Hierarchical State Abstraction Based on Structural Information Principles

Xianghua Zeng1, Hao Peng1, Angsheng Li1,2, Chunyang Liu3, Lifang He4, Philip S. Yu5

1 State Key Laboratory of Software Development Environment, Beihang University
2 Zhongguancun Laboratory
3 Didi Chuxing
4 Department of Computer Science & Engineering, Lehigh University
5 Department of Computer Science, University of Illinois at Chicago

\{zengxianghua, penghao, angsheng\}@buaa.edu.cn, liangsheng@gmail.zgclab.edu.cn, liuchunyang@didiglobal.com, lih319@lehigh.edu, psyu@uic.edu.

Abstract

State abstraction optimizes decision-making by ignoring irrelevant environmental information in reinforcement learning with rich observations. Nevertheless, recent approaches focus on adequate representational capacities resulting in essential information loss, affecting their performances on challenging tasks. In this article, we propose a novel mathematical \textbf{Structural Information principles-based State Abstraction} framework, namely \textbf{SISA}, from the information-theoretic perspective. Specifically, an unsupervised, adaptive hierarchical state clustering method without requiring manual assistance is presented, and meanwhile, an optimal encoding tree is generated. On each non-root tree node, a new aggregation function and condition structural entropy are designed to achieve hierarchical state abstraction and compensate for sampling-induced essential information loss in state abstraction. Empirical evaluations on a visual gridworld domain and six continuous control benchmarks demonstrate that, compared with five SOTA state abstraction approaches, SISA significantly improves mean episode reward and sample efficiency up to 18.98 and 44.44\%, respectively. Besides, we experimentally show that SISA is a general framework that can be flexibly integrated with different representation-learning objectives to improve their performances further.

1 Introduction

Reinforcement Learning (RL) is a promising approach to intelligent decision-making for a variety of complex tasks, such as robot walking [Collins \textit{et al.}, 2005], recommending systems [Le \textit{et al.}, 2019], automating clustering [Zhang \textit{et al.}, 2022], abnormal detection [Peng \textit{et al.}, 2021], and multi-agent collaboration [Baker \textit{et al.}, 2020; Peng \textit{et al.}, 2022]. In the RL setting, agents often learn to maximize their rewards in environments with high-dimensional and noisy observations, which requires suitable state representations [Jong and Stone, 2005; Kaiser \textit{et al.}, 2019]. A valid solution is state abstraction, which can ignore irrelevant environmental information to compress the original state space, thereby considerably simplifying the decision process [Abel \textit{et al.}, 2016; Laskin \textit{et al.}, 2020b].

Prior work defines state-abstraction types via aggregation functions that group together “sufficiently similar” states for reductions in task complexity [Li \textit{et al.}, 2006; Hutter, 2016; Abel \textit{et al.}, 2016; Abel \textit{et al.}, 2018]. However, their abstraction performances heavily depend on manual assistance due to high sensitivity to aggregation parameters, such as approximate abstraction’s predicate constant and transitive abstraction’s bucket size. On the other hand, recent work transfers state abstraction into a representation-learning problem and incorporates various learning objectives to enable state representations with desirable properties [Gelada \textit{et al.}, 2019; Zhang \textit{et al.}, 2020; Zang \textit{et al.}, 2022; Zhu \textit{et al.}, 2022]. Despite their adequate representational capacities, these approaches discard some essential information about state dynamics or rewards, making them hard to characterize the environment accurately. Therefore, balancing irrelevant and essential information is vital for decision-making with rich observations. Recently, Markov state abstraction [Allen \textit{et al.}, 2021] is introduced to realize this balance, reflecting the original rewards and transition dynamics while guaranteeing its representational capacity. Nevertheless, representation learning based on sampling from finite replay buffers inevitably induces essential information loss in Markov abstraction, affecting its performance on challenging tasks. Although multi-agent collaborative role discovery based on structural information principles has been proposed [Zeng \textit{et al.}, 2023], it is not available in the RL scenario of a single agent.

In this paper, we propose a novel mathematical \textbf{Structural Information principles-based hierarchical State Abstraction} framework, namely \textbf{SISA}, from the information-theoretic perspective. The critical insight is that SISA combines hierarchical state clustering and aggregation of different hierarchies to achieve sample-efficient hierarchical abstraction. Inspired by the structural entropy minimization principle [Li and Pan, 2016; Li \textit{et al.}, 2018], we first present an unsupervised, adaptive hierarchical state clustering method without requiring manual assistance. It consists of structuralization, sparsification, and optimization modules, to construct
an optimal encoding tree. Secondly, an effective autoencoder structure and representation-learning objectives are adopted to learn state embeddings and refine the hierarchical clustering. Thirdly, for non-root tree nodes of different heights, we define a new aggregation function using the assigned structural entropy as each child node’s weight, thereby achieving the hierarchical state abstraction. The hierarchical abstraction from leaf nodes to the root on the optimal encoding tree is an automatic process of ignoring irrelevant information and preserving essential information. Moreover, a new conditional structural entropy is designed to reconstruct the relation between original states to compensate for sampling-induced essential information loss. Furthermore, SISA is a general framework and can be flexibly integrated with various representation-learning abstraction approaches, e.g., Markov abstraction [Allen et al., 2021] and SAC-AE [Yarats et al., 2021], for improving their performances. Extensive experiments are conducted in both offline and online environments with rich observations, including one gridworld navigation task and six continuous control benchmarks. Comparative results and analysis demonstrate the performance advantages of the proposed state abstraction framework over the five latest SOTA baselines. All source codes and experimental results are available at Github).

The main contributions of this paper are as follows: 1) Based on the structural information principles, an innovative, unsupervised, adaptive hierarchical state abstraction framework (SISA) without requiring manual assistance is proposed to optimize RL in rich environments. 2) A novel aggregation function leveraging the assigned structural entropy is defined to achieve hierarchical abstraction for efficient decision-making. 3) A new conditional structural entropy reconstructing state relations is designed to compensate for essential information loss in abstraction. 4) The remarkable performance on challenging tasks shows that SISA achieves up to 18.98 and 44.44% improvements in the final performance and sample efficiency than the five latest SOTA baselines.

2 Background

2.1 Markov Decision Process

In RL, the problem to resolve is described as a Markov Decision Process (MDP) [Bellman, 1957], a tuple \(M = (S, A, R, P, \gamma) \), where \(S \) is the original state space, \(A \) is the action space, \(R \) is the reward function, \(P(s' \mid s, a) \) is the transitioning probability from state \(s \in S \) to state \(s' \in S \) conditioning on an action \(a \in A \), and \(\gamma \in [0, 1) \) is the discount factor. At each timestep, an agent chooses an action \(a \in A \) according to its policy function \(\pi(a) \), which updates the environment state \(s' \sim P(s, a) \), yielding a reward \(r \sim R(s, a) \in \mathbb{R} \). The goal of the agent is to learn a policy that maximizes long-term expected discounted reward.

2.2 State Abstraction

Following Markov state abstraction [Allen et al., 2021], we define state abstraction as a function \(f_\phi \) that projects each original state \(s \in S \) to an abstract state \(z \in Z \). When applied to an MDP \(M = (S, A, R, P, \gamma) \), the state abstraction induces a new abstract decision process \(M_\phi = (Z, A, R_\phi, P_\phi, \gamma) \), where typically \(|Z| \ll |S| \).

2.3 Structural Information Principles

Structural information principles were first proposed to measure the dynamical uncertainty of a graph, called structural entropy [Li and Pan, 2016]. They have been widely applied to optimize graph classification and node classification [Wu et al., 2022a; Wu et al., 2022b; Zou et al., 2023; Wang et al., 2023; Yang et al., 2023], obfuscate community structures [Liu et al., 2019], and decode the chromosomes domains [Li et al., 2018]. By minimizing the structural entropy, we can generate the optimal partitioning tree, which we name an “encoding tree”.

We suppose a weighted undirected graph \(G = (V, E, W) \), where \(V \) is the vertex set, \(E \) is the edge set, and \(W : E \rightarrow \mathbb{R}^+ \) is the weight function of edges. Let \(n = |V| \) be the number of vertices and \(m = |E| \) be the number of edges. For each graph vertex \(v \in V \), the weights sum of its connected edges is defined as its degree \(d_v \).

Encoding tree. The encoding tree of graph \(G \) is a rooted tree defined as follows: 1) For each node \(\alpha \in T \), a vertex subset \(T_\alpha \) in \(G \) corresponds with \(\alpha, T_\alpha \subseteq V \). 2) For the root node \(\lambda \), we set \(T_\lambda = V \). 3) For each node \(\alpha \in T \), we mark its children nodes as \(\alpha \bowtie (i) \) ordered from left to right as \(i \) increases, and \(\alpha \bowtie (i)^- = \alpha \). 4) For each node \(\alpha \in T, L \) is supposed as the number of its children; then all vertex subsets \(T_\alpha \bowtie (i) \) are disjointed, and \(T_\alpha = \bigcup_{i=1}^{\lambda} T_\alpha \bowtie (i) \). For each leaf \(\nu, T_\nu \) is a singleton subset containing a graph vertex.

One-dimensional structural entropy. The one-dimensional structural entropy measures the dynamical complexity of the graph \(G \) without any partitioning structure and is defined as:

\[
H^1(G) = -\sum_{v \in V} \frac{d_v}{\text{vol}(G)} \cdot \log_2 \frac{d_v}{\text{vol}(G)},
\]

where \(\text{vol}(G) = \sum_{v \in V} d_v \) is the volume of \(G \).

K-dimensional structural entropy. An encoding tree \(T \), whose height is at most \(K \), can effectively reduce the dynamical complexity of graph \(G \), and the \(K \)-dimensional structural entropy measures the remaining complexity. For each node \(\alpha \in T, \alpha \neq \lambda \) its assigned structural entropy is defined as:

\[
H^K(G; \alpha) = -\frac{g_\alpha}{\text{vol}(G)} \cdot \log_2 \frac{V_\alpha}{V_\alpha^-},
\]

where \(g_\alpha \) is the sum of weights of all edges connecting vertices in \(T_\alpha \) with vertices outside \(T_\alpha \), \(V_\alpha \) is the volume of \(T_\alpha \), the sum of degrees of vertices in \(T_\alpha \). Given the encoding tree \(T \), the \(K \)-dimensional structural entropy of \(G \) is defined as:

\[
H^K(G) = \min_T \left\{ \sum_{\alpha \in T, \alpha \neq \lambda} H^K(G; \alpha) \right\},
\]

where \(T \) ranges over all encoding trees whose heights are at most \(K \), and the dimension \(K \) constrains the maximal height of the encoding tree \(T \).

--

1https://github.com/RingBDStack/SISA

\(\phi \) represents the structural information of vertices. The degree of each vertex is denoted as \(\lambda \) and is used to denote the number of its children nodes. In this case, the degree of each node in the encoding tree \(T \) is defined as the number of children nodes of that node.

5Vertices are defined in the graph, and nodes are in the tree.

6It is another form of Shannon entropy using the stationary distribution of the vertex degrees.
3 The SISA Framework

This section describes the detailed design of the structural information-principles-based state abstraction and how to apply SISA to optimize RL.

3.1 Overall RL Framework Optimized by SISA

For better descriptions, we first introduce how to apply SISA to optimize RL framework. The optimized RL framework consists of three modules: Environment, Agent Network Q, and the proposed state abstraction SISA, as shown in Fig. 1. The decision process in the environment is labeled as an MDP \(\mathcal{M} = (S, A, R, P, \gamma) \), where the original state space \(S \) is high-dimensional and noisy. SISA described in the following subsection takes action-observation history \(\tau \) as input and maps each original environment state \(s \in S \) to an abstract state \(z \in Z \), where \(|Z| \ll |S| \). Moreover, the agent makes decisions based on its individual network \(Q \) taking the abstract state \(z \) and reward \(r \) as inputs, which induces a new abstract decision process \(\mathcal{M}_\phi = (Z, A, R_\phi, P_\phi, \gamma) \).

3.2 Hierarchical State Abstraction

As shown in Fig. 1, SISA includes pretrain, finetune, and abstract stages. In the pretrain stage, we map the original state space to a dense low-dimensional latent space and adopt representation-learning objectives to decode. In the finetune stage, we sparsify a state graph, optimize its encoding tree to obtain a hierarchical state structure, and calculate a clustering loss. In the abstract stage, we construct a hierarchical state graph and extract transition, action, and reward relations to calculate a structural information (SI) loss.

Pretrain. For tractable decision-making in high-dimensional and noisy environments, we utilize representation-learning objectives to compress the state space via an abstraction function, as the level-0 abstraction.

To this end, we adopt the encoder-decoder structure [Cho et al., 2014] to learn abstract state representations, mapping the state space \(S \) to a low-dimensional and dense abstract state space \(Z \). In the encoder, we encode each state \(s \in S \) as a \(d \)-dimensional embedded representation \(z \in Z \) via the abstraction function \(f_\phi : S \rightarrow Z \), as the step 1 in Fig. 2. In the decoder, we decode each abstract representation \(z \) and select the training objectives in Markov state abstraction, including constructive and adversarial objectives, for calculating the decoding loss \(L_{de} \) to guarantee Markov property in the pretrain stage, as the step 2 in Fig. 2. Given the action-observation history \(\tau \), the encoder-decoder structure is trained end-to-end by minimizing \(L_{de} \). Furthermore, the abstraction function \(f_\phi \) will be further optimized in the finetune and abstract stages by minimizing the clustering loss \(L_{cl} \) and SI loss \(L_{si} \).

Finetune. Instead of aggregation condition definitions [Abel et al., 2018] or representation learning in the original state space [Gelada et al., 2019; Laskin et al., 2020a; Zhang et al., 2020], we present an unsupervised, adaptive hierarchical clustering method without requiring manual assistance to obtain the hierarchical structure of environment states. Specifically, we construct a weighted, undirected, complete state graph according to state correlations, minimize its structural entropy to get the optimal encoding tree, and calculate the clustering loss based on Kullback-Leibler (KL) divergence.

Firstly, for states \(s_i \) and \(s_j \) with \(i \neq j \), we calculate the cosine similarity between abstract representations \(z_i \) and \(z_j \) to measure their correlation \(C_{ij} \in [-1, 1] \). Intuitively, the larger the value of \(C_{ij} \) represents the more similarity between states \(s_i \) and \(s_j \), which should belong to the same cluster with a more significant probability. We take states as vertices and for any two vertices \(s_i \) and \(s_j \), assign \(C_{ij} \) to the undirected weighted edge \((s_i, s_j), w_{ij} = C_{ij}\), thereby constructing the complete graph \(G \), as the step 3 in Fig. 2. In \(G \), vertices represent states in \(S \), namely \(V = S \), edges represent state correlations, and edge weight quantifies the cosine similarity between states. We define edge weight whose absolute value approaches 0 as trivial weight.

Secondly, we realize sparsification of the state graph to eliminate negative interference of trivial weights. Following the construction of cancer cell neighbor networks [Li et al., 2016], we minimize the one-dimensional structural entropy to sparsify graph \(G \) into a \(k \)-nearest neighbor (\(kNN \) graph) \(G_{kNN} \), as the step 4 in Fig. 2. We retain the most significant \(k \) edge weights for each vertex to construct \(G_k \), calculate its one-dimensional structural entropy \(H^1(G_k) \), select parameter \(k \) of the minimum structural entropy as \(k^* \), and output \(G_{k^*} \) as the sparse state graph \(G^* \). Moreover, we initialize an encoding tree \(T \) of \(G^* \): 1) We generate a root node \(\lambda \) and set its vertex subset \(T_\lambda = S \) as the whole state space; 2) We generate a leaf node \(\nu \) with \(T_\nu = \{s\} \) for each state \(s \in S \), and set it as a child node of \(\lambda \), \(\nu^{-} = \lambda \).

Thirdly, we realize the hierarchical state clustering by optimizing the encoding tree \(T \) from 1 layer to \(K \) layers. In our work, two operators \texttt{merge} and \texttt{combine} are introduced from the deDoc [Li et al., 2018] to optimize the sparse graph \(G^* \) by minimizing its \(K \)-dimensional structural entropy, as the step 5 in Fig. 2. We define two nodes possessing a common father node in the encoding tree \(T \) are brothers. The merge

\footnote{For better understanding, we set \(S = \{s_0, s_1, \ldots, s_{11}\} \) in the original state space as an example.}
and combine are operated on brother nodes and marked as T_{mb} and T_{cb}. We summarize the encoding tree optimization as an iterative algorithm, as shown in Algorithm 1. At each iteration, we traverse all brother nodes β_1 and β_2 in T (lines 4 and 9) and greedily execute operator T_{mb} or T_{cb} to realize the maximum structural entropy reduction ΔSE if the tree height does not exceed K (lines 5 and 10). When no brother nodes satisfy $\Delta SE > 0$ or the tree height exceeds K, we terminate the iterative algorithm and output the optimal encoding tree T^*. The tree T^* is a hierarchical clustering structure of the state space S, where the root node λ corresponds to S, $T_\lambda = S$, each leaf node ν corresponds to a singleton containing a single state $s \in S$, $T_\nu = \{s\}$, and other tree nodes correspond to state clusters with different hierarchies.

Finally, we choose each child $\lambda^\wedge(i)$ of the root node λ as a cluster center and define a structural probability distribution among its corresponding vertex set $T_{\lambda^\wedge(i)}$ to calculate its embedding C_i. For each vertex $s_j \in T_{\lambda^\wedge(i)}$, we define its distribution probability using the sum of the assigned structural entropies of nodes on the path connecting its corresponding leaf node ν_j and node $\lambda^\wedge(i)$ as follows:

$$p_{\lambda^\wedge(i)}(s_j) = \exp(- \sum_{T_{\nu_j} \subseteq T_\nu \subset T_{\lambda^\wedge(i)}} H^T(G; \alpha)), \quad (4)$$

where α is any node on the path connecting ν_j and $\lambda^\wedge(i)$. For the cluster center $\lambda^\wedge(i)$, we calculate its embedding C_i by:

$$C_i = \sum_{s_j \in T_{\lambda^\wedge(i)}} p_{\lambda^\wedge(i)}(s_j) \cdot z_j, \quad (5)$$

where z_j is the abstract representation of state s_j. Based on the abstract representations and cluster center embeddings, we generate a soft assignment matrix Q, where Q_{ij} represents the probability of assigning i-th state s_i to j-th cluster center $\lambda^\wedge(j)$. We derive a high-confidence assignment matrix P from Q and calculate the clustering loss L_{cl} as follows:

$$L_{cl} = KL(P||Q) = \sum_i P_{ij} \log \frac{P_{ij}}{Q_{ij}}. \quad (6)$$

3.3 Abstraction on Optimal Encoding Tree

To compensate for essential information loss induced by sampling, we leverage structural information principles to design an aggregation function on the optimal encoding tree for achieving hierarchical abstraction while accurately characterizing the original decision process.

The optimal encoding tree T^* represents a hierarchical clustering structure of the state space S, where each tree node corresponds to a state cluster and the height is its clustering hierarchy. Given the action-observation and reward histories, we firstly sample randomly to construct a hierarchical state graph G_h, where vertices represent states and edges represent state transitions with action and reward information, as the
step 7 in Fig. 2. Because of construction by sampling, there is an inevitable essential loss of reward or action information between states in the hierarchical graph G_h. Secondly, we define an aggregation function on the optimal encoding tree to achieve hierarchical abstraction from leaf nodes to the root, as shown in Fig. 3. For each leaf node v_i with $T_{v_i} = \{s_i\}$, we define the level-0 abstraction via function f_ϕ described in the pretrain stage and get its level-0 abstract representation z_i^0:

$$z_i^0 = f_\phi(s_i).$$

(7)

For each non-leaf node α_i whose height is h, we design an aggregation function using the assigned structural entropy as each child node’s weight to achieve the level-h abstraction:

$$z_i^h = \sum_{j=1}^{L} H^{T_i^h}(G; \alpha_i^h(j)) z_{i+j}^{h-1} + H^{T_i^h}(G; \alpha_i^h(l)) z_{i+j}^{h-1},$$

(8)

where L is the number of children nodes of α_i and l_i is its most left child’s index in tree nodes whose height is $h - 1$.

Thirdly, we extract three kinds of state relations (transition, action, and reward) from the hierarchical graph G_h to construct multi-level transition, action, and reward graphs, respectively, as the step 8 in Fig. 2. For convenience, we take the level-0 transition graph G_0^t as an example, and operations on graphs of different relations or levels are similar. In G_0^t, vertices represent the level-0 abstract representations and edge weights quantify the transition probabilities between states via sampling. Fourthly, we minimize the K-dimensional structural entropy of G_0^t to generate its optimal encoding tree T_0^t and calculate the level-0 transition loss L_{tr}^0, as the step 9 in Fig. 2. Furthermore, we design a conditional structural entropy to reconstruct the state relation to compensate for sampling-induced essential information loss. For any two leaf nodes ν_i and ν_j in T_0^t, we find their common father node δ and calculate conditional structural entropy to quantify the transition probability from z_i^0 to z_j^0 as follows:

$$p(z_j^0|z_i^0) = H^{T_i^t}(G_0^t; z_j^0|z_i^0) = \sum_{T_{\alpha_i} \subseteq T_\alpha \subset T_\delta} H^{T_i^t}(G_0^t; \alpha),$$

(9)

where α is any node on the path connecting the father node δ and leaf ν_j. We then decode the abstract representations to reconstruct transition probabilities for calculating L_{tr}^0. Finally, as the step 10 in Fig. 2, the SI loss L_{si} is calculated as:

$$L_{si} = L_{tr} + L_{ac} + L_{rc} = \sum_{i=1}^{K} (L_{tr}^i + L_{ac}^i + L_{rc}^i),$$

(10)

where K is the maximal encoding tree height.
Table 1: Summary of the mean episode rewards for different tasks from DMControl: “average value ± standard deviation” and “average improvement” (absolute value(%)). **Bold:** the best performance under each category, **underline:** the second performance.

<table>
<thead>
<tr>
<th>Domain, Task</th>
<th>ball_in_cup-catch</th>
<th>cartpole-swingup</th>
<th>cheetah-run</th>
<th>finger-spin</th>
<th>reacher-easy</th>
<th>walker-walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBC</td>
<td>168.95 ± 84.76</td>
<td>317.74 ± 77.49</td>
<td>432.24 ± 181.43</td>
<td>805.90 ± 78.85</td>
<td>191.44 ± 69.07</td>
<td>331.97 ± 108.40</td>
</tr>
<tr>
<td>SAC-AE</td>
<td>929.24 ± 39.14</td>
<td>839.23 ± 15.83</td>
<td>663.71 ± 9.16</td>
<td>898.06 ± 30.23</td>
<td>917.24 ± 38.33</td>
<td>895.33 ± 56.25</td>
</tr>
<tr>
<td>RAD</td>
<td>937.97 ± 6.77</td>
<td>825.62 ± 9.80</td>
<td>802.53 ± 8.73</td>
<td>835.20 ± 93.65</td>
<td>908.24 ± 25.62</td>
<td>907.08 ± 13.02</td>
</tr>
<tr>
<td>CURL</td>
<td>899.03 ± 30.61</td>
<td>824.46 ± 18.53</td>
<td>309.49 ± 8.15</td>
<td>949.57 ± 15.76</td>
<td>919.71 ± 28.03</td>
<td>885.03 ± 9.88</td>
</tr>
<tr>
<td>Markov</td>
<td>919.10 ± 38.14</td>
<td>814.94 ± 17.61</td>
<td>642.79 ± 65.92</td>
<td>969.91 ± 8.41</td>
<td>806.34 ± 131.40</td>
<td>918.41 ± 12.58</td>
</tr>
<tr>
<td>SISA(Ours)</td>
<td>946.29 ± 8.63</td>
<td>858.21 ± 6.31</td>
<td>806.67 ± 8.01</td>
<td>970.45 ± 8.75</td>
<td>924.52 ± 19.04</td>
<td>921.64 ± 12.43</td>
</tr>
</tbody>
</table>

Abs.(%) Avg. ↑ 8.32(0.89) 18.98(2.26) 4.14(0.52) 0.54(0.06) 4.81(0.52) 3.20(0.35)

4.2 Online Abstraction for Continuous Control

Experimental setup. Next, we benchmark our framework in an online setting with a challenging and diverse set of image-based, continuous control tasks from the DeepMind Control suite (DMControl) [Tunyasuvunakool et al., 2020]. The online experiments are conducted on six DMControl environments: ball_in_cup, cartpole-swingup, cheetah-run, finger-spin, reacher-easy, and walker-walk, to examine the sample efficiency and final performance. The Soft Actor-Critic (SAC) [Haarnoja et al., 2018] is chosen as a traditional RL algorithm, combined with SISA and different state abstraction baselines. The compared state-of-the-art baselines consist of random data augmentation RAD [Laskin et al., 2020b], contrastive method CURL [Laskin et al., 2020a], bisimulation method DBC [Zhang et al., 2020], pixel-reconstruction method SAC-AE [Yarats et al., 2021], and Markov abstraction [Allen et al., 2021].

Evaluations. We evaluate all compared methods in six environments from the DMControl suite and summarize averages and deviations of mean episode rewards in Table 1. It can be seen that SISA improves the average mean episode reward in each DMControl environment. Specifically, SISA achieves up to 18.98 (2.26%) improvement from 839.23 to 858.21 in average value, which corresponds to its advantage on final performance. In terms of stability, SISA reduces the standard deviation in two environments. And in the other four environments, SISA achieves the second lowest deviations (8.63, 8.61, 8.75, and 12.43), where it remains very close to the best baseline. The reason is that, SISA minimizes the structural entropy to realize the optimal hierarchical state clustering without any manual assistance and therefore guarantees its stability.

On the other hand, the sample-efficiency results of DMControl experiments are shown in Fig. 5. In each experiment, we set the mean reward target as 0.9 times the final performance of SISA and choose the best baseline as the compared method. In contrast to classical baselines, SISA takes fewer steps to finish the mean episode reward target and thereby achieves higher sample efficiency. In particular, SISA achieves up to 44.44% improvement in sample efficiency, reducing the environment steps from 45k to 25k to obtain an 851.661 mean reward in ball_in_cup-catch task.

In summary, in the online setting where reward information is available, SISA establishes a new state of art on DMControl regarding final performance and sample efficiency. The hierarchical abstraction on the optimal encoding tree effectively compensates for essential information loss in state compression to maintain the original task characteristics, guaranteeing SISA’s advantages. Fig. 6 shows the learning curves of SISA and the three best-performing baselines in each task; similarly, their starting points of convergence are marked. SISA converges at 64000.0 timesteps and achieves an 858.21 mean episode reward, as shown in the cartpole-swingup task.

4.3 Integrative Abilities

SISA is a general framework and can be flexibly integrated with various existing representation-learning abstraction approaches in the pretrain stage. Therefore, we integrate our framework with the Markov abstraction and SAC-AE, namely Markov-SISA and SAC-SISA, and choose two tasks (ball_in_cup-catch and cartpole-swingup) to evaluate their performances. Each integrated framework achieves higher final performance and sample efficiency than the original approach, as shown in Fig. 7. The experimental results indicate that our abstraction framework can significantly optimize existing abstraction approaches in complex decision-making.

4.4 Ablation Studies

We conduct ablation studies in the finger-spin task to understand the functionalities of finetune and abstract stages in SISA. The finetune and abstract stages are removed from SISA, respectively, and we name the corresponding variants SISA-FI and SISA-AT. As shown in Fig. 8, SISA remarkably outperforms SISA-FI and SISA-AT in the final performance, sample efficiency, and stability, which shows that the finetune and abstract stages are both important for the SISA’s advantages. Furthermore, the advantages over the SISA-AT variant are more significant.
Figure 6: Mean episode rewards on six DMControl environments.

Figure 7: Mean episode rewards of the SISA integrated with abstraction methods Markov and SAC-AE.

Figure 8: Mean episode rewards for ablation studies.

5 Related Work

State abstractions for sample-efficient RL. The SAC-AE [Yarats et al., 2021] trains models to reproduce original states by pixel prediction and related tasks perfectly. Instead of prediction, the CURL [Laskin et al., 2020a] learns abstraction by differentiating whether two augmented views come from the same observation. The DBC [Zhang et al., 2020] trains a transition model and reward function end-to-end to learn approximate bisimulation abstractions, where original states are equivalent if their expected reward and transition dynamics are the same. To ensure the abstract decision process is Markov, Allen et al. [2021] introduce sufficient conditions to learn Markov abstract state representations. Recently, SimSR [Zang et al., 2022] designs a stochastic approximation method to learn abstraction from observations to robust latent representations. IAEM [Zhu et al., 2022] efficiently obtains abstract representations, by capturing action invariance. State abstraction is applied to three-valued semantics to find “failure” states under assumptions of imperfect information and perfect recall [Belardinelli et al., 2023].

6 Conclusion

This paper proposes a general structural information principles-based hierarchical state abstraction (SISA) framework, from the information-theoretic perspective. To the best of our knowledge, it is the first work to incorporate the mathematical structural information principles into state abstraction to optimize decision-making with high-dimension and noisy observations. Evaluations of challenging tasks in the visual gridworld and DMControl suite demonstrate that SISA significantly improves final performance and sample efficiency over state-of-the-art baselines. In the future, we will evaluate SISA in other environments and further explore the hierarchical encoding tree structure in decision-making.
Acknowledgments

The corresponding authors are Hao Peng and Angsheng Li. This paper was supported by the National Key R&D Program of China through grant 2021YFB1714800, NSFC through grant 61932002, S&T Program of Hebei through grant 20310101D, Natural Science Foundation of Beijing Municipality through grant 4222030, CCF-DiDi GAIA Collaborative Research Funds for Young Scholars, the Fundamental Research Funds for the Central Universities, Xiaomi Young Scholar Funds for Beihang University, and in part by NSF under grants III-1763325, III-1909323, III-2106758, SaTC-1930941, and MRI-2215789, as well as Lehigh University’s Accelerator and CORE grants S00010293 and 001250.

References

