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Abstract
Multi-Task Learning (MTL) is a well-established
paradigm for learning shared models for a diverse
set of tasks. Moreover, MTL improves data effi-
ciency by jointly training all tasks simultaneously.
However, directly optimizing the losses of all the
tasks may lead to imbalanced performance on all
the tasks due to the competition among tasks for
the shared parameters in MTL models. Many MTL
methods try to mitigate this problem by dynam-
ically weighting task losses or manipulating task
gradients. Different from existing studies, in this
paper, we propose a Neural Ordinal diffeRential
equation based Multi-tAsk Learning (NORMAL)
method to alleviate this issue by modeling task-
specific feature transformations from the perspec-
tive of dynamic flows built on the Neural Ordinary
Differential Equation (NODE). Specifically, the
proposed NORMAL model designs a time-aware
neural ODE block to learn task-specific time infor-
mation, which determines task positions of feature
transformations in the dynamic flow, in NODE au-
tomatically via gradient descent methods. In this
way, the proposed NORMAL model handles the
problem of competing shared parameters by learn-
ing task positions. Moreover, the learned task posi-
tions can be used to measure the relevance among
different tasks. Extensive experiments show that
the proposed NORMAL model outperforms state-
of-the-art MTL models.

1 Introduction
Multi-Task Learning (MTL) [Caruana, 1997; Zhang and
Yang, 2022] is a paradigm that aims to learn one single model
that can learn from several tasks simultaneously. As deep
learning models are becoming larger and larger to solve com-
plex problems, MTL becomes attractive since by sharing pa-
rameters across all the tasks and training all the tasks jointly,
deep MTL models can reduce both the number of parameters
and the training time.

∗Corresponding author.

Among all the architectures for deep MTL, the Hard Pa-
rameter Sharing (HPS) architecture, which typically shares
one feature extractor among tasks and after that has a task-
specific head for each task, is the earliest and the most
used one. Though it is simple, several works [Bartlett and
Mendelson, 2002; Swersky et al., 2013; Maurer et al., 2016;
Zamir et al., 2018] point out that the HPS architecture is
effective to improve the performance of each task. How-
ever, due to the use of a shared feature extractor to obtain
a shared feature representation among tasks, the HPS archi-
tecture often faces the problem of competing for shared pa-
rameters among tasks during the training process, specifi-
cally in the form of gradient conflict which often leads to
performance degradation for some tasks [Yu et al., 2020;
Liu et al., 2021b]. To alleviate this problem, based on the
HPS architecture, some recent studies [Chen et al., 2018c;
Sener and Koltun, 2018; Yu et al., 2020; Liu et al., 2021b;
Liu et al., 2021a; Navon et al., 2022] propose loss weight-
ing and gradient manipulation methods to help model train-
ing. Meanwhile, some works [Kumar and Daume III, 2012;
Yao et al., 2019] propose task grouping methods to mitigate
the competition between tasks by combining more relevant
tasks together to learn an HPS model. These methods re-
quire a lot of (pre-)grouping computation and increase the
total model size.

Different from previous studies, in this paper, we study this
problem from another perspective of the dynamic flow whose
velocity is defined by a uniform function [Fleischer and Tar-
dos, 1998] and propose a Neural Ordinal diffeRential equa-
tion based Multi-tAsk Learning (NORMAL) method. In the
proposed NORMAL method, feature transformations of dif-
ferent tasks, which are placed after the shared feature extrac-
tor in the HPS architecture, are assumed to follow a dynamic
flow and such task-specific feature transformations for differ-
ent tasks could be modeled as different time points, which are
called task positions, in a Neural Ordinary Differential Equa-
tion (NODE or Neural ODE) [Chen et al., 2018b]. Different
from NODEs, the task positions of different feature trans-
formations in the dynamic flow, corresponding to the given
time information in NODEs, are unknown, and the proposed
NORMAL method utilizes a time-aware neural ODE block to
learn task positions automatically via gradient descent meth-
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ods. Empirically, extensive experiments demonstrate that
the proposed NORMAL method outperforms state-of-the-art
methods on benchmark datasets. Moreover, the learned task
positions can reflect the task relations, which verifies the rea-
sonableness of the learned task positions.

The main contributions of this work are three-fold.

• We are the first to model feature transformations in MTL
from the perspective of dynamic flow and propose the
NORMAL method to learn task positions that represent
the task-specific feature transformations in the dynamic
flow.

• The NORMAL method outperforms state-of-the-art
methods on four benchmark datasets, including the
Office-31, Office-Home, NYUv2, and CelebA datasets.

• The task positions learned by the NORMAL method
can be used to evaluate the relevance of different tasks,
which could improve the interpretability of the proposed
NORMAL method.

2 Preliminary
In this section, we briefly introduce MTL as well as the first-
order and second-order NODEs.

Multi-Task Learning. Given m learning tasks {Ti}mi=1,
task i has its corresponding dataset Di. Then the MTL model
usually contains two parts of parameters: task-shared param-
eters θ and task-specific parameters {ϕi}mi=1. The feature ex-
tractor fθ(x) : X → Rq , which maps a sample x ∈ X into a
q-dimensional feature space, is parameterized by task-shared
parameters θ. Then, the i-th task-specific output module pa-
rameterized by task-specific parameters ϕi outputs the pre-
diction as hϕi(fθ(x)). Let Li(·, ·) denote the loss function
for task i (e.g., the cross-entropy loss for classification tasks).
MTL aims to learn all the parameters (i.e., θ, ϕ1, ϕ2, ..., ϕm)
by minimizing the total loss as

L =
1

m

m∑
i=1

1

ni

ni∑
j=1

Li(y
j
i , hϕi

(fθ(x
j
i )), (1)

where ni denotes the number of samples for task i, xj
i denotes

the jth sample in task i, and yji denotes the label of xj
i . Built

on problem (1), some works [Kendall et al., 2018; Liu et al.,
2021b] design or learn task weighting on task losses, some
works [Chen et al., 2018c; Sener and Koltun, 2018; Yu et al.,
2020; Liu et al., 2021b; Liu et al., 2021a; Navon et al., 2022]
manipulate the gradient to alleviate the gradient conflicting
issue, and some works [Kumar and Daume III, 2012; Yao et
al., 2019] identify task grouping.

First-order Neural ODEs. First-order NODEs [Chen et
al., 2018b] are proposed recently to model deep neural net-
works with continuous depths. NODEs model the dynamic
of hidden features z(t) ∈ Rn via first-order Ordinary Differ-
ential Equations (ODEs), which is parameterized by a neural
network g(z(t), t, φ) ∈ Rn with learnable parameters φ, i.e.,

dz(t)

dt
= g(z(t), t;φ). (2)

For a given initial value z(t0), NODEs obtain the output at
time t with a black-box numerical ODE solver as

z(t) = z(t0) +

∫ t

t0

g(z(s), s;φ)ds

= ODEsolver(z(t0), g, t0, t;φ).

The main technical difficulty in training such NODEs is how
to do the back-propagation through the ODE solver effi-
ciently. In [Chen et al., 2018b], an adjoint sensitivity method
is proposed to solve this issue. This method has a low mem-
ory cost, and can explicitly control numerical errors.

Second-order Neural ODEs. As the first-order NODEs are
easy to suffer from unstable training, slow speed, and lack of
highly expressive power, there are many works [Dupont et
al., 2019; da Silva and Gazeau, 2020; Xia et al., 2021] to
improve first-order NODEs. Among them, the Heavy Ball
NODE (HBNODE) [Xia et al., 2021] is more accurate and
stable, and it is formulated as

d2z(t)

dt2
+ γ

dz(t)

dt
+ g(z(t), t) = 0. (3)

where γ ≥ 0 is a damping factor and g(·, ·) represents a con-
tinuous function. In practice, γ can be treated as a hyperpa-
rameter or a learnable parameter, and g(·, ·) can be parame-
terized by a neural network. Eq. (3) can be reformulated as a
first-order NODE system as

dz(t)

dt
= −q(t),

dq(t)

dt
= −γq(t) + g(z(t), t), (4)

where q(t) ∈ Rn is a momentum function, and the starting
point q(0) is computed as q(0) = −dz(t)/dt |t=0, which
represents the initial velocity of z(t). Following the idea of
skip connection, one extra term ξz(t) is added to the second-
order ODE system in HBNODE and the final formulation is

dz(t)

dt
= −q(t),

dq(t)

dt
= −γq(t) + g(z(t), t) + ξz(t).

(5)

3 NORMAL
In this section, we will introduce the proposed NORMAL
method.

3.1 The Entire Model
To mitigate competition for shared parameters by learning
task-specific feature representations while retaining the ben-
efits of MTL to learn feature representations, we treat fea-
ture transformations of different tasks as points embedded in
a dynamic flow of transformations and use a NODE to model
smoothly varying embeddings. So different task positions on
the dynamic flow can be converted into outputs at different
times on the NODE.

The NORMAL model consists of a shared feature extractor
fθ which is parameterized by θ, a task-shared dynamic flow
modeled by a time-aware neural ODE block Qφ which is pa-
rameterized by φ, and will be introduced in the next section,
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Figure 1: Comparison between the HPS-based MTL model (top)
and the proposed NORMAL model (bottom). The HPS-based MTL
model maps inputs into a shared intermediate representation. The
NORMAL method uses task-specific feature transformation which
is modeled by task positions in NODE to map inputs into task-
specific feature representations. The blue color indicates task-shared
components, and the red color denotes task-specific components.

learnable task positions {pi}, and task-specific heads {hϕi
}.

Here Qφ is to model feature transformations from different
tasks in a dynamic flow. Thus, as shown in Figure 1, for a
sample in the ith task, the NORMAL model first obtains a
hidden representation via fθ, then moves to task position pi
over Qφ to learn a feature transformation to obtain a feature
representation with task specificity, and finally feed into hϕi

to obtain the final output.
Mathematically, the objective function of the NORMAL

model is formulated as

min
Θ,{pi}

1

m

m∑
i=1

1

ni

ni∑
j=1

Li(y
j
i , hϕi

(Qφ(fθ(x
j
i ), pi))), (6)

where Θ denotes all the network parameters, including φ, θ,
and {ϕi}mi=1, and Qφ(·, pi) denotes the output of the time-
aware neural ODE block at task position pi. Thus, in terms
of notations of NODE as introduced in the previous section,
we have Qφ(fθ(xi), pi) = z(pi), where z(0) = fθ(xi).

3.2 Time-aware Neural ODE Block
In the time-aware neural ODE block, fθ(x

j
i ) extracted by the

shared feature extractor is considered as the state at initial
time/position 0 in the dynamic flow, and if pi is known, then
task-specific feature transformations could be learned. How-
ever, {pi} are usually unknown, and we aim to learn them.

Though first-order NODEs easily model dynamic flow, due
to their instability, using them to implement Qφ often leads
to poor performance. Therefore, some second-order NODE
(e.g., HBNODE) is used to build this block. Specifically,

Algorithm 1 The NORMAL model.
Input: training data and learning rates µ, η
Output: Task-shared parameters θ, φ, task-specific parame-
ters {ϕi}, {pi}

1: for k = 1 to K do
2: Compute and save outputs of the time-aware neural

ODE block for each task: z(pi) and q(pi);
3: Compute total loss L according to Eq. (6);
4: Compute the gradient dpi with respect to pi according

to Eq. (7);
5: Compute the gradient ∇ΘL with respect to

{θ, {ϕt}, φ};
6: Update Θ as Θ := Θ− µ∇ΘL;
7: Update pi as pi := pi − ηdpi

;
8: end for

based on Eq. (5), by using fθ(x
j
i ) as the initial value z(0)

of z(t) for task i, we have

Qφ(fθ(x
j
i ), pi) = fθ(x

j
i ) +

∫ pi

0

−q(t)dt

= fθ(x
j
i )−

∫ pi

0

(
q(0) +

∫ t

0

dq(l)

dl
dl

)
dt.

where dq(l)
dl = −γq(l) + g(z(l), l) + ξz(l) and a mapping

function u(z) : Rn → Rn maps fθ(x
j
i ) to the initial veloc-

ity q(0). The initial velocity mapping u(z;φv) and the ODE
function g(z, t;φo) are parameterized by φv and φo, respec-
tively. Thus, the time-aware neural ODE block Qφ is formu-
lated as

Qφ(fθ(x
j
i ), pi) =fθ(x

j
i )−

∫ pi

0

(
u(fθ(x

j
i );φv)+∫ t

0

(
− γq(l) + g(z(l), l;φo) + ξz(l)dl

))
dt.

where γ > 0 is treated a learnable parameter and ξ is treated
as a hyperparameter to be tuned. To guarantee the positive-
ness of γ, we reparameterize it as γ = sigmoid(ω), where
ω is a learnable parameter. For simplicity, we denote these
parameters by φ = {φv, φo, ω}.

By using the block presented above, we can now calcu-
late z(t) for any given initial value z(0) = fθ(x

j
i ) and pi.

Existing studies on NODEs assume that pi is available be-
fore training. In the proposed NORMAL method, if a com-
mon pi is used for all the tasks, the NODE could be absorbed
into fθ(·) and different tasks could have identical feature rep-
resentations, which degenerates to the HPS architecture. If
different tasks use different fixed pi, setting them is too inef-
ficient and does not have good performance according to our
empirical observations. Therefore, in the NORMAL method,
to achieve high expressive power in learned feature represen-
tations and low manual costs, we learn {pi} for all the tasks,
which will be detailed in the next section.

3.3 Optimization
To learn parameters in the time-aware neural ODE block,
we apply the adjoint sensitivity method, which can signifi-
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cantly reduce the memory cost during calculating the gradi-
ent. However, we cannot use auto differentiation to update
{pi} since current mainstream frameworks (e.g., Tensorflow
and Pytorch) do not support automatically computing the gra-
dient for task positions {pi} in NODEs, and we need to man-
ually compute the gradient with respect to {pi}. Specifically,
for task i, the average loss Li is defined as

Li =
1

ni

ni∑
j=1

Li(y
j
i , hϕi

(z(pi)))).

where z(pi) = Qφ(fθ(x
j
i ), pi).

Based on the chain rule, we compute the gradient with re-
spect to pi as

dpi
=

dLi

dt

∣∣∣∣
t=pi

=
dLi

dz(t)

dz(t)

dt

∣∣∣∣
t=pi

= − dLi

dz(pi)
q(pi). (7)

In Eq. (7), q(pi) denotes the output of the momentum func-
tion at time pi, which can be saved in the forward propaga-
tion process. Thus, we need to calculate the gradient of the
loss Li with respect to the output of the time-aware neural
ODE block at time pi. This does not require us to backpropa-
gate the entire model, so it is not computationally expensive.
Therefore, we can use dpi to update pi as pi := pi − ηdpi ,
where η represents the step size.

The gradients of other model parameters in the NORMAL
method can be computed by auto differentiation and stochas-
tic gradient descent methods can be used to update them. In
the NORMAL method, we can update all the learnable pa-
rameters jointly or alternatively. Algorithm 1 summarizes the
training algorithm for the NORMAL method.

4 Related Work
Multi-Task Learning. Built on the HPS architecture, there
are several loss weighting and gradient manipulation methods
for MTL. For example, GradNorm [Chen et al., 2018c] learns
loss weights to balance the norms of the scaled gradients for
different tasks. PCGrad [Yu et al., 2020] avoids the gradient
conflicting between each pair of tasks by projecting the gra-
dient of one task onto the normal plane of that of the other
task. IMTL [Liu et al., 2021b] finds a descent direction that
has equal projections on the gradient of each task. CAGrad
[Liu et al., 2021a] minimizes the maximum of the decreasing
of task losses while enforcing the update direction to be close
to the average gradient among tasks. Nash-MTL [Navon et
al., 2022] considers MTL as a bargaining game and finds a
Nash bargaining solution. The proposed NORMAL method
studies MTL from a new perspective of dynamic flow, which
is different from previous works in MTL.

Neural Ordinary Differential Equation. NODEs [Chen
et al., 2018b] can learn from irregularly sampled data and
are particularly suitable for learning complex dynamical sys-
tems. NODE-based methods have shown promising perfor-
mance on a number of tasks including building normalizing
flows [Finlay et al., 2020], modeling continuous time data
[Yildiz et al., 2019], and generative models [Grathwohl et
al., 2019]. However, training NODEs on large datasets is not

an easy task and often leads to poor performance. This is
because the training process of NODE is very slow [Xia et
al., 2021], and NODE often fails to learn long-term depen-
dencies in sequential data [Lechner and Hasani, 2020]. The
HBNODE [Xia et al., 2021] is based on second-order ODEs
with a damping term, which can significantly accelerate the
training process and provide a stable result.

5 Experiments
In this section, we empirically evaluate the proposed NOR-
MAL method on four benchmark datasets, including Office-
31 [Saenko et al., 2010], Office-Home [Venkateswara et al.,
2017], NYUv2 [Silberman et al., 2012], and CelebA [Liu
et al., 2015]. All experiments are performed on a single
NVIDIA GeForce RTX 3090 GPU.

Baselines. Here, we compare the proposed method with
state-of-the-art MTL methods, including EW that adopts
an equal weight on training losses of different tasks, UW
[Kendall et al., 2018], GradNorm [Chen et al., 2018c],
MGDA [Sener and Koltun, 2018], PCGrad [Yu et al., 2020],
IMTL [Liu et al., 2021b], CAGrad [Liu et al., 2021a], and
Nash-MTL [Navon et al., 2022].

Evaluation metric. For the Office-31, Office-Home, and
CelebA datasets where all the tasks are classification tasks,
we report the classification accuracy on each task and/or the
average classification accuracy over tasks. For the NYUv2
dataset which has three tasks: 13-class semantic segmenta-
tion, depth estimation, and surface normal prediction, by fol-
lowing [Maninis et al., 2019], we use the average of the rel-
ative improvement of each task over the EW method as the
evaluation metric, which is formulated as

∆b =
1

m

m∑
i=1

1

Ni

Ni∑
j=1

(−1)si,j (M b
i,j −MEW

i,j )

MEW
i,j

,

where m denotes the number of tasks, Ni denotes the number
of metrics for task i, M b

i,j denotes the performance of an MTL
method b for the jth metric in task i, MEW

i,j is defined in the
same way for the EW method, and si,j is set to 1 if a lower
value indicates better performance for the jth metric in task i
and otherwise 0.

5.1 Results on Office-31 and Office-Home Datasets
Datasets. The Office-31 dataset [Saenko et al., 2010] in-
cludes images from three different sources: images down-
loaded from www.amazon.com (Amazon), images from
digital SLR cameras (Dslr), and images from webcams
(Webcam). It contains 31 categories for each source and
a total of 4652 labeled images. The Office-Home dataset
[Venkateswara et al., 2017] includes images from four
sources: artistic images (Ar), clip art (Cl), product images
(Pr), and real-world images (Rw). It contains 65 categories
for each source and a total of 15,500 labeled images. Under
the multi-task learning setting, we treat each source as a sep-
arate task, so these two datasets can be used as a multi-task
classification problem.
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Method
Office-31 Office-Home

A D W Avg Ar Cl Pr Rw Avg
EW 84.67 98.09 98.70 93.82 64.77 79.05 90.11 80.44 78.59

UW 84.62 97.81 98.89 93.77 66.03 79.09 89.69 79.78 78.65
GradNorm 84.22 98.09 98.89 93.73 64.84 78.73 89.86 80.58 78.50

MGDA 78.69 98.09 98.70 91.83 65.40 75.05 89.76 79.96 77.54
PCGrad 84.67 97.81 98.70 93.73 65.27 78.37 90.08 79.89 78.40
IMTL 83.02 98.09 98.89 93.33 65.27 77.72 89.90 80.54 78.36

CAGrad 84.33 97.81 99.07 93.74 64.90 78.48 90.47 80.18 78.50
Nash-MTL 83.82 98.91 99.07 93.93 66.79 78.66 90.29 79.82 78.89

NORMAL 86.32 99.18 98.88 94.80 69.26 80.39 90.47 80.22 80.08

Table 1: Classification accuracy (%) of different methods on the Office-31 and Office-Home datasets. Each experiment is repeated over 3
random seeds and the mean is reported. The best results for each task are shown in bold.

Method

Segmentation Depth Surface Normal

∆ ↑
mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓

Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
EW 0.4875 0.7183 0.4179 0.1734 25.42 18.84 0.3243 0.5729 0.6845 0%

UW 0.4866 0.7165 0.4085 0.1711 25.42 18.77 0.3212 0.5703 0.6829 0.45%
GradNorm 0.4789 0.7106 0.4134 0.1686 25.40 18.61 0.3237 0.5733 0.6848 0.26%

MGDA 0.4138 0.6631 0.4416 0.1825 24.33 17.48 0.3423 0.5975 0.7065 -3.97%
PCGrad 0.4835 0.7155 0.4124 0.1718 25.40 18.66 0.3230 0.5726 0.6844 0.21%
IMTL 0.4769 0.7112 0.4141 0.1711 24.76 17.90 0.3355 0.5881 0.6978 0.89%

CAGrad 0.4777 0.7113 0.4128 0.1676 24.80 17.92 0.3356 0.5874 0.6973 1.29%
Nash-MTL 0.4764 0.7103 0.4155 0.1704 24.64 17.71 0.3409 0.5911 0.6999 1.12%

NORMAL 0.4857 0.7184 0.4113 0.1691 24.98 18.34 0.3352 0.5827 0.6923 1.33%

Table 2: Performance on three tasks (i.e. 13-class semantic segmentation, depth estimation, and surface normal prediction) in the NYUv2
dataset. Each experiment is repeated over 3 random seeds and the mean is reported. The best results for each task are shown in bold.↑(↓)
means that the higher (lower) the value, the better the performance.

Implementation Details. On both datasets, we use a
ResNet-18 network pre-trained on the ImageNet dataset as
fθ, the Euler’s method as the ODE solver, and a task-specific
fully connected layer as the corresponding head for each task.

Implementation Details of Time-aware Neural ODE
Blocks. The architectures of the initial velocity u(z;φv)
and ODE function g(z, t;φo) are constructed as follows.

• Initial Velocity: → FC → LeakyReLU → FC →
• ODE Function: → FC → LeakyReLU → FC →

All the fully connected (FC) layers of both functions have a
dimension of 512 for inputs and outputs.

Results. The results on the Office-31 and Office-Home
datasets are shown in Table 1. We can see that on both
datasets, the NORMAL method outperforms state-of-the-art
baseline methods in terms of average classification accu-
racy. Compared with the unbalanced performance of several
baseline methods on different tasks, the NORMAL method
achieves a boost on almost all tasks over the EW method. For
example, on the Office-31 dataset, the MGDA method per-
forms well on the D and W tasks but performs very poorly on
the A, which does not occur in the NORMAL method. This
result demonstrates the advantage of the NORMAL method
in that it can learn better feature representations for each

task by learning task-specific feature transformations over dy-
namic flow. Moreover, compared with baselines, the pro-
posed NORMAL method achieves the best result in some
tasks, such as the best classification accuracy of 86.32% in
task A for the Office-31 dataset and 69.26% classification ac-
curacy in task Ar for the Office-Home dataset.

5.2 Results on the NYUv2 Dataset
Dataset. The NYUv2 dataset [Silberman et al., 2012] con-
sists of video sequences of various indoor scenes recorded
by RGB and Depth cameras in Microsoft Kinect. It contains
1,449 images with ground truth, where 795 images are for
training and 654 images are for validation. This dataset has
three tasks: 13-class semantic segmentation, depth estima-
tion, and surface normal prediction.

Implementation Details. On the NYUv2 dataset, we use
the DeepLabV3+ architecture [Chen et al., 2018a] with HBN-
ODE. Specifically, we use pre-trained Resnet-18 with dilated
convolutions [Yu et al., 2017] as the feature extractor shared
by all tasks, the Euler’s method as the ODE solver, and the
Atrous Spatial Pyramid Pooling (ASPP) [Chen et al., 2018a]
as the task-specific header for each task.

Implementation Details of Time-aware Neural ODE
Blocks. The architectures of the initial velocity u(z;φv)
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Figure 2: Task positions {pi} throughout the training process on the four datasets.

and ODE function g(z, t;φo) are constructed as follows.

• Initial Velocity: → Conv → LeakyReLU → Conv →
• ODE Function: → Conv → LeakyReLU → Conv →

The numbers of the input channel and output channel of the
convolution layers of both functions are set to 512, the size of
the kernel is 1, the stride size is 1, and the padding is 0.

Results. The results on the NYUv2 dataset are shown in
Table 2. Overall, the proposed NORMAL method achieves
good performance when compared with the state-of-the-art
baseline methods. The MGDA method obtains the best re-
sults on all metrics of the surface normal prediction task, but
performs poorly in the other two tasks, thus its overall per-
formance is not so good. In contrast, The NORMAL method
achieves relatively balanced performance on all the tasks, and
hence its overall performance in terms of ∆ exceeds all other
methods. This illustrates the ability of the NORMAL method
to effectively improve performance on all the tasks by finding
task positions.

5.3 Results on CelebA Dataset
Dataset. The CelebA dataset [Liu et al., 2015] includes a
total of 202,599 face images and 40 face attribute annotations.
In the multi-task learning setup, each face attribute is treated
as a task. Thus, there are 40 classification tasks in this dataset.

Implementation Details. On the CelebA dataset, we use
Resnet-18 with an average-pooling as the task-shared feature
extractor fθ, the Euler’s method as our ODE solver, and a
fully connected layer as the task-specific head for each task.

Implementation Details of Time-aware Neural ODE
Blocks. The architectures of the initial velocity u(z;φv)
and ODE function g(z, t;φo) are constructed as follows.

• Initial Velocity: → FC → LeakyReLU → FC →
• ODE Function: → FC → LeakyReLU → FC →

All fully connected layers of both functions have a dimension
of 2048 for both inputs and outputs.

Results. According to the results shown in Table 3, we
can see that the NORMAL method achieves the best average
classification accuracy performance on the CelebA dataset,
which again demonstrates the effectiveness of the NORMAL
method.

Method Avg
EW 90.78

UW 90.82
GradNorm 90.69
MGDA 90.40
PCGrad 90.93
IMTL 90.46
CAGrad 90.73
Nash-MTL 90.83

NORMAL 91.00

Table 3: Average classification accuracy (%) of different methods
on the CelebA dataset with 40 tasks. Each experiment is repeated
over 3 random seeds and the mean is reported. The best results are
shown in bold.

5.4 Analysis on Learned Task Positions
In this section, we analyze the learned task positions {pi} to
see why the NORMAL method achieves good performance
on these datasets.

The training curves of all {pi} on the four benchmark
datasets are shown in Figure 2, where due to the large number
of tasks in the CelebA dataset, we randomly select a portion
of the tasks for better illustration. According to Figure 2, we
have two observations.

Firstly, the proposed NORMAL method does successfully
learn task positions. Taking the training curves of {pi} on the
NYUv2 dataset in Figure 2(c) as an example, we can see that
its training trajectory is very smooth and all task positions
eventually converge to their own convergent points. We can
also find similar results in Figures 2(a) and 2(b). In Figure
2(d), though the training trajectory is not as smooth as the
other three datasets, the proposed NORMAL method can still
differentiate tasks and find their own task positions.

Secondly, {pi} learned by the NORMAL method are able
to reflect task relations. For example, according to Figures
2(a) and 2(b), the task positions in these two datasets con-
verge to a very similar value. This result is consistent with
the nature of the Office-31 and the Office-Home datasets in
that different tasks in each dataset are semantically similar
due to the shared label space among tasks. In Figure 2(c), we
find that psur learned for the surface normal prediction task is
different from pseg and pdep learned for the semantic segmen-
tation and depth estimation tasks, which indicates that the
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Setting
Office-31 Office-Home

A D W Avg Ar Cl Pr Rw Avg
Constant and identical {pi} 84.62 98.36 98.89 93.95 61.35 75.37 87.75 75.28 74.94
Constant but different {pi} 85.24 98.36 98.52 94.04 61.35 75.37 87.75 75.28 74.94

Different form of pi: pi = eνi 85.47 97.81 98.70 94.00 68.82 79.23 89.55 80.68 79.57
Using first-order NODE 84.79 98.36 98.89 94.01 65.27 77.57 88.98 76.97 77.45

Adding task-shared layers 83.87 97.81 98.15 93.28 58.13 73.28 85.06 72.43 72.22
Adding task-specific layers 83.87 97.81 97.59 93.09 60.34 74.50 87.25 74.31 74.10

NORMAL 86.32 99.18 98.88 94.80 69.26 80.39 90.47 80.22 80.08

Table 4: Ablation studies on the Office-31 and Office-Home datasets in terms of the classification accuracy (%). Each experiment is repeated
over 3 random seeds and the mean is reported.

surface normal prediction task is not so related to the other
two tasks, and this observation matches some previous study
[Sun et al., 2021], which verifies that the learned {pi} can
reflect task relations. In Figure 2(d), we can see that differ-
ent tasks tend to form several groups based on learned task
positions {pi}. For example, some tasks (e.g., Sideburns and
Wavy Hair) have similar task positions as face attributes cor-
responding to those tasks are similar. Moreover, some tasks
(e.g., Receding Hairline and 5 o Clock Shadow) have dif-
ferent task positions since face attributes corresponding to
those tasks are totally different. Those results show that the
learned task positions could help identify task clusters.

In summary, the proposed NORMAL method could learn
meaningful task positions that can reveal task relations.

5.5 Ablation Studies
In this section, we conduct ablation studies on the Office-31
and Office-Home datasets to answer several questions which
are placed at the beginning of the following paragraphs.

Are the learned task positions advantageous compared
with fixed task positions? We try to use a fixed parame-
ter p shared by all tasks and use task-specific fixed parame-
ters {pi} for different tasks. For the former setting, we use
p = 1. In the latter setting, for the Office-31 dataset, we try
to set task positions of the three tasks to each permutation of
a set {1, 1.25, 1.5} and select the best performed one, and for
the Office-Home dataset, the set to generate task positions is
{1, 1.25, 1.5, 1.75}. According to the results shown in Table
4, the performance of the two settings for task positions is in-
ferior to the learning of task positions in the proposed NOR-
MAL method, which demonstrates the effectiveness of the
learning strategy for task positions in the NORMAL method.

How do different forms of learning task positions impact
the performance? Here we try positive task positions and
parameterize task positions {pi} as pi = eνi . As shown
in Table 4, the model learned here is inferior to that of the
NORMAL model without any constraint on task positions by
0.80% and 0.51% on the Office-31 and Office-Home datasets,
respectively, which shows that learning task positions with-
out the positive requirement may be better. Based on Tables
1 and 4, this variant to learn positive task positions still per-
forms better than baseline methods, which again verifies the
effectiveness of the NORMAL method.

How do different NODE algorithms impact the perfor-
mance? The NORMAL method uses a second-order ODE
method but not first-order NODEs. Here we explore whether
different methods in the NODE family impact the perfor-
mance of the NORMAL method. We evaluate the perfor-
mance of the NORMAL method using the first-order NODE
[Chen et al., 2018b]. According to results shown in Ta-
bles 1 and 4, we can see that on the Office-Home dataset,
the performance of the NORMAL method using the first-
order NODE method is worse than the NORMAL method and
baseline methods. Some possible reasons are that first-order
NODEs usually cannot be trained stably and that second-
order NODEs are more expressive. For the Office-31 dataset,
the NORMAL method with the first-order NODE performs
slightly worse than the NORMAL method but slightly better
than the baseline methods. One possible reason is that the
Office-31 dataset is easier than the Office-Home dataset. In
summary, second-order NODE methods are preferred to be
used in the NORMAL method.

Does the enhancement of the NORMAL method result
from the addition of certain parameters? The time-aware
neural ODE block in the NORMAL method introduces a
small number of parameters, which are almost negligible
compared to other model parameters. We aim to investigate
whether such an increasing number of parameters brings per-
formance gain. Therefore, we experiment to add task-shared
layers in fθ and task-specific layers in {hϕi}, respectively, to
match with the number of parameters in NORMAL method,
and show results in Table 4. According to the results, we can
see that the introduction of additional layers does not bring
a performance improvement, and even lead to performance
degradation. One possible reason could be the overfitting is-
sue. Through this experiment, we can see that the perfor-
mance of the NORMAL method is attributed from the entire
model design but not the introduction of more parameters.

6 Conclusion

In this work, we propose the NORMAL algorithm to model
multiple learning tasks from the perspective of dynamic flow.
By learning the task positions in the NODE, the NORMAL
method can model the task relations in terms of the relative
task positions. Experiments on benchmark datasets demon-
strate the effectiveness of the proposed NORMAL method.
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