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Abstract

Federated recommendation is a new Internet ser-
vice architecture that aims to provide privacy-
preserving recommendation services in federated
settings.  Existing solutions are used to com-
bine distributed recommendation algorithms and
privacy-preserving mechanisms. Thus it inherently
takes the form of heavyweight models at the server
and hinders the deployment of on-device intelli-
gent models to end-users. This paper proposes
a novel Personalized Federated Recommendation
(PFedRec) framework to learn many user-specific
lightweight models to be deployed on smart devices
rather than a heavyweight model on a server. More-
over, we propose a new dual personalization mech-
anism to effectively learn fine-grained personaliza-
tion on both users and items. The overall learning
process is formulated into a unified federated opti-
mization framework. Specifically, unlike previous
methods that share exactly the same item embed-
dings across users in a federated system, dual per-
sonalization allows mild finetuning of item embed-
dings for each user to generate user-specific views
for item representations which can be integrated
into existing federated recommendation methods to
gain improvements immediately. Experiments on
multiple benchmark datasets have demonstrated the
effectiveness of PFedRec and the dual personaliza-
tion mechanism. Moreover, we provide visualiza-
tions and in-depth analysis of the personalization
techniques in item embedding, which shed novel
insights on the design of recommender systems in
federated settings. The code is available.

1 Introduction

Federated recommendation is a new service architecture for
Internet applications, and it aims to provide personalized rec-
ommendation service while preserving user privacy in the
federated settings. Existing federated recommendation sys-
tems [Muhammad et al., 2020; Yi et al., 2021; Perifanis and
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Efraimidis, 2022; Wu et al., 2022b] are usually to be an adap-
tation of distributed recommendation algorithms by embody-
ing the data locality in federated setting and adding privacy-
preserving algorithms with guaranteed protection. However,
these implementations of federated recommendations still in-
herit the traditional service architecture, which is to deploy
large-scale models at servers. Thus it is impractical and in-
consistent with the newly raised on-device service architec-
ture, which is to deploy a lightweight model on the device to
provide service independently without frequently communi-
cating with the server. Given the challenge of implementing
data locality on devices in federated settings, the personal-
ization mechanism needs to be reconsidered to better capture
fine-grained personalization for end-users.

Personalization is the core component of implementing
federated recommendation systems. Inherited from conven-
tional recommendation algorithms, existing federated recom-
mendation frameworks are usually composed of three mod-
ules: user embedding to preserve the user’s profile, item em-
bedding to maintain proximity relationships among items,
and the score function to predict the user’s preference or
rating for a given item. They usually preserve user-specific
personalization in the user embedding module while sharing
consensus on item embeddings and score functions.

This paper proposes a new dual personalization mecha-
nism designed to capture fine-grained two-fold personal pref-
erences for users in the federated recommendation system.
Inspired by human beings’ decision logic, we believe all mod-
ules in the recommendation framework should be used to pre-
serve part of personalization rather than use user embedding
only. For example, the score function is to mimic the user’s
personal decision logic that is natural to be diverse across
clients. Furthermore, given an item set, different people may
have different views on measuring their proximity relation-
ships. Therefore, personalized item embedding could be es-
sential to capture people’s personal preferences further.

To implement the aforementioned ideas in federated set-
tings, we propose a new federated recommendation frame-
work to implement fine-grained personalization on multiple
modules which are illustrated in Figure 1 (c). First, we use a
personalized score function to capture user’s preferences, and
it could be implemented with a multi-layer neural networks.
Second, we remove the user embedding from the federated
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Figure 1: Different frameworks for the personalized federated rec-
ommendation. The represents a personalized module,
which indicates the part of model is to preserve user preference. Our
proposed model will preserve dual personalization on two modules.

recommendation framework because the current neural-based
personalized score function has enough representation capa-
bility to preserve the information of user embeddings. Third,
we implement light finetuning to learn personalized item em-
beddings in federated settings. This proposed decentralized
intelligence architecture is a natural simulation of human be-
ings’ decision-making that each person has a relatively inde-
pendent mind to make decisions.

The learning procedure is also carefully tailored in a fed-
erated setting. A personalized score function will be learned
using the user’s own data on the device, and then it won’t be
sent to the server for global aggregation that usually generates
a general view for all devices. Moreover, the personalized
item embedding will be implemented through light finetun-
ing in a federated learning framework, thus it can leverage
both the general view from server and the personalized view
from user’s own data.

In summary, we propose a novel federated recommenda-
tion framework that integrates both the personalized score
function and personalized item embedding via light finetun-
ing from the shared item embedding. Our key contributions
are summarized as follows.

* We propose a novel federated recommendation frame-
work which is more naturally consistent with layer-wise
neural architecture and can better fit federated learning.

* We design a novel dual personalization mechanism to
capture user preferences using a personalized score
function and fine-grained personalization on item em-
beddings. It can be integrated with other baselines to
improve their performances.

* We formulate the proposed federated recommendation
learning problem into a unified federated optimization
framework with a bi-level objective.

* Our method can significantly outperform existing feder-
ated recommendation baselines.

2 Related Work
2.1 Personalized Federated Learning

Federated learning is a new machine learning paradigm that a
server orchestrates a large number of clients to train a model
without accessing their data [Kairouz et al., 2021; Li et al.,

4559

2020; Long et al., 2021; Long et al., 2020; Tan et al., 2022c;
Tan et al., 2022b; Chen et al., 2023]. The vanilla federated
learning method, FedAvg [McMahan er al., 2017], is to learn
arobust model at the server while embodying data locality for
each device with non-IID data. Personalized federated learn-
ing is to learn a personalized model for each device to tackle
the non-IID challenge. Per-FedAvg [Fallah et al., 2020]
exploits Model-Agnostic Meta-Learning (MAML) [Finn et
al., 2017] to find a shared initial model for all clients and
each client can learn a personalized model with its own data.
Ditto [Li er al., 2021] proposes a bi-level optimization frame-
work for PFL which introduces a regularization term by con-
straining the distance between the local and the global model.
[Shamsian et al., 2021] propose to replace the global model
with a global hyper-network orchestrate clients’ local train-
ing. FedRecon [Singhal er al., 2021] is a meta-learning-
based method that preserves a local model for each client
and trains a global model collaboratively with FedAvg. There
are also some attempts about graph-based [Tan er al., 2022a;
Chen et al., 2022] and cluster-based [Ma et al., 2022; Long et
al., 2023] methods. In this paper, we focus on developing per-
sonalization in the federated recommendation scenario where
device data distributions are heavily non-IID, and it has not
been well explored.

2.2 Federated Recommendation Systems

Federated recommendation has attracted much attention re-
cently due to the rising privacy concern. Some recent works
focus on only using the interaction matrix which is the most
fundamental recommendation scenario. FCF [Ammad-Ud-
Din et al., 2019] is the first FL-based collaborative filter-
ing method, which employs the stochastic gradient approach
to update the local model, and FedAvg is adopted to up-
date the global model. Improving user privacy protection,
FedMF [Chai er al., 2020] adapts distributed matrix factor-
ization to the FL setting and introduces the homomorphic
encryption technique on gradients before uploading to the
server. MetaMF [Lin et al., 2020b] is a distributed matrix
factorization framework where a meta-network is adopted to
generate the rating prediction model and private item embed-
ding. [Wu er al., 2022b] presents FedPerGNN where each
user maintains a GNN model to incorporate high-order user-
item information. However, the server in both MetaMF and
FedPerGNN preserves all the recommendation model param-
eters which can be used to infer the user’s interaction infor-
mation, resulting in the risk of user privacy leakage. Fed-
NCEF [Perifanis and Efraimidis, 2022] adapts Neural Collab-
orative Filtering (NCF) [He et al., 2017] to the federated set-
ting which introduces neural network to learn user-item inter-
action function to enhance model learning ability.

Besides, there are federated recommendation methods us-
ing rich information that consider multiple data sources in
modeling. FedFast [Muhammad er al., 2020] extends Fe-
dAvg [McMahan et al., 2017] with an active aggregation
method to facilitate the convergence. Efficient-FedRec [Yi
et al., 2021] decomposes the model into a news model on
the server and a user model on the client, and reduces the
computation and communication cost for users. Both works
rely on more data sources, such as user features or news at-
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tributes rather than an interaction matrix. [Lin ef al., 2020a;
Du et al., 2021; Minto et al., 2021; Lin et al., 2021] are en-
deavors that focus on enhancing privacy of FedRec. There
are also attempts for other applications in FedRec, such as
federated attack [Wu er al., 2022c; Zhang ef al., 2022], so-
cial recommendation [Liu e al., 2022b], Click-Through Rate
(CTR) prediction [Wu et al., 2022a] and fair recommenda-
tion [Liu ef al., 2022a]. Existing federated recommendation
methods usually combine the distributed recommendation al-
gorithms and privacy-preserving techniques directly. They
inherits the heavyweight models at the server and pay little
attention on lightweight models deployed at client. In this
paper, we present a novel federated recommendation frame-
work aiming to learn many user-specific lightweight models
rather than a heavyweight model on the server.

3 Problem Formulation

Federated learning is to learn a global model parameterized
by 6 to serve all clients whose data are private. The optimal
solution should minimize the below accumulated loss of all
clients,

N

where L;(6) is the supervised loss on the i-th client with
dataset D;, and all clients share the global parameter 6. The
a; 1s a weight for the loss of the i-th client. For example, the
conventional FL algorithm, FedAvg [McMahan er al., 20171,
defines «; as the fraction of the size of the client’s training
data, i.e, o; := |D;|/ Z;VZI |D;|. Once the global model is
trained, it can be used for prediction tasks on all clients.

Personalized federated learning simultaneously leverages
common knowledge among clients and learns a personalized
model for each client, with learning objective as,

min Y o Li(0,6;) )

where each client has a unique personalized parameter 6;, and
0 is the global parameter as mentioned in Eq. (1). For exam-
ple, [Fallah er al., 2020] leverage 6 as initialization of 6, i.e.,
0; := 6 — VI;(0), where [;(0) is the loss of a vanilla model
on the i-th client. The L;(6, 6;) is then formulated as

LZ<9, 91> = 11(9 - VZZ(H)) (3)

Recommendation with neural networks. This work fo-
cuses on the fundamental scenario where recommendation
only relies on the user-item interaction matrix without extra
user/item attributes. The recommendation framework can be
divided into three components: a user embedding module &,
an item embedding module E and a score function S. We
denote these modules’ parameters with 6 := (6%, 6™, 6°) and
formulate the learning objective as,

r%inL(Q;r7 7) = rnein L(0;r,S(E(eY),E(e™))) @)

where e* and e™ are one-hot encodings representing users
and items. 7 is a user’s rating to the given item and 7 is a
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prediction from the score function S(E(e*), E(e™)). L is
the loss evaluation metric, which could be a point-wise loss
as used in [Wang et al., 2016; He et al., 2017], or a pair-wise
loss as in [Rendle et al., 2012; Wang et al., 2019]. It is worth
noting that conventional Matrix Factorization (MF) methods
could be viewed as a special case of the framework in Eq. (4),
i.e., the conventional MF is a model where the score function
S is simplified as the inner product operator without learnable
parameters, and the embedding of user/item is obtained by the
decomposition of the user-item interaction matrix.

4 Methodology

In this section, we propose a novel Personalized Federated
Recommendation (PFedRec) framework, which aims to
simultaneously learn many user-specific recommendation
models deployed on end devices.

4.1 Objective Function

Federated learning objective. We regard each user as a
client under FL settings. The on-device recommendation task
is then depicted as a PFL problem. Particularly, the item
embedding module F; is assigned to be a global component
which learns common item information and the score func-
tion S; is maintained locally to learn personalized decision
logic. To further capture the difference between users and
achieve a preference-preserving item embedding, we devise a
bi-level optimization objective,

N
. L0
om0, ;a (07) 5)
s.t. 91 = (9771 - V(ymLi, 9?)
where 0; := (0]",07) is the personalized parameter for E;

and S;, and L; will be evaluated on the i-th client local data
D;. Under this framework, PFedRec first tunes F into a
personalized item embedding module E;, and then learns a
lightweight local score function S; to make personalized pre-
dictions. Different from the conventional recommendation al-
gorithms, the user embedding module £ is depreciated since
the personalization procedure on a client will automatically
capture the client’s preference. There is no use to learn extra
embeddings to describe clients.

Loss for recommendation. Equipped with the item em-
bedding module and score function, we formulate the pre-
diction of j-th item by ¢-th user’s recommendation model as,

i = Si(Ei(e?)) 6)

Particularly, we discuss the typical recommendation task with
implicit feedback, that is, 7;; = 1 if i-th user interacted with
j-th item; otherwise r;; = 0. With the binary-value nature of
implicit feedback, we define the loss function of i-th user as
the binary cross-entropy loss,

Li(0i;r,7) = — Z log 74 — Z log(1—750) (7)
(i,3)€D; (i,5))ED;

where D, is the negative instances set of user ¢. Notably,
other loss functions can also be used, and here we choose
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the binary cross-entropy loss to simplify the description. Par-
ticularly, to construct D; efficiently, we first count all the
uninteracted items set as,

I =1\ ®)

where 7 denotes the full item list and Z; is the interacted item
set of ¢-th user. Then, we uniformly sample negative instances
from Z; by setting the sampling ratio according to the num-
ber of observed interactions and obtain D;".

4.2 Dual Personalization

We present a dual personalization mechanism to enable the
proposed framework can preserve fine-grained personaliza-
tion for both user and item.

Using partial-based federated model aggregation to learn
personalized user score function on each device. Our
proposed model is composed of a neural-based score function
parameterized by 6° and an item embedding module param-
eterized by 6. The coordinator/server of federated system
will iteratively aggregate model parameters or gradients col-
lected from each participant/device. Due to the concern of
personalization and privacy, we implement a partial model
aggregation strategy by keeping the score function as a pri-
vate module on devices while sharing the item embedding to
the server. Therefore, the server only aggregates the gradi-
ents or parameters 6" from the item embedding module. The
user’s personalized score function module 8° won’t be sent to
the server and thus won’t be aggregated. Generally, the sim-
ple and swift multi-layer neural network is capable of tackling
most scenarios, which is convenient for client deployment.

Finetuning the item embedding module to generate per-
sonalized representations for items on each device. Ac-
cording to Eq. (5), the learning objective of 6" could be
viewed as searching for a “good initialization” that could
be fast adaptive to the learning task on different devices. It
shares similar ideas with meta-learning-based methods [Fal-
lah er al., 2020] which have a local loss in Eq. (3). However,
our proposed method takes a different optimization strategy
we call post-tuning. Specifically, rather than directly tuning
a global model on clients’ local data, it first learns the lo-
cal score function with the global item embedding, and then
replaces the global item embedding with personalized item
embedding obtained by finetuning ™.

4.3 Algorithm

Optimization. To solve the optimization problem as de-
scribed in Sec. 4.1 - objective function, we conduct an al-
ternative optimization algorithm to train the model. As il-
lustrated in Algorithm 1, when the client receives the item
embedding from server, it first replaces its item embedding
with the global one, and then updates the score function while
keeping the item embedding module fixed. Then the client
updates the item embedding based on the updated person-
alized score function. Finally, the updated item embedding
would be uploaded to the server for global aggregation.

Workflow. The overall algorithm workflow could be sum-
marized into several steps as follows. The server is responsi-
ble for updating shared parameters and organizing all clients
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Algorithm 1 Optimization Workflow of PFedRec
ServerExecute:
1: Initialize item embedding 6”* and score function 6°
2: fort=1,2,...do
3: S; «+ (select a client set of size n randomly from all
N clients)
4: for client i € S; in parallel do
5: 07" < ClientUpdate(¢, ™)
6: 0" % Z?zl o
ClientUpdate(z, 0™):
: Initialize 6" with 6™
Initialize 67 with the latest update
Count all uninteracted items set Z;, with Eq. (8)
Sample negative instances set D;” from
B «+ (split D; U D" into batches of size B)
for e from 1 to E do
for batch b € B do
Compute L;(0;; r, 7) with Eq. (7)
Compute L;(0;;r, ) with Eq. (7)
11: 9Zm — G,Zn — 7]/V9;n L;

12: Return 0;" to server

AN A

_
SN

to complete collaborative training. At the beginning of feder-
ated optimization, the server initializes the model parameters,
which would be used as initial parameters for all client mod-
els. In each round, the server selects a random set of clients
and distributes the global item embedding 6™ to them. When
local training is over, the server collects the updated item em-
bedding from each client to perform global aggregation. We
build on the simplified version of FedAvg, a direct average of
locally uploaded item embeddings. The overall procedure is
summarized in Algorithm 1.

Efficient on-device update. Focusing on the fundamental
recommendation scenario, i.e., with only user-item interac-
tion matrix, the item embedding module F; dominates the
parameter volume in the recommendation model due to large
item set size, which brings challenges to end devices with
limited computing resources. Generally, the items set that
each user interacts with is much smaller than the complete
item collection. Based on this observation, we propose that
each device only needs to maintain the interacted positive
items and sampled negative samples instead of the complete
item embedding module, resulting in an efficient on-device
update. For clarity, we continue to use 0" in the Algorithm
formulation. In practice, each device only needs to maintain
a subset of the complete item embeddings.

5 Discussions

5.1 Privacy on Federated Recommendation

Privacy-preserving is an essential motivation to advance ex-
isting cloud-centric recommendation to client-centric rec-
ommendation service architecture. In general, the feder-
ated learning’s decentralized framework can embody data
locality and information minimization rules (GDPR) that
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Dataset Interactions Users Items  Sparsity
MovieLens-100K 100,000 943 1,682 93.70%
MovieLens-1M 1,000,209 6,040 3,706  95.53%
Lastfm-2K 185,650 1,600 12,454  99.07%
Amazon-Video 63,836 8,072 11,830  99.93%

Table 1: Dataset statistics.

could greatly mitigate the risk of privacy leakage [Kairouz
et al., 2019]. To provide service with privacy guarantee,
the FL framework should be integrated with other privacy-
preserving methods, such as Differential Privacy and secure
communication. Our proposed framework derives the same
decentralized framework from vanilla FL to preserve data lo-
cality. For example, to tackle the privacy leakage risk caused
by sending item embedding to the server, we could simply
apply differential privacy to inject noise into the embeddings
so that the server cannot simply infer the updated items by
watching the changes of embeddings. More analysis and ex-
perimental verification can be found in Sec. 6.6.

5.2 A General Framework for Federated
Recommendation

The proposed framework in Figure 1 (c) could be a general
form of federated recommendation because our framework
could be easily transformed into an equivalent form of other
frameworks. For example, if we assign the score function as a
one-layer linear neural network, PFedRec is equal to FedMF
in Figure 1 (a). Moreover, if we change the personalized score
function from full personalization to partial layer personaliza-
tion, our method could be equivalent to FedNCF in Figure 1
(b) which has a shared score function across clients. Further-
more, our proposed framework’s architecture could be natu-
rally aligned with the classic neural network architecture, thus
it has a bigger potential to achieve better learning efficiency
and is more flexible to extend.

6 Experiments

6.1 Experimental Setup

We evaluate the proposed PFedRec on four real-world
datasets: MovieLens-100K, MovieLens-1M [Harper and
Konstan, 2015], Lastfm-2K [Cantador et al., 2011] and
Amazon-Video [Ni et al., 2019]. They are all widely used
datasets in assessing recommendation models. Specifically,
two MovieLens datasets were collected through the Movie-
Lens website, containing movie ratings and each user has
at least 20 ratings. Lastfm-2K is a music recommendation
dataset, and each user maintains a list of her favorite artists
and corresponding tags. Amazon-Video was collected from
the Amazon site, containing product reviews and metadata
information. We excluded users with less than 5 interac-
tions in Lastfm-2K and Amazon-Video. The characteristics
of datasets are shown in Table 1. For dataset split, We follow
the prevalent leave-one-out evaluation [He et al., 2017]. We
evaluate the model performance (%) with Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG) metrics.
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6.2 Baselines and Implementation Details

Baselines. Our method is compared with baselines in both
centralized and federated settings. Focusing on the perfor-
mance improvement of the infrastructure of recommendation
models that all others derive from, we select the general and
fundamental baselines that conduct recommendations only
based on the interaction matrix.

e Matrix Factorization (MF) [Koren et al., 2009]: This
method is a typical recommendation algorithm. Particu-
larly, it decomposes the rating matrix into two embeddings
located in the same latent space to characterize users and
items, respectively.

 Neural Collaborative Filtering (NCF) [He et al., 2017]:
This method models user-item interaction function with an
MLP, and is one of the most representative neural recom-
mendation models. Specifically, we apply the interaction
function with a three-layer MLP for comparison, which is
adopted in the original paper.

e FedMF [Chai et al., 2020]: It is a federated version of MF
which is a typical FedRec method. It updates user embed-
ding locally and aggregates item gradients globally.

e FedNCF [Perifanis and Efraimidis, 2022]: It is a feder-
ated version of NCF. Specifically, each user updates user
embedding locally and uploads item embedding and score
function to the server for global update.

* Federated Reconstruction (FedRecon) [Singhal er al.,
20211]: It is a state-of-the-art PFL framework, and we test it
under the matrix factorization scenario. Between every two
rounds, this method does not inherit user embedding from
the previous round but trains it from scratch.

» Meta Matrix Factorization (MetaMF) [Lin et al., 2020b]:
It is a distributed matrix factorization framework where a
meta-network is adopted to generate the rating prediction
module and private item embedding.

» Federated Graph Neural Network (FedPerGNN) [Wu
et al., 2022b]: It deploys a GNN in each client and the
user can incorporate high-order user-item information by a
graph expansion protocol.

Implementation details. We sample 4 negative instances
for each positive instance following [He er al., 2017]. For
a fair comparison, we set the user (item) embedding size as
32 and the batch size is fixed as 256 for all methods, and set
other model details of baselines according to their original pa-
pers. The total number of communication rounds is set to 100,
and this value enables all methods to be trained to converge
through experiments. One exception is FedPerGNN, we fol-
low the experimental setting in the original paper with the of-
ficial code, whose rounds number is set to 3. For our method,
we assign the score function with a one-layer MLP for sim-
plification, which can be regarded as an enhanced FedMF
with our dual personalization mechanism. We implement the
methods based on the Pytorch framework! and run all the ex-
periments for 5 repetitions and report the average results.

'Code: https://github.com/Zhangcx 19/IJC AI-23-PFedRec
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Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10
CenRec NCF 64.14 £0.98 3791 £ 0.37 64.17 £+ 0.99 37.85 £ 0.68 82.44 + 0.42 67.43 £ 0.89 60.16 + 0.43 38.97 £ 0.14
MF 64.43 £+ 1.02 38.95 + 0.56 68.45 £+ 0.34 41.37 +0.18 82.71 + 0.54 71.04 £ 0.62 46.69 £ 0.65 29.83 £+ 0.45
FedMF 65.15 £ 1.16 39.38 + 1.08 67.72 £0.14 40.90 £+ 0.14 81.64 + 0.48 69.36 £ 0.42 59.67 £ 0.19 38.55 £ 0.21
FedNCF 60.62 £ 0.59 3325+ 1.35 60.54 £+ 0.46 34.17 £ 0.40 81.55 +0.38 61.03 £ 0.63 57.77 £ 0.07 36.86 + 0.06
FedRec FedRecon 64.45 £+ 0.81 37.78 £+ 0.38 63.28 £ 0.15 36.59 £ 0.33 82.06 + 0.38 67.58 £ 0.35 59.80 £ 0.14 38.87 £ 0.13
MetaMF 66.38 £+ 0.24 40.59 £ 0.31 45.61 £0.18 2524 £0.35 80.88 + 0.45 64.24 £+ 045 57.51 £0.53 37.25+£0.28
FedPerGNN 10.50 £+ 0.12 492 £+ 0.21 9.69 £ 0.23 437 £0.31 10.19 + 0.41 4.83 £0.25 10.72 £ 0.33 4.90 £+ 0.32
PFedRec (Ours) 71.62 £ 0.83 43.44 £+ 0.89 73.26 £+ 0.20 44.36 £ 0.16 82.38 £+ 0.92 73.19 £ 0.38 60.08 £ 0.08 39.12 £ 0.09

Table 2: Performance of HR@10 and NDCG@10 on four datasets. CenRec and FedRec represent centralized and federated methods,
respectively. The results are the mean and standard deviation of five repeated trials.

Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10
FedMF 65.15 £ 1.16 39.38 £ 1.08 67.72 £ 0.14 40.90 £+ 0.14 81.64 £+ 0.48 69.36 £ 0.42 59.67 £ 0.19 38.55 £ 0.21
w/ DualPer 71.62 £0.83 43.44 4+ 0.89 73.26 £ 0.20 4436 £ 0.16 82.38 + 0.92 73.19 £ 0.38 60.08 £ 0.08 39.12 £ 0.09
Improvement 1 9.93% 1 10.31% 1 8.18% 1 8.46% 10.91% 1 5.52% 1 0.69% 11.48%
FedNCF 60.62 £ 0.59 3325 £1.35 60.54 £ 0.46 34.17 £ 0.40 81.55 £+ 0.38 61.03 £ 0.63 57.77 £ 0.07 36.86 £ 0.06
w/ DualPer 68.82 £ 1.35 39.33 £0.85 68.17 £ 0.55 39.56 + 0.29 82.31 £ 0.56 71.64 £ 0.43 59.57 £ 0.57 38.73 £ 0.62
Improvement 1 13.53% 1 18.29% 1 12.60% 1 15.77% 1 0.93% 1 17.38% 1 3.12% 1 5.07%
FedRecon 64.45 £+ 0.81 37.78 £ 0.38 63.28 £ 0.15 36.59 £+ 0.33 82.06 + 0.38 67.58 £ 0.35 59.80 £ 0.14 38.87 £0.13
w/ DualPer 70.20 £ 0.90 41.83 +£0.71 68.89 £ 0.26 40.04 £ 0.16 83.51 £ 0.23 74.83 £ 0.44 60.23 £ 0.16 39.20 £ 0.12
Improvement 1 8.92% 1 10.72% 1 8.87% 1 9.43% +1.77% 1 10.73% 10.72% 1 0.85%

Table 3: Performance improvement for integrating our dual personalization mechanism (DualPer) to three federated baseline algorithms.
The results are the mean and standard deviation of five repeated trials, and the significant improvements (over 5%) are highlighted.

6.3 Comparison Analysis

We conduct experiments on four datasets for performance
comparison and the resuls are shown in Table 2.

Results & discussion. From the results, we have several
observations: (1) PFedRec obtains better performance
than centralized methods in some cases. In the centralized
scenario, only user embedding is regarded as the personalized
component to learn user characteristics, and other compo-
nents are totally shared among users. In comparison, our dual
personalization mechanism considers two forms of personal-
ization, which can further exploit user preferences. (2) PFe-
dRec realizes outstanding advances on the two MovieLens
datasets. In these two datasets, each user has more interac-
tion samples which can be used to train device recommen-
dation models, hence promoting user personalization learn-
ing and fitting our method better. (3) PFedRec consistently
achieves the best performance against all federated meth-
ods. In FedRec, the common item embeddings help transfer
the shared information among users, which facilitates collab-
orative training of individual user models. However, different
users present rather distinct preferences for items and existing
federated methods deploy the global item embeddings indis-
criminately for all clients ignoring user-specific preferences.
In comparison, our dual personalization mechanism learns
fine-grained personalization which fits user preferences.

6.4 Enhance Federated Recommendation Methods
with Our Dual Personalization Mechanism

This paper proposes a lightweight dual personalization mech-
anism to enhance personalization handling, which can be eas-
ily integrated into federated learning methods. Particularly,
we take FedMF, FedNCF and FedRecon as examples to ver-
ify the efficacy of the dual personalization mechanism.

Results & discussion. According to Table 3, all three fed-
erated recommendation methods are significantly improved
by integrating our dual personalization mechanism. Among
them, FedNCF attains the most remarkable boost. The high-
est HR@10 and NDCG@10 increase exist on MovieLens-
100K, i.e., 13.53% and 18.29%. Compared with Lastfm-2K
and Amazon-Video, the improvement of the dual personal-
ization mechanism is more evident on the two MovieLens
datasets, almost around 10%, where each user has more sam-
ples locally and facilitates user preference capture. In sum-
mary, our proposed dual personalization mechanism can help
the local model to learn user-specific item embedding, which
benefits the recommendation system prominently.

6.5 A Close Look of Personalization in PFedRec

To further verify and analyze the role of personalized item
embedding in our method, we conduct empirical experiments
to answer the following questions:

e Q1: Why personalized item embeddings benefit recommen-
dation more than the global one?

* Q2: How specific are the personalized item embeddings
among users?

To answer QI, we first discuss its straightforward insight,
then we present visualization to demonstrate our claim. The
recommendation system aims to provide user-specific recom-
mendations by exploiting historical interactions. In the Fe-
dRec setting, item embedding is consistently considered to
maintain the common characteristics among users, and its
role in depicting user-specific preferences has been neglected.
On the other hand, describing users with common item em-
bedding introduces noisy information, which may incur un-
suitable recommendations. Through personalizing item em-
bedding, we enhance personalization modeling in federated
learning methods, which depicts the user-specific preference.
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Figure 2: TSNE visualization of item embeddings learned by baselines and our method.
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Figure 3: Client inference using different item embeddings.

We compare the item embedding learned by baselines (top-
3 FedRec methods for performance due to limited space) with
our method. Particularly, we select a user randomly from the
MovieLens-100K dataset and visualize the embeddings by
mapping them into a 2-D space through t-SNE [Maaten and
Hinton, 2008]. In this paper, we mainly focus on the implicit
feedback recommendation, so each item is either a positive or
negative sample of the user. As shown in Figure 2, the item
embeddings of positive (blue) and negative (purple) samples
are mixed in baselines, where all users share the global item
embeddings. However, they can be divided into two clusters
by PFedRec. We can easily conclude that our model learns
which items the user prefers.

To answer Q2, we compare three usages of item embedding
during inference as follows:

— Random: Each client is assigned with item embedding
from a random user, i.e., every client runs with its score func-
tion and item embedding from a random user.

— Global: We assign each client with globally shared item
embedding, i.e., every client runs with its score function and
global item embedding.

— Own: It follows our setting that every client runs with its
score function and personalized item embedding.

Specifically, we first train PFedRec, then assign the learned
item embeddings as the above three ways for inference. As
shown in Figure 3, clients with their item embedding achieve
the best performance, and clients with item embedding from
others degrade significantly. Item embedding from a random
user contains little helpful information for inference, even
less than the common characteristics in global item embed-
ding. The personalized item embedding learned by PFedRec
has been adapted to client preference, and different clients
achieve rather distinct item embeddings, depicting the user-

Dataset Noise strength  A=0  A=0.1 =02 A=0.3 A=04 X=0.5
ML-100K HR@10 71.62 7145 7126 71.13 70.84 70.88
NDCG@10 4344 4336 4330 4322 43.14 4321
ML-1M HR@10 7326 73.13 73.19 73.05 73.18 73.08
NDCG@10 4436 4416 4425 4426 4423 4418
Lastfm-2K HR@10 82.38 8204 8191 81.85 8198 81.88
NDCG@10 7319 7241 7223 7243 7239 72.36
Amazon HR@10 60.08 5931 59.29 5921 59.15 59.06
NDCG@10 39.12 3797 3792 37.83 37.81 37.34

Table 4: Performance of integrating LDP into our method with var-
ious Laplacian noise strength .

specific preference.

6.6 Protection with Local Differential Privacy

To enhance the preservation of user privacy, we integrate
the Local Differential Privacy (LDP) technique [Choi et al.,
2018] into our framework. Particularly, we add the zero-mean
Laplacian noise to the client’s item embedding before upload-
ing to the server, i.e., 0™ = 0™ + Laplace(0, \), and A is the
noise strength. We set A = [0,0.1,0.2,0.3,0.4,0.5] to test
our method’s performance.

As shown in Table 4, performance declines slightly as the
noise strength A\ grows, while the performance drop is still ac-
ceptable. For example, when we set A = 0.4, the performance
is also better than baselines in most cases. Hence, a moderate
noise strength is desirable to achieve a good balance between
recommendation accuracy and privacy protection.

7 Conclusion

This paper proposes a novel personalized federated recom-
mendation framework to learn many on-device models simul-
taneously. We are the first to design the dual personaliza-
tion mechanism that can learn fine-grained personalization
on both users and items. This work could be fundamental
work to pave the way for implementing a new service archi-
tecture with better privacy preservation, fine-grained person-
alization, and on-device intelligence. Given the complex na-
ture of modern recommendation applications, such as cold-
start problems, dynamics, using auxiliary information, and
processing multi-modality contents, our proposed framework
is simple and flexible enough to be extended to handle many
new challenges. Moreover, the proposed dual personalization
is a simple-yet-effective mechanism to be easily integrated
with existing federated recommendation systems.
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