updating F, S and G are propagated
backwards in the multi-layer model, and in a specific layer,
gradient descent is used to update the layer weights once gra-
dients from the previous layer are received.
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Datasets #Samples #Dimensions #Classes
ARface 3120 560 120
CMUPIE 2856 1024 68
Yale 165 1024 15
Caltech101-20 2386 928 20
COIL20 1440 1024 20

Table 1: Statistic of datasets used in experiments. Here #Samples,
#Dimensions and #Classes denote the number of samples, dimen-
sions and classes, respectively.

Update W, V and U
We derive the multiplicative update rules as follows:

W = W ⊙
XGT

m2

(F1S1G1 +WGm2)G
T
m2

, (24)

U = U⊙ αYQQTGT
1

α(UG1 +VGm2)QQTGT
1

, (25)

V = V ⊙
αYQQTGT

m2

α(UG1 +VGm2
)QQTGT

m2

. (26)

5.3 Analysis on Computational Complexity
The detailed optimization, pseudocode and code of GD2NMF
are provided in the supplement2. Let k1 and k2 denote the
maximum latent dimensions of basis matrices and feature
matrices, respectively. For pre-training, the computational
complexities of basis decomposition and feature decompo-
sition are O(m1(k1k2p + k21p)) and O(m2(k1k2n + k22n)),
respectively. For fine-tune, the bottleneck is updating F, S
and G, which needs O(m1k2pn), O((m1 + m2)k1pn) and
O(m2k2n(c + k2)), respectively. Thus, the total time com-
plexity of the algorithm is linear w.r.t. the data size.

6 Experiment
6.1 Experimental Settings
Datasets
Five real-world datasets, including ARface3, CMUPIE4,
Yale5, Caltech101-206 and COIL207, are used in experi-
ments. The statistics of used datasets are reported in Table
1, and more details are given in the supplement.

Compared Methods
For unsupervised experiments, we compare GDNMF with six
unsupervised NMF-based methods, including NMF [Lee and
Seung, 1999], semi-NMF [Ding et al., 2008], GNMF [Cai
et al., 2010], NeNMF [Guan et al., 2012], DSNMF [Trige-
orgis et al., 2016] and DNBMF [Zhao et al., 2021]. For

2https://github.com/Gabrielx0098/GD2NMF
3https://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
4https://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-

Pie/Home.html
5http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
6http://www.vision.caltech.edu/Image Datasets/Caltech101/
7https://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php

semi-supervised experiments, we compare GD2NMF with
five semi-supervised NMF-based methods, including CNMF
[Liu et al., 2011], DNMF [Babaee et al., 2016], Deep WSF
[Trigeorgis et al., 2016], DENMF [Wu et al., 2019] and
SGDNMF [Meng et al., 2019].

Configuration
In GDNMF and GD2NMF, the decay rate r, which is the
ratio of dimensions between successive layers, is selected
from {0.3, · · · , 0.7}, and the non-linear function g(·) is set to
g(x) = x2. The value of α used in GD2NMF is selected from
{10−3, 10−2, · · · , 102}. For deep NMF methods, the number
of layers is set to m = 2. Non-linear function g(·) in DSNMF
and Deep WSF is set to g(x) = 1.7159tanh(0.667x) as rec-
ommended by the authors. The value of p used in GNMF
is selected from {2, 3, ..., 9}. Other hyperparameters used in
the compared methods are set according to the recommenda-
tion of the original papers. For semi-supervised methods, in
experiments we randomly select 10% data points as labeled
data. To evaluate the clustering results, after obtaining the
latent representation H, we run k-means on H for ten times
with different initializations and calculate the mean results.
In the experiment, three evaluation metrics, including cluster
accuracy (ACC) [Xu et al., 2003], normalized mutual infor-
mation (NMI) [Cai et al., 2008] and purity [Marutho et al.,
2018] are used to measure the clustering performance. ACC
computes the percentage of correctly predicted cluster labels,
NMI is used in clustering applications to measure the similar-
ity of two clusters, and Purity measures how well classes are
distributed on various clusters.

6.2 Experimental Results
Evaluation on Clustering Performance
Table 2 shows the clustering results of unsupervised meth-
ods and semi-supervised methods on five datasets, where the
best and the second-best results are highlighted in boldface
and underlined, respectively. From Table 2, we can see that
for unsupervised methods, GDNMF outperforms other com-
paring methods in most cases. Specifically, on the CMUPIE
dataset, compared with the second-best method, GDNMF
achieves performance improvement by 9.63%, 8.85% and
18.83% in terms of ACC, NMI and Purity, respectively. On
the ARface dataset, DSNMF achieves the best results and
GDNMF performs the second-best. For semi-supervised
methods, GD2NMF outperforms other comparing methods
in most cases. On the CMUPIE dataset, compared with the
second-best method (Deep WSF), GD2NMF achieves perfor-
mance improvement by 9.24%, 7.7% and 11.65% in terms
of ACC, NMI and Purity, respectively. Moreover, GD2NMF
usually outperforms GDNMF, which validates the effective-
ness of using the limited supervised information. The proba-
ble explanations for the performance superiority of GDNMF
and GD2NMF can be summarized as follows: 1) They per-
form deep basis and feature decomposition simultaneously,
which helps to learn a hierarchical data representation based
on multi-level basis. 2) Both methods incorporate shallow
model and deep model in a unified architecture, which can
capture both linear and nonlinear information. 3) GD2NMF
further improves the performance by utilizing prior infor-
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Unsupervised methods Semi-supervised methods
Data Metric NMF semi-NMF GNMF NeNMF DSNMF DNBMF GDNMF CNMF DNMF Deep WSF DENMF SGDNMF GD2NMF

COIL20
ACC 0.6111 0.5882 0.7422 0.6840 0.3694 0.7375 0.6313 0.6875 0.7181 0.3667 0.7243 0.8472 0.7535
NMI 0.7456 0.7181 0.8100 0.7680 0.4326 0.8092 0.7481 0.7766 0.8143 0.3971 0.7635 0.8919 0.8173

Purity 0.6077 0.5724 0.6482 0.6520 0.3169 0.6459 0.6521 0.6725 0.6672 0.3296 0.6639 0.7952 0.6701

Arface
ACC 0.4212 0.2907 0.3647 0.4130 0.4715 0.3526 0.4609 0.4670 0.3667 0.4732 0.0099 0.4664 0.4828
NMI 0.6788 0.5340 0.6446 0.6937 0.7163 0.6331 0.6955 0.7048 0.6505 0.7135 0.1690 0.7101 0.7178

Purity 0.4186 0.2892 0.3621 0.4228 0.5027 0.3468 0.4753 0.4394 0.3390 0.4909 0.0465 0.4619 0.4512

CMUPIE
ACC 0.7262 0.2875 0.5700 0.6618 0.7104 0.4688 0.8225 0.6432 0.4587 0.7661 0.2945 0.6849 0.8585
NMI 0.8269 0.4412 0.7426 0.7843 0.8726 0.6681 0.9611 0.7835 0.6911 0.8814 0.5260 0.8610 0.9584

Purity 0.6962 0.3061 0.5710 0.6293 0.7084 0.4640 0.8967 0.6524 0.4758 0.7202 0.3084 0.6686 0.8367

Yale
ACC 0.3879 0.4485 0.4364 0.3576 0.2242 0.4303 0.4485 0.5052 0.4727 0.2667 0.5073 0.5091 0.5091
NMI 0.4472 0.4786 0.4808 0.4088 0.2536 0.4873 0.4886 0.5271 0.5210 0.3304 0.5454 0.5360 0.5530
Purity 0.3891 0.4642 0.4055 0.3897 0.2370 0.4079 0.4667 0.4855 0.4194 0.2358 0.4964 0.4521 0.5091

Caltech101-20
ACC 0.3894 0.4237 0.4324 0.4003 0.1911 0.3864 0.4349 0.4246 0.4158 0.2334 0.4590 0.4525 0.4655
NMI 0.4866 0.5083 0.4751 0.5117 0.1559 0.4675 0.4460 0.5036 0.4736 0.1909 0.5165 0.5275 0.5215

Purity 0.6596 0.6692 0.6478 0.6111 0.3909 0.6527 0.6746 0.6795 0.6698 0.3906 0.6886 0.6902 0.6954

Table 2: Clustering performance of comparing methods on five real-world datasets. The best results are highlighted in boldface, while the
second-best results are underlined.

Figure 2: Comparison of GD2NMF, GD2NMFb and GD2NMFf on
three datasets. GD2NMFb and GD2NMFf only consider basis de-
composition and feature decomposition, respectively.

mation in a discriminative manner. However, GDNMF and
GD2NMF didn’t achieve the best results on ARface and
COIL20, probably because the deep model is too complex
for these two datasets, and more efforts should be paid for
hyperparameter tuning.

Ablation Study8

To evaluate the effectiveness of deep feature and basis de-
composition in GD2NMF, we conduct an experiment to com-
pare the clustering results of GD2NMF with its two de-
graded variants: GD2NMF with only basis decomposition
(GD2NMFb) and GD2NMF with only feature decomposition
(GD2NMFf ). The experiment is conducted on the CMUPIE,
Yale and COIL20 datasets, and results are shown in Fig.2.
Similar results are observed on other datasets. For fair com-
parison, the hyperparameters are set to the same values. From
Fig.2, we can see that GD2NMF achieves better performance
than both GD2NMFb and GD2NMFf on the three datasets,
which validates our assumption that simultaneously perform-
ing deep factorization on features and bases leads to improved
data representation and clustering performance.

To verify the effectiveness of incorporating deep and
shallow models in GD2NMF, we conducted an ex-
periment on CMUPIE to compare the performance of
GD2NMF, GD2NMF in shallow architecture (GD2NMFs)
and GD2NMF in deep architecture (GD2NMFd). In the ex-
periment, we extract different number of classes from the

8More experimental results are provided in the supplement.

Figure 3: Case study on the structure of GD2NMF. GD2NMFd and
GD2NMFs are variants of GD2NMF by ignoring shallow and deep
models, respectively. The right subfigure reports the performance of
GD2NMF by varing the number of layers from 1 to 5 by step 1.

original CMUPIE dataset, and generate six datasets by vary-
ing the number of classes from 20 to 60 by step 10. Results in
NMI are shown in the left subfigure of Fig.3. Obviously, by
combining shallow and deep models in a single architecture,
GD2NMF consistently achieves a better performance than its
two variants, which demonstrates that mutually reinforcing
shallow and deep models indeed helps to boost the general-
ization performance. In addition, we conduct an experiment
to evaluate the performance of GD2NMF by varying the num-
ber of layers from 1 to 5, and report the results in the right
subfigure of Fig.3. We can see that a two-layer structure leads
to the best performance. When the number of layers is greater
than 2, its performance drops significantly, probably because
the structure is too complex and easy to overfit.

7 Conclusion

This paper proposes a novel deep NMF method, named
GDNMF, which learns a hierarchical data representation
based on multi-level basis by simultaneously performing
deep factorization on the feature matrix and the basis matrix.
GDNMF incorporates linear shallow model and non-linear
deep model in a unified architecture, that generalizes several
existing NMF-based methods. Moreover, semi-supervised
GDNMF is proposed to utilize partial label information in a
discriminative way. Experiments on five real-world datasets
show the effectiveness of GDNMF.
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