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Abstract
Importance sampling (IS) is a popular technique in
off-policy evaluation, which re-weights the return
of trajectories in the replay buffer to boost sample
efficiency. However, training with IS can be un-
stable and previous attempts to address this issue
mainly focus on analyzing the variance of IS. In this
paper, we reveal that the instability is also related
to a new notion of Reuse Bias of IS — the bias
in off-policy evaluation caused by the reuse of the
replay buffer for evaluation and optimization. We
theoretically show that the off-policy evaluation and
optimization of the current policy with the data from
the replay buffer result in an overestimation of the
objective, which may cause an erroneous gradient
update and degenerate the performance. We further
provide a high-probability upper bound of the Reuse
Bias and show that controlling one term of the upper
bound can control the Reuse Bias by introducing
the concept of stability for off-policy algorithms.
Based on these analyses, we present a novel yet sim-
ple Bias-Regularized Importance Sampling (BIRIS)
framework along with practical algorithms, which
can alleviate the negative impact of the Reuse Bias,
and show that our BIRIS can significantly reduce the
Reuse Bias empirically. Moreover, extensive experi-
mental results show that our BIRIS-based methods
can significantly improve the sample efficiency on a
series of continuous control tasks in MuJoCo.

1 Introduction
Off-policy reinforcement learning algorithms [Mnih et al.,
2015; Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto
et al., 2018] typically have high sample efficiency and are
suitable for many real-world applications. The key idea of
off-policy algorithms is to reuse historical trajectories in the
replay buffer. Though promising, it also causes an issue that
these trajectories are not sampled from the current policy.
When estimating the expected cumulative return of the current
policy with trajectories generated by historical policies, off-
policy evaluation, as the core of off-policy algorithms, yields
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the distribution shift in consequence [Hanna et al., 2019]. To
alleviate this issue, the standard method in off-policy eval-
uation is importance sampling [Kahn and Marshall, 1953;
Precup et al., 2000], which is a widely used Monte Carlo tech-
nique to evaluate the expected return of the target policy when
the training data is generated by a different behavior policy. In
practice, it usually requires computing the degree of deviation
between the target policy and the behavior policy.

Previous off-policy methods, which are usually combined
with importance sampling, have suffered from the problem of
unstable training [Li et al., 2015]. To address this problem, pre-
vious work mainly focuses on the high variance of importance
sampling [Li et al., 2015; Liu et al., 2018; Xie et al., 2019;
Fujimoto et al., 2021]. However, we find that reusing tra-
jectories in the replay buffer to optimize and evaluate may
introduce a bias to off-policy evaluation (See Fig. 1(1)), which
may also lead to unstable training and can not be ignored.

In this work, we present a new analysis beyond variance
by introducing the concept of Reuse Bias, which formally
characterizes the bias in off-policy evaluation caused by the
reuse of the replay buffer for evaluation and optimization (See
Definition 1). Under some mild assumptions (See Theorem 1,
2), we theoretically show that off-policy evaluation is an over-
estimation of the true expected cumulative return. To explain
how severe the Reuse Bias is, we first prove that the expecta-
tion of off-policy evaluation for the optimal policy over the
replay buffer may be arbitrarily large when its true return is
arbitrarily small (See Theorem 3). Moreover, we experiment
on MiniGrid to show that Reuse Bias will cause an erroneous
policy evaluation and even gets more significant as the en-
vironments become more complex (See Fig. 1(2), and more
details are in Sec. 6.2). Consequently, the Reuse Bias can be
significantly severe and the inaccurate off-policy evaluation
may mislead the direction of the gradient. This becomes par-
ticularly problematic for further policy improvement because
sub-optimal actions might be reinforced in the next policy
update, and further induces unstable training.

To reveal how to optimize the policy for controlling the
Reuse Bias, we present a high-probability upper bound of
Reuse Bias for any possible policies by extending PAC Bayes
techniques [McAllester, 1998; McAllester, 2003] (See Theo-
rem 4). Compared with classical bounds in statistical learning
theory, our result holds for any policy hypothesis and is related
to the optimized policy for guiding further optimization to con-
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Figure 1: (a) A high-level illustration of the Reuse Bias and our BIRIS. The Reuse Bias is caused by the fact that off-policy methods
optimize and evaluate the policy with the same data in the replay buffer. (b) Experimental results of PG+IS, PG+WIS, PG+BIRIS+IS, and
PG+BIRIS+WIS in MiniGrid 8×8 with replay buffer size 30. In each subfigure, J and Ĵ represent the expected return and the estimated return
via the replay buffer of the target policy respectively. We repeat the experiment 50 times and plot the box diagram, where the orange dashed
line represents the mean. This figure shows that Reuse Bias is severe to cause an erroneous policy evaluation and our BIRIS can significantly
reduce the Reuse Bias. (More details are in Sec. 6.2 and Appendix B.1)

trol the Reuse Bias. Moreover, we present that controlling
one term, which only depends on the replay buffer and the
policy, of our upper bound can effectively control the Reuse
Bias by introducing the concept of stability for off-policy al-
gorithms (See Definition 2, Theorem 5 and 6). Based on these
analyses, we propose a novel Bias-Regularized Importance
Sampling (BIRIS) framework which can improve the sample
efficiency of off-policy algorithms by controlling Reuse Bias.
We then experiment on MiniGrid to show that our BIRIS can
conspicuously reduce the Reuse Bias (See Fig. 1(2), and more
details are in Sec. 6.2). Since our method is orthogonal to ex-
isting off-policy algorithms and variance-reduction methods,
like weighted importance sampling (WIS) [Mahmood et al.,
2014], BIRIS can be easily combined with them. Extensive
experimental results show that our BIRIS can significantly
reduce the Reuse Bias in MiniGrid compared with PG+IS
and PG+WIS. Since practical off-policy algorithms for han-
dling complicated continuous control tasks always consider
using actor-critic methods rather than directly using trajecto-
ries, we also extend our Reuse Bias to AC-based methods and
show that these methods also suffer from the negative impact
of the Reuse Bias. Moreover, we extend our BIRIS to this
more practical setting and provide two practical algorithms
(SAC+BIRIS and TD3+BIRIS). Extensive experiments show
that our BIRIS-based methods significantly improve the per-
formance and sample efficiency compared with baselines on
a series of continuous control tasks in MuJoCo. In summary,
our contributions are:

• To the best of our knowledge, this is the first attempt to
discuss the bias of off-policy evaluation due to reusing
the replay buffer. We show that the off-policy evaluation
via importance sampling is an overestimation when opti-
mized by the same replay buffer, which is recognized as
the Reuse Bias in this paper.

• Moreover, we derive a high-probability bound of the
Reuse Bias, which indicates that it cannot be eliminated
only by increasing the number of trajectory samples.

Then we introduce the concept of stability and provide
an upper bound for the Reuse Bias via stability, which
indicates that controlling one term of the high-probability
bound can effectively control the Reuse Bias.

• Based on these analyses, we propose BIRIS and show
that our BIRIS can conspicuously reduce the Reuse Bias
through experiments in MiniGrid. Moreover, we experi-
mentally show that our method can significantly improve
the performance and sample efficiency for different off-
policy methods in different MuJoCo tasks.

2 Related Work
Off-policy Evaluation. Designing safe, stable, and ef-
fective methods are significant for reinforcement learning
(RL) [Garcıa and Fernández, 2015; Ying et al., 2022], es-
pecially for off-policy methods, which hopes to reuse his-
torical trajectories for improving the sample efficiency [Pre-
cup et al., 2000; Precup et al., 2001]. It is well known that,
when the current policy is independent of the samples, im-
portance sampling is unbiased but has a high variance that
is exponentially related to trajectory length [Li et al., 2015],
which may cause the result unstable. Consequently, a lot of
research focuses on reducing the variance in off-policy eval-
uation, like weighted importance sampling [Mahmood et al.,
2014], doubly robust estimator methods [Jiang and Li, 2016;
Thomas and Brunskill, 2016; Su et al., 2020], marginalized im-
portance sampling methods [Liu et al., 2018; Xie et al., 2019;
Fujimoto et al., 2021], and so on [Metelli et al., 2018;
Hanna et al., 2019; Kumar et al., 2020a; Liu et al., 2021;
Zhang et al., 2021; Metelli et al., 2021]. Some researchers
also pay attention to providing a high confidence estimation
for off-policy evaluation. [Thomas et al., 2015] first applied
concentration inequality to provide a lower bound of off-policy
evaluation. Follow-up work considered how to provide con-
fidence intervals [Hanna et al., 2017; Shi et al., 2021] as
well as a high-probability lower bound for self-normalized
importance weighting [Kuzborskij et al., 2021]. Some re-
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cent work also provided a high-confidence estimation of the
variance [Chandak et al., 2021b] and other parameters of the
return distribution [Metelli et al., 2018; Metelli et al., 2021;
Chandak et al., 2021a]. However, little work has been done
on systematically examining the bias of off-policy evaluation.
Bias in Off-policy and Offline RL. Since bias is signif-
icant to analyze and develop algorithms in RL, there are
some widely discussed biases in off-policy and offline set-
tings like Q-function overestimation in DQN [Van Hasselt
et al., 2016], extrapolation error in offline RL [Fujimoto et
al., 2019], and sampling error in TD learning [Pavse et al.,
2020]. These bias is mainly caused by out-of-distribution
data [Fujimoto et al., 2019] and about Q function esti-
mation in actor-critic methods [Van Hasselt et al., 2016;
Fujimoto et al., 2019]. Besides them, in this work, we first
discuss the bias resulting from reusing the trajectories in the
replay buffer, which can regard as the bias in the policy opti-
mization in actor-critic methods (more details are in Sec. 5.3).

3 Preliminary
We consider the Markov Decision Process (MDP) of M =
(S,A,P,R, γ) in which S and A represent the state and ac-
tion spaces, respectively. For any state-action pair (s, a) ∈
S ×A, P(·|s, a) is a distribution over S , representing its tran-
sition dynamic. Moreover, R(s, a) is the reward function and
γ ∈ (0, 1) is the discount factor. The policy of any agent
is modeled as a mapping π : S → D(A), i.e., π(·|s) is a
distribution over A given state s ∈ S .

In RL, the agent interacts with the environment by making
its decision at every timestep. At the beginning, we assume
that the agent is in the state s0 ∼ µ(·), where µ(·) is the initial
state distribution. At timestep t, the agent chooses its action
at ∼ π(·|st), arrives at the next state st+1 ∼ P(·|st, at),
and receive a corresponding reward rt = R(st, at). The
performance of policy π is defined as the expectation of the
discounted return of the trajectory:

J(π) = Eτ∼π

[
R(τ) ≜

∞∑
t=0

γtrt

]
, (1)

where R(τ) represents the discounted return of the trajectory
τ ≜ (s0, a0, r0, s1, a1, r1, ...) ∈ Γ.

As the trajectory distribution τ ∼ π is unknown, in prac-
tice, we estimate J(π) by Monte Carlo sampling. In order
to improve sample efficiency, off-policy algorithms utilize
trajectories sampled from other policies via importance sam-
pling. We denote that there are m trajectories in the replay
buffer B and the trajectory τi is sampled from policy π̂i, i.e.
B = {τi}mi=1 ∈ Γm, τi ∼ π̂i.

For notational clarity, we denote Π̂ = (π̂1, π̂2, ..., π̂m) and
B ∼ Π̂ = τ1 ∼ π̂1, τ2 ∼ π̂2, ..., τm ∼ π̂m. In off-policy
evaluation, to estimate J(π) of a different policy π, we need
to modify the weight of the return for each trajectory in B via
importance sampling [Kahn and Marshall, 1953; Precup et
al., 2000]. The resulting importance sampling estimate of the
return for π is:

ĴΠ̂,B(π) =
1

m

m∑
i=1

pπ(τi)

pπ̂i(τi)
R(τi), (2)

where pπ(τ) represents the probability of generating the tra-
jectory τ with policy π, i.e.,

pπ(τ) = µ(s0)
∞∏
i=0

[π(ai|si)P(si+1|si, ai)] . (3)

4 Reuse Bias
In this section, we first introduce a novel concept of Reuse
Bias to measure the bias in current off-policy evaluation meth-
ods. Then, we show that the reuse of the replay buffer causes
overestimation and provide a high probability upper bound of
the Reuse Bias with some insights into this result.

4.1 Reuse Bias
Assuming that the hypothesis set of policies is H, for any off-
policy algorithm, we formalize it as a mapping O : H×Γm →
H that takes an initialized policy π0 ∈ H and a replay buffer
B ∈ Γm as inputs, and outputs a policy O(π0,B) ∈ H. In off-
policy evaluation, we use the importance sampling estimate
ĴΠ̂,B(O(π0,B)) defined in Eq. (2) as an approximation of the
expected return J(O(π0,B)). We define their difference as
the Reuse Error of an off-policy algorithm O on π0 as well as
B, and the expectation of the Reuse Error as the Reuse Bias:
Definition 1 (Reuse Bias). For any off-policy algorithm O,
initialized policy π0 and replay buffer B ∼ Π̂, we define the
Reuse Error of O on π0 and B as

ϵRE(O, π0,B) ≜ ĴΠ̂,B(O(π0,B))− J(O(π0,B)). (4)

Moreover, we define is expectation as the Reuse Bias:

ϵRB(O, π0) ≜ EB[ϵRE(O, π0,B)]. (5)

It is well-known that importance sampling is an unbiased es-
timation when the estimated distribution is independent of the
samples. In other words, the off-policy evaluation is unbiased,
i.e., ϵRB(O, π0) = EB [ϵRE(O, π0,B)] = 0, when O(π0,B)
is independent of B. However, off-policy algorithms [Haarnoja
et al., 2018; Fujimoto et al., 2018] utilize trajectories in the
replay buffer B to optimize the policy. In this case, the pol-
icy O(π0,B) does depend on B which makes the off-policy
evaluation no longer unbiased. And we will provide a first
systematic investigation of the Reuse Bias, as detailed below.

We first assume that the off-policy algorithm O∗ satisfies
the condition that O∗(π0,B) has the highest estimated perfor-
mance with B and consider the Reuse Bias under this assump-
tion. This assumption is mild and practical since off-policy
algorithms always hope to maximize the expected performance
of the policy w.r.t. the replay buffer in practice. Under this
assumption, the estimation ĴΠ̂,B(O∗(π0,B)) is an overestima-
tion of J(O∗(π0,B)) as summarized below:
Theorem 1 (Overestimation for Off-Policy Evaluation, Proof
in Appendix A.1). Assume that O∗(π0,B) is the optimal pol-
icy of H over the replay buffer B, i.e.,

O∗(π0,B) = argmax
π∈H

ĴΠ̂,B(π)

= argmax
π∈H

1

m

m∑
i=1

[
pπ(τi)

pπ̂i(τi)
R(τi)

]
.

(6)
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We can show that ĴΠ̂,B(O∗(π0,B)) is an overestimation of
J(O∗(π0,B)), i.e., ϵRB(O∗, π0) = EB∼Π̂ [ϵRE(O∗, π0,B)]
≥ 0. If the equality holds, then for any B,B′ ∼ Π̂, we have

O∗(π0,B) = argmax
π∈H

ĴΠ̂,B′(π). (7)

However, in practice, we always optimize our policy
through several steps of gradient descent rather than directly
getting the optimal policy O∗(π0,B) over the replay buffer B.
To analyze the Reuse Bias in more practical cases, we consider
the one-step policy gradient optimization and prove that the
estimation ĴΠ̂,B is strictly an overestimation of J in this case
only under some mild assumptions as:
Theorem 2 (Overestimation for One-Step PG, Proof in Ap-
pendix A.2). Given a parameterized policy πθ which is inde-
pendent with the replay buffer B and is differentiable to the
parameter θ, we consider the one-step policy gradient

θ′ = θ + α∇θĴΠ̂,B(πθ), (8)

where α is the learning rate. If ∇θĴΠ̂,B(πθ), as the function
of B, is not constant, and α > 0 is sufficiently small, then the
Reuse Bias is strictly larger than 0, i.e.,

EB∼Π̂ĴΠ̂,B(πθ′) > EB∼Π̂J(πθ′). (9)

Furthermore, to explain how severe the Reuse Bias will
be, we provide Theorem 3 to show that the estimated return
of O∗(π0,B) might be arbitrarily large when its true return
is arbitrarily small, which indicates that the Reuse Bias will
result in the degeneration of the policy optimization and the
final performance.
Theorem 3 (Proof in Appendix A.3). For any fixed replay
buffer size n, assume that Π is the set of random policies,
and the reward of any state-action pair (s, a) is not nega-
tive, i.e., R(s, a) ≥ 0, then there exists an environment sat-
isfying that EB∼Π̂ [J(O∗(π0,B))] is arbitrarily small when

EB∼Π̂

[
ĴΠ̂,B(O∗(π0,B))

]
is arbitrarily large. In other words,

for ∀n,M ≥ 1, ϵ > 0, ∃ an environment satisfying that

J(π∗) = 1, |B| = n,EB∼Π̂ [J(O∗(π0,B))] ≤ ϵ,

EB∼Π̂

[
ĴΠ̂,B(O

∗(π0,B))
]
≥ M.

(10)

here π∗ is the optimal policy of this environment.
In Theorem 3, we point out that the Reuse Bias may cause

an erroneous off-policy policy evaluation, which might be
sufficiently severe, and affect further policy improvement,
which is also shown in experiments of MiniGrid (See Sec. 6.2).

4.2 High Probability Bound for Reuse Error
Since the Reuse Bias may mislead the optimization direction
and further affect the performance, which cannot be ignored,
it is important to analyze the connection of the replay buffer
B and the Reuse Error to better control it. Without losing
generality, we mainly consider the case that all trajectories are
sampled from the same original policy π̂.

When the hypothesis set has bounded statistical complexity,
for example, H is finite or its VC-dimension is finite, we can

naturally provide a high-probability upper bound of the Reuse
Error via using some classical results of statistical learning
theory [Shalev-Shwartz and Ben-David, 2014] (We provide
the result when H is finite in Appendix A.4 as an example).
However, these results are based on the statistic complexity of
the hypothesis set and maxπ,τ

[
pπ(τ)
pπ̂(τ)

]
. In practice, the statis-

tic complexity of the hypothesis set is extremely huge while
the sample number m is relatively small, and maxπ,τ

[
pπ(τ)
pπ̂(τ)

]
is the term related on the environment as well as the hypothesis
set, which can not be optimized in the training stage.

Here, we provide another high-probability upper bound
for the Reuse Error as below. Compared with prior results,
our bound holds for all H even with unbounded statistical
complexity, and is related with the optimized policy O(π0,B),
which guides us to optimize O(π0,B) by controlling Reuse
Error.
Theorem 4 (High-Probability Bound for Reuse Error, Proof
in Appendix A.5). Assume that, for any trajectory τ , we can
bound its return as 0 ≤ R(τ) ≤ 1. Then, for any off-policy
algorithm O and initialized policy π0 ∈ H, with a probability
of at least 1 − δ over the choice of an i.i.d. training set
B = {τi}mi=1 sampled by the same original policy π̂, the
following inequality holds:

|ϵRE(O, π0,B)| ≤

√
mϵ1 + log

(
m2

δ

)
m− 1

+ ϵ2, (11)

where ϵ1 and ϵ2 are defined as:

ϵ1 = KL[pO(π0,B)(·)||pπ̂(·)],

ϵ2 =
1

m

m∑
i=1

∣∣∣∣1− pO(π0,B)(τi)

pπ̂(τi)

∣∣∣∣ = Eτ∼B

∣∣∣∣1− pO(π0,B)(τ)

pπ̂(τ)

∣∣∣∣ .
(12)

In Theorem 4, ϵ1, as the KL divergence of the trajectory
distribution under O(π0,B) and π̂, indicates their similarity
over the trajectory space Γ. Moreover, ϵ2 only focuses on the
similarity in the replay buffer B of these two policies. Then
we will introduce some insights into this theorem.

First, when the replay buffer size m tends to infinity, our
high-probability bound will converge to

√
ϵ1+ϵ2 rather than 0.

This is reasonable because the policy O(π0,B) depends on B
and the hypothesis space in our results may be arbitrary large
since the statistical complexity of practical policies might
be very huge or even difficult to analyze. Also, for better
explaining that the Reuse Bias may still exist even when the
sample number m tends to infinity, we conduct a concrete
example satisfying that |ϵRE(O, π̂,B)| = 1 holds for any
finite m and any replay buffer B in Appendix C.

Moreover, the high-probability upper bound depends on
the KL divergence of these two policies as well as on their
probability over B. Consequently, controlling their divergence,
especially over B, guides us on how to optimize the policy for
controlling the Reuse Bias.

5 Methodology
In this section, introducing the concept of stability for off-
policy algorithms, we further analyze the connection between
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controlling ϵ2 in Theorem 4 and controlling the Reuse Bias.
Moreover, we propose a general framework for controlling
Reuse Bias with practical algorithms by extending actor-critic
methods for complicated continuous control tasks.

5.1 Theoretical Analysis on Controlling Reuse Bias
Inaccurate off-policy evaluation caused by Reuse Bias may
lead the policy optimization to the wrong direction and further
affect both the performance and sample utilization. Therefore,
it is necessary to develop methods to control the Reuse Bias.

Based on Theorem 4, we can control ϵ1 and ϵ2 to control
the Reuse Bias. However, directly using the trajectories in
the replay buffer to estimate ϵ1, which is the KL divergence
of pO(π0,B) and pπ̂, may also be biased because O(π0,B)
is dependent on the replay buffer. Thus we only consider
constraining ϵ2 and use L(π,B) to denote it, i.e.,

L(π,B) ≜ Eτ∼B

∣∣∣∣1− pπ(τ)

pπ̂(τ)

∣∣∣∣ . (13)

Moreover, we hope to analyze the Reuse Bias of policies with
bounded L(π,B). Borrowing ideas of stability [Hardt et al.,
2016], we similarly define the concept of stability for off-
policy algorithms and further provide an upper bound of stable
off-policy algorithms as shown below
Definition 2 (Stability for Off-Policy Algorithm). A random-
ized off-policy algorithm O is β-uniformly stable if for all
Replay Buffer B,B′, such that B,B′ differ in at most one
trajectory, we have

∀τ, π0, EO

[
pO(π0,B)(τ)− pO(π0,B′)(τ)

]
≤ β. (14)

Theorem 5 (Bound for the Reuse Error of Stable Algorithm,
Proof in Appendix A.6). Suppose a randomized off-policy
algorithm O is β-uniformly stable, then we can prove that

∀π0, |EB∼π̂EO [ϵRE(O, π0,B)]| ≤ β. (15)

Theorem 5 controls Reuse Bias for stable off-policy al-
gorithms Furthermore, we provide Theorem 6 to point out
that, under some mild assumptions, Reuse Bias of off-policy
stochastic policy gradient can be controlled just by L(π,B).
Theorem 6 (Details and Proof are in Appendix A.7). We
assume that the policy πθ is parameterized with θ, and
|∇θ log p

πθ (τ)| ≤ L1 holds for any θ, τ , and pπθ (τ) is
L2-Lipsticz to θ for any τ . If we constrain the policy by
L(π,B) ≤ M , then off-policy stochastic policy gradient algo-
rithm (detailed in Appendix A.7) is β-uniformly stable where
β is positively correlated with M , L1 and L2.

5.2 Bias-Regularized Importance Sampling
Framework

Based on above analyses, for any given off-policy algorithm
O, we focus on controlling L(O(π0,B),B). To simplify the
notation, we denote π ≜ O(π0,B) as the policy trained by the
off-policy algorithm. For any trajectory τ , we have

pπ(τ)

pπ̂(τ)
=
µ(s0)

µ(s0)

∏
i

[
π(ai|si)P(si+1|si, ai)
π̂(ai|si)P(si+1|si, ai)

]
=

∏
i

π(ai|si)
π̂(ai|si)

.

(16)

Thus, we can derive L(π,B) as

L(π,B) = Eτ∼B

∣∣∣∣1− pπ(τ)

pπ̂(τ)

∣∣∣∣ = Eτ∼B

∣∣∣∣∣1−∏
i

π(ai|si)
π̂(ai|si)

∣∣∣∣∣ .
(17)

Consequently, we propose a novel off-policy reinforcement
learning framework named Bias-Regularized Importance Sam-
pling (BIRIS) for controlling the Reuse Bias as below

OBIRIS(π0,B) = argmin
π∈H

LBIRIS(π,B),

where LBIRIS(π,B) = LRL(π,B) + αL(π,B),
(18)

here LRL denotes the nominal loss function of the basic off-
policy algorithm, and α ≥ 0 is a hyperparameter to control
the trade-off between standard RL loss and regularized loss.

5.3 Connection with Actor-Critic Methods
However, since directly using the return of trajectories to
optimize the policy suffers from instability, many off-policy
practical methods for complicated environments consider us-
ing TD-based actor-critic methods, like Soft Actor Critic
(SAC) [Haarnoja et al., 2018] and Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) [Fujimoto et al., 2018]. These
methods always alternately optimize the critic and the actor as
below

• Optimizing the Q function via TD-learning, i.e., minimiz-
ing

∑
(s,a)∈B(Qθ(s, a)−Qtarget(s, a))

2

• Optimize the policy via the Q function, i.e., maximizing∑
s∈B Qθ(s, πϕ(s))

Current work mainly considers the error in Q function op-
timization caused by out-of-distribution data. For example,
Extrapolation Error [Fujimoto et al., 2019] is because erro-
neously estimating target Q values of unseen state-action pairs.

However, similar to our analyses above, in the policy op-
timization stage, reusing the state-action pairs in the replay
buffer will also cause the Reuse Error, and we can also imple-
ment our BIRIS to reduce the negative impact. Moreover, for
complicated environments, trajectories are so long that their
probabilities are difficult to calculate and numerically unstable.
If we assume

∣∣∣π(a|s)π̂(a|s)

∣∣∣ ≤ ϵ for all (s, a) ∈ B and the length of
the trajectory is T , we can show that∣∣∣∣∣

T∏
i=1

π(ai|si)
π̂(ai|si)

− 1

∣∣∣∣∣ ≤ max(1− (1− ϵ)T , (1+ ϵ)T −1). (19)

Consequently, for handling complicated environments, we use
the state-level ratio LBR as a surrogate

LBR(π,B) ≜ E(s,a)∈B

∣∣∣∣π(a|s)π̂(a|s)
− 1

∣∣∣∣ . (20)

Our LBR has some similar points with pessimistic offline re-
inforcement learning methods [Kumar et al., 2020b; Liu et
al., 2020; Fujimoto and Gu, 2021] and is a supplement to the
effectiveness of pessimistic methods based on our theoretical
analyses on the view of the Reuse Bias. Furthermore, for
handling complicated continuous control tasks, we concretize
our framework to specific algorithms, like SAC and TD3, of
which the core is to calculate π(a|s)

π̂(a|s) for any state-action pair
(s, a) ∈ B (More details are in Appendix D).
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Size of Replay Buffer Method 5×5 5×5-random 6×6 6×6-random 8×8 16×16

30

PG+IS 0.57 0.26 0.86 0.55 2.04 19.04
PG+WIS 0.36 0.24 0.72 0.43 1.50 5.75

PG+IS+BIRIS 0.19 0.08 0.11 0.25 0.47 0.43
PG+WIS+BIRIS 0.16 0.12 0.17 0.28 0.23 0.05

40

PG+IS 0.38 0.24 0.67 0.29 1.99 80.62
PG+WIS 0.20 0.21 0.49 0.32 1.20 4.75

PG+IS+BIRIS 0.23 0.18 0.29 0.25 0.39 0.44
PG+WIS+BIRIS 0.21 0.14 0.25 0.24 0.26 0.51

50

PG+IS 0.44 0.21 0.60 0.42 2.01 13.40
PG+WIS 0.26 0.22 0.51 0.31 1.22 4.65

PG+IS+BIRIS 0.23 0.20 0.17 0.11 0.23 0.26
PG+WIS+BIRIS 0.14 0.18 0.25 0.16 0.24 0.21

Table 1: Relative Reuse Bias of policies trained by PG+IS, PG+WIS, PG+IS+BIRIS, and PG+WIS+BIRIS in different MiniGrid environments.

6 Experiments
We now present empirical results to answer the questions:

• How severe is Reuse Bias in the practical experiments
and can our BIRIS effectively reduce Reuse Bias?

• What is the empirical performance of our BIRIS for actor-
critic methods in complicated continuous control tasks?

6.1 Experiment Setup
We experiment in two different domains to answer the ques-
tions above. Before that, we first provide a short description
of environments, including algorithms as well as metrics.

Gridworld. For the first question, we experiment in Mini-
Grid1, which includes different shapes of grids with discrete
state space and action space, and is simple for optimizing
and evaluating our policy. We will calculate and compare
the Reuse Bias of PG+IS, PG+WIS [Mahmood et al., 2014],
PG+IS+BIRIS, and PG+WIS+BIRIS.

Simulated Robotics. To evaluate BIRIS in complicated
environments, we choose several continuous control tasks
from MuJoCo and use two popular off-policy algorithms:
SAC [Haarnoja et al., 2018] and TD3 [Fujimoto et al., 2018],
as baselines, with uniform sampling and prioritization experi-
ence replay (PER) [Schaul et al., 2016]. Our implementation
is based on Tianshou [Weng et al., 2022].

6.2 Results for Reuse Bias
We first present our experimental results in MiniGrid to an-
swer the first question, i.e., how severe the Reuse Bias is for
practical off-policy evaluation and whether our BIRIS can
significantly control the Reuse Bias. For different grids (5× 5,
5 × 5-random, 6 × 6, 6 × 6-random, 8 × 8, 16 × 16), we
initialize our policy parameterized with a simple three-layer
convolutional neural network. Moreover, we choose 30, 40,
and 50 as the replay buffer size and sample trajectories to fill
the replay buffer, to test its impact. Then we use PG [Sutton et
al., 2000] and PG+BIRIS, respectively, to optimize the policy
by maximizing the estimated return via replay buffer by IS and
weighted importance sampling (WIS) [Mahmood et al., 2014].
In the test stage, we compute the return of our policy estimated

1https://github.com/mit-acl/gym-minigrid

by the replay buffer as well as the true expected return of our
policy. To mitigate the impact of randomness caused by the
replay buffer and sampling, we repeat our experiments for
each task and each algorithm with 50 different random seeds.

We report part of our results (8×8 with the size of replay
buffer 30) in Fig. 1(2) in the form of box diagrams (All figures
are in Appendix B.1). In each subgraph, the distribution of the
true return J of the optimized policy is shown on the left (filled
in with blue) while the distribution of the estimated return Ĵ
is on the right (filled in with green). In each box diagram, the
horizontal lines at the top and bottom indicate the largest and
smallest value respectively, while the horizontal lines at the
top and bottom of the box indicate the first quartile and third
quartile respectively. Moreover, the orange dotted line and
the green plus sign represent the median and the expectation
separately. In Table 1, we also report the Relative Reuse Bias,
i.e., ϵRB(O, π0,B)/J(O(π0,B)) of all algorithms.

As shown in Fig. 1(2) and Table 1, the estimated return is
obviously higher than the true return in all environments for
PG+IS, which matches our theoretical analyses, i.e., using the
same replay buffer to optimize and evaluate the policy will
lead to overestimation. Furthermore, as shown in Table 1,
the Relative Reuse Bias shown in this experiment is greater
when the grid is larger and more complicated, which means
that the Reuse Bias will be more serious in more complicated
environments. It is probably because the policy is more likely
to converge to local optimization in complicated environments.

As shown in Table 1, when the replay buffer size increases,
the relative Reuse Bias of PG+IS will reduce to some degree
but is still large even if the size is 50. Moreover, the relative
Reuse Bias of PG+WIS is lower than it of PG+IS but is still
relatively large, which shows that variance-reduced methods
like WIS can somehow reduce the impact of the Reuse Bias.
Finally, in almost all tasks and all replay buffer sizes, the
Relative Reuse Bias of PG+IS+BIRIS and PG+WIS+BIRIS
are conspicuously smaller than PG+IS and PG+WIS, which
means that our BIRIS can significantly reduce the Reuse Bias.

6.3 Results for Simulated Robotics
We now report results to evaluate BIRIS-based methods in
more complicated environments against actor-critic methods.
We compare the performance of our methods against common
off-policy algorithms like SAC and TD3 in MuJoCo envi-
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Method Ant HalfCheetah Humanoid Walker2d InvertedPendulum

SAC 5797.9±492.1 12096.6±597.7 5145.4±567.4 4581.1±541.4 1000.0±0.0
SAC+PER 6133.5±269.0 11695.1±603.2 4860.8±1117.1 4320.5±392.5 1000.0±0.0

SAC+BIRIS 5843.8±159.9 12516.5±613.3 5466.1±493.9 4836.3±405.6 1000.0±0.0
TD3 5215.7±488.2 10147.6±1291.6 5012.9±211.1 4223.0±350.5 1000.0±0.0

TD3+PER 5351.1±530.1 10091.4±830.3 4365.5±608.3 3879.6±557.2 1000.0±0.0
TD3+BIRIS 5675.1±132.6 10774.2±907.0 5117.9±181.6 4189.4±485.9 1000.0±0.0

Table 2: Cumulative reward (mean ± one std) of the best policy trained by SAC, SAC+PER, SAC+BIRIS, TD3, TD3+PER, TD3+BIRIS in
different MuJoCo games. In each column, we bold the best performance over all algorithms.
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Figure 2: Cumulative reward curves for SAC, SAC+PER, SAC+BIRIS, TD3, TD3+PER, and TD3+BIRIS. The x-axes indicate the number of
steps interacting with the environment, and the y-axes indicate the performance of the agent, including average rewards with std.

ronments, including Ant, Halfcheetah, Humanoid, Walker2d,
and InvertedPendulum. To mitigate the effects of random-
ness caused by stochastic environments and policies, we train
10 policies with different random seeds for each algorithm
in each task and plot the mean with standard deviations of
these 10 policies as a function of timestep in the training stage.
Moreover, we use the solid line and the part with a lighter
color to represent the average reward and standard deviations
of 10 strategies, respectively. We also report the optimal mean
and standard deviations of the cumulative return of 10 policies
trained by each algorithm in each environment in Table 2. As
shown in this table, PER does not outperform uniform sam-
pling, which is also reported in [Novati and Koumoutsakos,
2019] for DDPG [Lillicrap et al., 2016] in MuJoCo.

In Fig. 2 and Table 2, we compare SAC, SAC+PER, and
SAC+BIRIS. As we can see, SAC+BIRIS learns a better policy
compared with SAC, i.e., SAC+BIRIS can effectively improve
the performance and the sample efficiency compared with
SAC. Overall, the performance of SAC+BIRIS increases more
smoothly in the training stage, especially in HalfCheetah and
Humanoid. This is consistent with our theoretical results, in
that BIRIS can better estimate off-policy performance and
provide a more precise optimization direction.

The comparison of TD3, TD3+PER, and TD3+BIRIS is
reported in Fig. 2 and Table 2. Similarly, for all tasks,

TD3+BIRIS performs better than TD3, i.e., TD3+BIRIS can
improve the performance as well as the sample efficiency com-
pared with TD3, especially in Ant and HalfCheetah. We also
notice that TD3+BIRIS can conspicuously reduce the stan-
dard deviations of the policies compared with TD3 in Ant and
HalfCheetah. This is also because BIRIS can better reduce the
Reuse Bias and provide a more stable optimization direction.
Moreover, we also do some ablation studies in Appendix B.2.

7 Conclusion
In this paper, we first show that the bias in off-policy evalua-
tion is problematic and introduce the concept of Reuse Bias to
describe it. We theoretically prove the overestimation bias in
off-policy evaluation, which is because of reusing historical
trajectories in the same replay buffer. Moreover, we provide
a high-probability upper bound of Reuse Bias as well as an
expectation upper bound of Reuse Bias for stable off-policy
algorithms. Based on these analyses, we provide a frame-
work of Bias-Regularized Importance Sampling (BIRIS) with
practical algorithms for controlling Reuse Bias. Experimen-
tal results demonstrate that BIRIS can significantly reduce
Reuse Bias and mitigating Reuse Bias via BIRIS can signifi-
cantly improve the sample efficiency for off-policy methods
in MuJoCo. As our modifications are independent of existing
variance reduction methods, they can be easily integrated.
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