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Abstract
Since Transformers can alleviate some critical and
fundamental problems of graph neural networks
(GNNs), such as over-smoothing, over-squashing
and limited expressiveness, they have been success-
fully applied to graph representation learning and
achieved impressive results. However, although
there are many works dedicated to make graph
Transformers (GTs) aware of the structure and edge
information by specifically tailored attention forms
or graph-related positional and structural encod-
ings, few works address the problem of how to con-
struct high-performing GTs with modules of GNNs
and Transformers. In this paper, we propose a novel
graph Transformer with local and global operators
interleaving (LGI-GT), in which we further design
a new method propagating embeddings of the [CLS]
token for global information representation. Ad-
ditionally, we propose an effective message pass-
ing module called edge enhanced local attention
(EELA), which makes LGI-GT a full-attention GT.
Extensive experiments demonstrate that LGI-GT
performs consistently better than previous state-of-
the-art GNNs and GTs, while ablation studies show
the effectiveness of the proposed LGI scheme and
EELA. The source code of LGI-GT is available at
https://github.com/shuoyinn/LGI-GT.

1 Introduction
In recent years, deep learning approaches for graph-
structured data have been increasingly popular due to the
great successes of graph neural networks (GNNs). While
the convolutional neural networks (CNNs) [LeCun et al.,
1989] and recurrent neural networks (RNNs) [Elman, 1990]
are good at handling grid-like and sequential data respec-
tively, the inherent ability to deal with irregular data (i.e.,
graphs) and deeply learn their representations make GNNs
to be widely applied in many areas, such as data mining and
information retrieval. Broadly speaking, most GNNs are in-
stances of a general framework called message passing neural
network (MPNN) [Gilmer et al., 2017], and many effective
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models have been proposed, such as GCN [Kipf and Welling,
2017], GraphSAGE [Hamilton et al., 2017], GIN [Xu et al.,
2019], APPNP [Klicpera et al., 2019], and PNA [Corso et al.,
2020].

However, the performance of aforementioned GNNs has
been inevitably limited by some critical and fundamental
problems, including over-smoothing [Li et al., 2018; Chen et
al., 2020; Oono and Suzuki, 2020], over-squashing [Alon and
Yahav, 2021] and limited expressiveness [Morris et al., 2019].
Concretely, over-smoothing means that with the model be-
coming sufficiently deep, all node representations will con-
verge to the same and cannot be differentiated any more,
while over-squashing refers to that information from a large
receptive field is “squashed” into some fixed-length vectors.
Due to over-smoothing and over-squashing, GNNs cannot
be too deep and meanwhile a node cannot effectively in-
teract with another far away. In addition, message passing
GNNs actually encode the rooted subtree around each node,
thus their expressive ability is bounded by the 1-Weisfeiler-
Lehman (1-WL) graph isomorphism test [Xu et al., 2019],
i.e., expressiveness of GNNs is limited.

Recently, Transformer [Vaswani et al., 2017] has shown
its dominance in the field of deep learning and Transformer-
based models have performed the best on many computer vi-
sion and natural language processing tasks. Considering the
great success of Transformer and its potential to address the
critical issues of GNNs, graph Transformers (GT) [Dwivedi
and Bresson, 2020; Kreuzer et al., 2021] are proposed and
have been attracting more and more attention.

Particularly, there are two main categories of GTs. The first
category (Type I) combines Transformer encoder with con-
nectivity information and edge features via specially tailored
attention forms or graph-related positional and structural en-
codings (PE/SE), i.e., the Transformer encoder is still taken as
the network backbone, but adapted for graph structures. Ex-
amples are [Dwivedi and Bresson, 2020], Graphormer [Ying
et al., 2021], SAN [Kreuzer et al., 2021], UniMP (Trans-
formerConv) [Shi et al., 2021] and GRPE [Park et al., 2022].
This class of GTs do not employ the relatively independent
GNN modules. The second one (Type II), however, explicitly
utilizes both the message passing GNN modules and Trans-
former encoder layers, such as GraphTrans [Wu et al., 2021],
SAT [Chen et al., 2022] and GPS [Rampasek et al., 2022].
Generally, in Type I methods, the local and global operations
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are tightly coupled (i.e., node interactions within a neigh-
borhood and over the entire graph are simultaneously con-
sidered) , while in Type II models they are loosely coupled.
Although model structures of Type I are usually more com-
plex, state-of-the-art (SOTA) results on many benchmarks
[Dwivedi et al., 2020; Hu et al., 2020a] are obtained by GTs
from Type II.

Specifically, there are several manners to construct GTs in
Type II, and among them, GNN+Transformer (i.e., stacking
a multi-layer Transformer on a multi-layer GNN, like Graph-
Trans [Wu et al., 2021]) and parallelization (i.e., feeding a
same input into a GNN layer and a global self-attention layer
independently in each block then followed by a fusing op-
eration, like GPS [Rampasek et al., 2022]) are two effective
schemes. We argue that both of these schemes have short-
comings in model structures, i.e., global and local informa-
tion cannot be sufficiently utilized. To overcome this prob-
lem, we propose a new way to construct GTs with GNN lay-
ers and Transformer layers.

In this paper, we introduce a novel architecture of GTs, in
which local and global operators interleave (LGI). Local op-
erator refers to a family of message passing GNN modules
since they aggregate information from local neighborhoods,
while global operator refers to any global attention–based
methods like Transformer. Hence, we alternately place few
GNN layers and few Transformer layers in sequence and re-
peat this several times. Via such an LGI scheme, GTs can
sufficiently fuse information from neighboring nodes locally
and distant nodes globally. For this reason, we call our pro-
posed model LGI-GT, which can to some extent address the
critical and fundamental problems of traditional GNNs and
perform better than previous GTs. In particular, to propagate
global information in LGI-GT, we design a new method to
forward propagate embeddings of the [CLS] token [Devlin et
al., 2018] in a skip manner. Additionally, we propose a novel
message passing method called edge enhanced local attention
(EELA), which can be leveraged as a local operator in LGI-
GT and makes LGI-GT a full-attention GT model (both local
and global operators are based on attention mechanisms).

Our main contributions can be summarized as follows:

• We propose LGI-GT, which is a GT model arranging
message passing GNN modules and Transformers (as
local operators and global operators, respectively) in an
interleaving way.

• We propose a novel attention-based message passing
module called EELA, which enables LGI-GT to be a
full-attention GT.

• We empirically demonstrate that LGI-GT outperforms
the state-of-the-art GNNs and GTs, by applying it to
multiple graph-level and node-level tasks. In addition,
we validate the effectiveness of EELA via an ablation
study, and show the superiority of the LGI scheme via a
comparison experiment, a depth study and visualization.

2 Related Work
In this section, we review the two categories of existing GTs.

Type I GTs. Dwivedi and Bresson [2020] propose an early
example using self-attention to construct Transformer for pro-
cessing graphs with Laplacian eigenvectors as positional en-
codings. In their model, attention is performed only on the
neighbors instead of all the nodes of the graph. Hence, it
can be seen as an example of the message passing network
and very like to GAT [Velickovic et al., 2018] with differ-
ent attention implementation details. Likewise, Transformer-
Conv designed in [Shi et al., 2021] also uses local attention
only over the 1-hop neighborhood. They adapt the original
multi-head attention computing formula for graphs with edge
attributes, and combine a gated mechanism to prevent from
over-smoothing. Since their model is proposed for semi-
supervised learning on graphs with nodes partially labeled,
they additionally employ a new input for the Transformer
by combining node features and node labels. SAN [Kreuzer
et al., 2021] firstly uses an auxiliary Transformer mapping
eigenvectors and eigenvalues of the graph’s Laplacian matrix
to a learned positional encoding; then a main Transformer
works using full-graph attention. Attention computing for-
mulas of the main Transformer are tailored, by replacing
the dot product operation (between key vectors and query
vectors) with another one involving edge encoding vectors.
Therefore, besides global dependencies, it also considers lo-
cal connectivity and edge features. Graphormer [Ying et al.,
2021] leverages node degree and shortest path to get cen-
trality encoding, spatial encoding and edge encoding, while
the attention computation is altered by adding two bias terms
to the scaled dot product of query and key before softmax.
Moreover, GRPE [Park et al., 2022] adopts relative positional
encoding to realize tight integration of node-edge and node-
spatial information. By learning the spatial relation embed-
dings and edge embeddings, spatial bias and edge bias are
inserted into the attention score computation formula.

Type II GTs. Rong et al. [2020] design their own message
passing GNN and use three such GNNs (with different pa-
rameters) to get query, key and value vectors respectively for
the consequent self-attention. A great contribution of their
work is the pre-training procedure, where they devise two
new self-supervised tasks for molecule property prediction.
Baek et al. [2021] focus on methods of graph pooling. Their
graph multiset Transformer (GMT) takes Transformer as a
pooling method and coarsens an original graph layer by layer.
Attention of GMT uses two different GNNs for key and value,
and by learning query seed vectors whose number is fewer
than the number of real nodes, the graph is coarsened once
in each layer. Strictly speaking, GMT is not a graph Trans-
former, but a GNN with a Transformer as its pooling method.
To better capture long-range pairwise dependencies, Graph-
Trans [Wu et al., 2021] is proposed, as a combined model
where a multi-layer Transformer is on the top of a multi-layer
GNN (an example of the GNN+Transformer scheme as men-
tioned in Section 1). From the perspective of kernel methods,
SAT [Chen et al., 2022] utilizes a shared GNN to get query
and key vectors and thus implement a particular kernel func-
tion as their own attention score formula; besides, it uses k-
subgraph GNNs [Zhang and Li, 2021] (instead of k-subtree
ones [Xu et al., 2019]) as more expressive node information
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Figure 1: GNN+Transformer scheme (a): G1 is the output of the k-th GConv and embeddings of the nodes may be the same due to over-
smoothing, thus meaningless to TLayers behind. Parallel scheme (b): in each block, a same input (graph G) is fed into a GConv and a TLayer
in parallel, and the outputs of them G1 and G2 are fused into one somehow, while simple fusing methods like summation or concatenation may
limit the model capacity. Our interleaving scheme (c): TLayers alleviate the over-smoothing problem, thus intermediate node representations
are informative after modeling local pattern via GConvs and global pattern via TLayers; meanwhile, there is no need to consider fusing
information from different blocks.

extractors beyond the 1-WL test. Furthermore, Rampasek et
al. [2022] propose GPS as a GT framework, including kinds
of absolute/relative positional/structural encodings into GTs.
As for their model architecture, they parallelize GNN and
self-attention modules, and then get the sum of their outputs
before the feed forward network (FFN) (an example of the
parallel scheme as mentioned in Section 1).

In this work, we design a novel GT by interleaving GNN
layers and Transformer layers to better leverage the advan-
tages of both. Our proposed LGI-GT belongs to Type II GTs
and also keeps loosely-coupled between the message passing
and global self-attention.

3 Model Structure Analysis
Since convolution is typically used to extract information of a
local patch in an image [LeCun et al., 1989], graph convolu-
tion is considered as the similar operation, which is indeed a
general scheme representing a class of local message passing
methods rather than only GCN [Kipf and Welling, 2017]. A
graph local operator refers to an instance of this scheme, usu-
ally with a specific message construction function followed
by a specific aggregation manner, and we name it GConv for
the rest of this paper.

The Transformer encoder layer (hereinafter referred to
as TLayer) is used as the global operator, directly model-
ing dependencies of any two nodes via full-graph attention.
Note that many Transformer models can be used as TLayer
here, such as Performer [Choromanski et al., 2021] and Big-
Bird [Zaheer et al., 2020].

The main advantage of our proposed LGI-GT over the
other two constructing schemes is the interleaving manner
where GConvs and TLayers are alternately arranged. Given
a graph G, k GConvs and k TLayers, we compare the
GNN+Transformer scheme, the parallel scheme and our in-
terleaving scheme in Figure 1. We first show a defect of the
GNN+Transformer scheme, as follows.

A graph Transformer in the GNN+Transformer scheme
still has the risk of over-smoothing. See Figure 1 (a).
Assume that k is just the depth, that makes a GNN

stacked by GConvs incur over-smoothing. Therefore, G1 =
GConv(GConv(. . . GConv(G) . . .)) is already an over-
smoothed graph, meaning that the features of all nodes in
G1 are basically the same. Since a Transformer stacked
by k TLayers only depends on node features and han-
dles the graph without considering node connectivity or
edge features, G1 as its input is of no meaning for it.
As a result, the final output of the whole model G2 =
TLayer(TLayer(. . . TLayer(G1) . . .)) is also meaning-
less, i.e., over-smoothing occurs and thus makes the model
unable to perform well.

A graph Transformer in the parallel scheme needs a bet-
ter fusion method other than simple summation. As for
the parallel scheme, see Figure 1 (b), G1 = GConv(G) and
G2 = TLayer(G) are computed independently and based on
them local and global information are fused immediately, thus
the aforementioned over-smoothing scenario may not happen.
Nevertheless, it is yet to explore that which fusion method is
suitable for the outputs of the parallel GConv and TLayer in
each block. As an example, GPS chooses to sum them up,
and then feeds the summation into an FFN. However, a sim-
ple summation without considering the significant difference
of each part may limit the model capacity, so that this opera-
tion is too simple and may hurt the model performance.

Advantages of the LGI scheme. As mentioned above, in
some cases, the GNN+Transformer models may fail to distin-
guish different nodes and thus be unable to well accomplish
the learning task at hand. On the contrary, in the case where
k GConvs and k TLayers are stacked in an interleaving man-
ner (e.g., repeat 1 GConv + 1 TLayer for k times), TLayers
can alleviate the over-smoothing problem. Node embeddings
as the input of any TLayer are not only meaningful, but also
fused with globally important information. Intuitively, while
using this architecture, the intermediate node embeddings are
informative and beneficial to downstream modules, as shown
in Figure 1 (c). Additionally, since we arrange GConv and
TLayer serially versus parallelly, there is no need to consider
how to further handle outputs of these two modules, e.g., giv-
ing different weights to outputs of them if summation is used.
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Figure 2: Overview of the architecture of our proposed graph Transformer with local and global operators interleaving.

4 Methodology
We first introduce the architecture of the proposed LGI-GT
with a new algorithm to use the [CLS] token. To get a full-
attention LGI-GT, we then propose a novel message passing
module based on an attention mechanism, called EELA.

4.1 LGI-GT
Local and Global Operators Interleave
The LGI-GT architecture is shown in Figure 2, of which one
block is named as an LGI-Block. The LGI-Block takes a
graph as its input and outputs an isomorphic one with updated
node embeddings. We formalize this procedure as follows:

X l = LGI-Block(l)(X l−1,E,A), (1)

where A ∈ RN×N and E ∈ R|E|×F denote adjacency ma-
trix andF -dimensional edge features of a graph withN nodes
and edge set E , LGI-Block(l) denotes the l-th block of LGI-
GT (l = 1, 2, ..., L), and X l ∈ RN×F denotes the intermedi-
ate embeddings of nodes and also the output ofLGI-Block(l)
except that X0 is the node features optionally concatenated
with positional or structural encodings. For simplicity, we re-
gard edge features as constants, but note that our method is
a flexible and general framework, thus any GConv updating
edge embeddings can be easily plugged into it and any PE/SE
can be used by concatenating it to node or edge features.
LGI-Block(l) consists of GConvs and TLayers in order,

regardless of an optional FFN. Thus Equation (1) can be de-
composed into the following equations:

X̂ l = GConvs(l)(X l−1,E,A), (2)

X l = TLayers(l)(X̂ l), (3)

where GConvs(l) and TLayers(l) are just the two com-
ponents in LGI-Block(l), as mentioned above, and X̂ l ∈
RN×F is the intermediate node embeddings after GConvs(l)

and before TLayers(l).

Considering GConvs(l) has n layers and TLayers(l) has
m as shown in Figure 2 (n andm are both small numbers such
as 1 or 2), Equations (2) and (3) can be further decomposed,
thus replaced by Equations (4) and (5):

H
(l)
i = GConv

(l)
i (H

(l)
i−1,E,A), (4)

Ĥ
(l)
j = TLayer

(l)
j (Ĥ

(l)
j−1), (5)

where GConv
(l)
i is the i-th layer of GConvs(l) (i =

1, 2, ..., n), H(l)
i ∈ RN×F is the node intermediate repre-

sentation within GConvs(l), H(l)
0 = X l−1 and H

(l)
n = X̂ l.

Similarly, TLayer(l)j is the j-th layer of TLayers(l) (j =

1, 2, ...,m), Ĥ(l)
j ∈ RN×F is the node intermediate represen-

tation within TLayers(l), Ĥ(l)
0 = X̂ l and Ĥ

(l)
m = X l. Note

that, as shown in Figure 2, there are two batch transformations
within each TLayer. Before and after the global self-attention
are sparse-to-dense and dense-to-sparse, respectively.

To overcome shortcomings brought by depth, we design
some skip connections within LGI-GT, e.g., at the beginning
of the first GConv in each LGI-Block, we can set a skip con-
nection to the beginning of the first TLayer.

A New Method to Propagate Embeddings of the [CLS]
Token
We specially devise a procedure of propagating embeddings
of the [CLS] token in LGI-GT, to guarantee in each block they
skip all the local operators and only participate in global oper-
ators. Different from that in Graphormer [Ying et al., 2021],
GraphTrans [Wu et al., 2021] and SAT [Chen et al., 2022],
[CLS] embeddings in our model are propagated in a skip man-
ner. Specifically, the embeddings of [CLS] do not exist in any
GConv, so that in forward pass, they keep constant within
GConvs and are only updated within TLayers. When there
is a learnable vector representing the [CLS] token, Equations
(1), (3) and (5) should be modified to Equations (6), (7) and
(8) for the special architecture of LGI-GT:
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Algorithm 1 Updating the embeddings of [CLS]
Input: CLS0, sparse batching X0, E, A
Output: CLSL

1: for l = 1, 2, ..., L do
2: Calculate X̂ l via Equation (2).
3: Ĥ

(l)
0 = X̂ l, C(l)

0 = CLSl−1.
4: for j = 1, 2, ...,m do
5: Let H̃(l)

j−1 = [Ĥ
(l)
j−1;C

(l)
j−1].

6: Transform H̃
(l)
j−1 to the dense batch H̄

(l)
j−1.

7: Calculate O1 via Equation (9).
8: Transform O1 to the sparse batch Ô1.
9: Calculate O2 via Equation (10).

10: [Ĥ
(l)
j ;C

(l)
j ] = O2.

11: end for
12: X l = Ĥ

(l)
m , CLSl = C

(l)
m .

13: end for
14: return CLSL

X l,CLSl = LGI-Block(l)(X l−1,E,A,CLSl−1), (6)

X l,CLSl = TLayers(l)(X̂ l−1,CLSl−1), (7)

Ĥ
(l)
j ,C

(l)
j = TLayer

(l)
j (Ĥ

(l)
j−1,C

(l)
j−1), (8)

where CLSl ∈ R1×F is the [CLS] embedding output by
LGI-Block(l) (also the same output of TLayers(l)) ex-
cept that CLS0 is the original embedding of [CLS], whilst
C

(l)
j ∈ R1×F denotes the intermediate embedding of [CLS]

output by TLayer(l)j , C(l)
0 = CLSl−1 and C

(l)
m = CLSl.

For completeness, we describe the global multi-head at-
tention (MHA) and FFN equations regardless of the specific
block or layer, thus ignoring l and j:

O1 =MHA(H̄), (9)

O2 = FFN(Ô1), (10)
where H̄,O1 ∈ RBNmax×F are both densely batched node
representations for B graphs, with Nmax as the maximum
node number, Ô1 ∈ RNsum×F is the sparse batch version
of O1 with Nsum as the summation of node numbers, and
O2 ∈ RNsum×F is the output of FFN, also the output of the
related TLayer. See Figure 2 for more details.

Algorithm 1 describes the procedure to update the embed-
dings of [CLS] , where the operator [ · ; · ] denotes concatena-
tion along the node dimension.

4.2 Edge Enhanced Local Attention
We propose a new instance of GConv called EELA, using the
message passing mechanism as well as local attention mech-
anism simultaneously. Figure 3 illustrates how a message is
constructed in EELA. Edge feature matrix E is first concate-
nated to source node feature matrix Xs along the feature di-
mension and then get K and V via linear projection; mean-
while, Q is calculated only using target node feature matrix

Linear

EX

C

Dot-Product

& Leaky ReLU

& Sparse Softmax

Linear

Q K

V

[Xs || E]

constructed message

Sparse adjacency matrix

Edge features

Node features

Concatenation

Element-wise product

Collect two corresponding node 

feature vectors for each edge

Source node features

Target node features

Sparse attention score

X

E

C

A

A

Collect
Xs

Xt

S

Xs

Xt

S

Collect

Figure 3: EELA message constructing procedure.

Xt via another linear layer. The whole procedure in terms of
the central node i can be formalized as follows:

α̂i,j =
(W1xi)

>(W2[xj‖ei,j ])√
d

, (11)

αi,j =
exp(α̂i,j)∑

k∈N (i) exp(α̂i,k)
, (12)

x′i =
∑

j∈N (i)

αi,jW2[xj‖ei,j ], (13)

where W1 ∈ RF×F is the query weight matrix, W2 ∈
R2F×F is the mutual weight matrix of key and value shar-
ing a same linear module, d is the number of one head di-
mensions, xj ∈ R1×F and ei,j ∈ R1×F are the embedding
vectors of node j and edge (i, j) respectively, x′i ∈ R1×F is
the updated embedding vector of node i, N (i) is the 1-hop
neighborhood of node i, and [ · ‖ · ] represents concatenation
along the feature dimension.

Different from GATConv (attention with too few paramters
and without dot product) [Velickovic et al., 2018] and Trans-
formerConv (attention like the original Transformer) [Shi et
al., 2021], EELA not only uses linear projection to get Q,
K and V , but makes V identical to K and thus reduces the
number of parameters while keeping the effectiveness of local
attention.

5 Experiments
In this section, we first compared our method to the state-
of-the-art baselines including both GNNs and GTs. To
demonstrate the superiority of the LGI scheme over the
GNN+Transformer scheme and the parallel scheme, we per-
formed another comparison experiment, a depth study and
a visualization study on these three GT constructing man-
ners. In addition, we validated the effectiveness of the module
EELA via an ablation study.

5.1 Comparison with the SOTA Methods
We conducted a comparison experiment on node-level and
graph-level graph representation learning tasks using datasets
from different sources for ensuring diversity.
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Model ZINC PATTERN CLUSTER ogbg-molpcba ogbg-code2

MAE ↓ Accuracy ↑ Accuracy ↑ AP ↑ F1 score ↑
GCN 0.367 ± 0.011 71.89 ± 0.33 68.50 ± 0.98 0.2424 ± 0.0034 0.1595 ± 0.0018
GIN 0.526 ± 0.051 85.39 ± 0.14 64.72 ± 1.55 0.2703 ± 0.0023 0.1581 ± 0.0026
PNA 0.188 ± 0.004 – – 0.2838 ± 0.0035 0.1570 ± 0.0032
DGN 0.168 ± 0.003 86.68 ± 0.03 – 0.2885 ± 0.0030 –
GIN-AK+ 0.080 ± 0.001 86.85 ± 0.06 – 0.2930 ± 0.0044 –
CRaWl 0.085 ± 0.004 – – 0.2986 ± 0.0025 –

SAN 0.139 ± 0.006 86.58 ± 0.04 76.69 ± 0.65 0.2765 ± 0.0042 –
GraphTrans – – – 0.2761 ± 0.0029 0.1830 ± 0.0024
SAT 0.094 ± 0.008 86.85 ± 0.04 77.86 ± 0.10 – 0.1937 ± 0.0028
GPS 0.070 ± 0.004 86.69 ± 0.06 78.02 ± 0.18 0.2907 ± 0.0028 0.1894 ± 0.0024

LGI-GT (ours) 0.069 ± 0.002 86.93 ± 0.04 78.19 ± 0.10 0.3040 ± 0.0029 0.1948 ± 0.0024

Table 1: Comparison of LGI-GT to the SOTA methods on 5 benchmark datasets. The best results are highlighted in boldface, and lacking
results for baselines in the original papers are marked as “–”.

Datasets. Among all the datasets we tested on, ZINC, PAT-
TERN, CLUSTER were from [Dwivedi et al., 2020], whilst
ogbg-molpcba and ogbg-code2 were from OGB [Hu et al.,
2020a]. Specifically, ZINC is used to do graph regression;
PATTERN and CLUSTER target to classify nodes; ogbg-
molpcba is for multi-task binary graph classification; ogbg-
code2 related task is code summarization where code is rep-
resented by the abstract syntax trees processed as graphs, so
it is also a graph-level task.

Baselines. There are two classes of baselines — GNNs
and GTs. For GNNs, we used GCN [Kipf and Welling,
2017], GIN [Xu et al., 2019], PNA [Corso et al., 2020],
DGN [Beaini et al., 2021], GIN-AK+ [Zhao et al., 2022]
and CRaW1 [Tönshoff et al., 2021]; for GTs, we used
SAN [Kreuzer et al., 2021], GraphTrans [Wu et al., 2021],
SAT [Chen et al., 2022] and GPS [Rampasek et al., 2022].
Among them, GraphTrans represents the GNN+Transformer
scheme and GPS is an instance of the parallel scheme. Fol-
lowing [Rampasek et al., 2022], here we did not compare
with ensemble methods as well as models pre-trained on ex-
tra datasets.

Configurations of LGI-GT. On each dataset, we used the
same number of hidden dimensions F and number of lay-
ers (or blocks) L as GPS. To exclude performance improve-
ment brought by the advanced GNNs (e.g., PNA) or GNNs
more expressive than the 1-WL test (e.g., GraphSNN [Wi-
jesinghe and Wang, 2022] and ID-GNN [You et al., 2021]),
we only utilized the basic GINEConv [Xu et al., 2019;
Hu et al., 2020b] and GCNConv [Kipf and Welling, 2017] as
GConvs, except that EELA was employed for ogbg-molpcba
to realize full-attention LGI-GT. As for PE/SE, only Ran-
dom Walk Structural Encoding (RWSE) was used for ZINC,
PATTERN and CLUSTER. To achieve a fair comparison,
m = n = 1 were constant (never tuned) across all the
datasets. As for the readout methods concerning the graph-
level tasks, we used summation for ZINC, and [CLS] token
(see Section 4.1) for ogbg-molpcba and ogbg-code2. Evalua-
tion metrics and dataset splits were the same as in the original
papers for each dataset. We took mean ± std of 10 runs with
different random seeds as the final result.

Results. As shown in Table 1, all the statistics of the base-
lines are from [Rampasek et al., 2022] or the original pa-
pers (some of GPS are from the github issues). From the
results, we can see that the proposed LGI-GT performs con-
sistently better than the SOTA approaches on all the 5 bench-
mark datasets, and the margins are relatively obvious.

5.2 The Effectiveness of Interleaving GConvs and
TLayers

Besides on big datasets, we conducted another comparison
experiment on four other smaller ones: NCI1, NCI109 [Wale
et al., 2008; Ivanov et al., 2019], ogbg-molbbbp and ogbg-
moltox21 [Hu et al., 2020a].

Configurations. On each dataset, we used the same num-
ber of GConv, TLayer and hidden dimensions for different
schemes. Particularly, we set n = 2,m = 1 for LGI-GT on
NCI1, NCI109 and ogbg-moltox21 to try a different combi-
nation of n and m, while on ogbg-molbbbp we still set n = 1
as the size is too small. As Section 5.1, on ogbg-molbbbp
and ogbg-tox21, we took mean ± std of 10 runs with differ-
ent random seeds; while on NCI1 and NCI109 we took mean
± std of 20 runs following [Wu et al., 2021].

Model NCI1 NCI109 ogbg-molbbbp ogbg-moltox21

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑
GNN 80.72 ± 2.03 81.70 ± 1.85 69.45 ± 1.36 73.38 ± 0.68
Transformer 65.46 ± 2.74 66.53 ± 2.15 64.49 ± 3.48 73.23 ± 0.57
GNN
+Transformer 81.84 ± 2.23 82.79 ± 1.94 69.96 ± 2.50 75.73 ± 0.86

Parallel GT 82.32 ± 1.79 82.34 ± 1.89 69.10 ± 1.01 74.99 ± 0.56

LGI-GT 82.18 ± 1.90 83.36 ± 1.89 70.54 ± 0.80 78.17 ± 0.57

Table 2: Comparison experiment on 4 benchmark datasets, show-
ing that neither GNN nor Transformer alone does not perform well
enough and the LGI scheme delivers better results. The best results
are highlighted in boldface.

Results. From Table 2, we can see that both GConv and
TLayer are important for LGI-GT, and the LGI scheme is bet-
ter than the GNN+Transformer and parallel schemes. On 3
out of 4 datasets, LGI-GT surpasses both of them, especially
on ogbg-moltox21, while on NCI1 the accuracy of LGI-GT
is a little lower than that of Parallel GT.
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5.3 Depth Study of GTs

To further validate the effectiveness of interleaving GConvs
and TLayers, we performed experiments on PATTERN to ob-
serve the performance with respect to (w.r.t.) model depth
d, i.e., how the performance changed while models got
deeper. Typically, we compared our LGI scheme with the
GNN+Transformer scheme and the parallel scheme.

Configurations were the same with LGI-GT in Section 5.1
except for number of layers and constructing schemes (i.e.,
GNN+Transformer, parallel and LGI). As for the parallel
scheme, we followed the model structure of GPS, taking sum-
mation of GConv and TLayer outputs before FFN in each
block.

Figure 4: Test performance w.r.t. model depth.

Figure 4 shows the influence of the model depth with
the GNN+Transformer scheme, parallel scheme and LGI
scheme. It is easy to see that with the model becoming
deeper, GNN+Transformer and Parallel GT are degraded and
the performances tend to become worse overall, while LGI-
GT keeps steady and the results stay in a high level. The
reason why such difference between LGI-GT and the others
exists is analyzed in Section 3. Hence, we can conclude that
over-smoothing obviously limits GNN+Transformer, a sim-
ple summation feature fusion limits the parallel GT, but the
LGI scheme is effective and robust to the model depth.

5.4 Model Interpretation

To better view the superiority of our LGI scheme over the
other ones from the perspective of model interpretation, on
ogbg-molpcba, we visualized the attention weights of the
[CLS] node to all the real nodes in the same graph. Fig-
ure 5 shows two examples, where the first column displays
the original molecules and the other columns from left to right
are the visualization results of LGI-GT, GNN+Transformer
and Parallel GT in turn. Apparently LGI-GT learns to put
more attention on some important atoms like N, O and S,
as well as atoms that connect different motifs, while the
GNN+Transformer scheme and the parallel scheme fail to do
both simultaneously. Hence, we can conclude that LGI-GT
is good at handling structure information and focuses on the
discriminative nodes.

C N O S

Figure 5: Visualization of the [CLS] node attention to the real nodes.

5.5 The Effectiveness of EELA
We tested our EELA module on ogbg-molpcba by comparing
with two other attention-based message passing modules—
TransformerConv [Shi et al., 2021] and GATConv [Velick-
ovic et al., 2018].

Module LGI-GT GNN+Transformer Parallel GT
AP ↑ AP ↑ AP ↑

GATConv 0.2995 ± 0.0039 0.2523 ± 0.0059 0.2366 ± 0.0029
TransformerConv 0.3031 ± 0.0014 0.2402 ± 0.0062 0.2401 ± 0.0049

EELA 0.3040 ± 0.0029 0.2681 ± 0.0056 0.2479 ± 0.0030

Table 3: Ablation study to test the effectiveness of EELA for full-
attention GTs in three constructing schemes on ogbg-molpcba.

Most configurations were the same with LGI-GT in Sec-
tion 5.1 except for the GConv types and model structures.
Particularly, following GPS [Rampasek et al., 2022], we
took an FFN after a simple summation to fuse outputs of
GConvs and TLayers for the Parallel GT, and global aver-
age pooling was taken as its readout method. As shown in
Table 3, apparently GTs with EELA outperform the coun-
terparts with TransformerConv and GATConv in all three
schemes, demonstrating that EELA is more suitable to con-
struct full-attention GTs than other local attention-based mes-
sage passing modules.

6 Conclusion
In this paper, we classify current graph Transformers into two
types and analyze the advantages of our interleaving scheme
over other GT constructing methods in terms of model struc-
tures of Type II GTs. More importantly, we propose LGI-GT,
a graph Transformer interleaving message passing layers and
Transformer encoder layers. Adapting to the LGI structure,
we introduce a new algorithm to forward propagate embed-
dings of the [CLS] token in a skip manner. Additionally, we
design a new graph local operator called EELA, which is used
to construct full-attention GTs (including our LGI-GT) bet-
ter than existing attention-based message passing modules.
Empirically, we demonstrate that our LGI-GT outperforms
other SOTA GNNs and GTs on both node-level and graph-
level tasks, and through several ablation studies, we further
validate the effectiveness of the LGI scheme and EELA.
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