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Abstract
Neuro-Rule Networks (NRNs) emerge as a promis-
ing neuro-symbolic method, enjoyed by the abil-
ity to equate fully-connected neural networks with
logic rules. To support learning logic rules consist-
ing of boolean variables, converting input features
into binary representations is required. Different
from discrete features that could be directly trans-
formed by one-hot encodings, continuous features
need to be binarized based on some numerical inter-
vals. Existing studies usually select the bound val-
ues of intervals based on empirical strategies (e.g.,
equal-width interval). However, it is not optimal
since the bounds are fixed and cannot be optimized
to accommodate the ultimate training target. In this
paper, we propose AutoInt, an approach that auto-
matically binarizes continuous features and enables
the intervals to be optimized with NRNs in an end-
to-end fashion. Specifically, AutoInt automatically
selects an interval for a given continuous feature
in a soft manner to enable a differentiable learn-
ing procedure of interval-related parameters. More-
over, it introduces an additional soft K-means clus-
tering loss to make the interval centres approach
the original feature value distribution, thus reduc-
ing the risk of overfitting intervals. We conduct
comprehensive experiments on public datasets and
demonstrate the effectiveness of AutoInt in boost-
ing the performance of NRNs.

1 Introduction
In the last decade, deep neural networks have become the
representative achievement of Artificial Intelligence (AI) and
gained overwhelming success in diverse areas. However, the
intrinsic black-box nature [Castelvecchi, 2016] of deep neu-
ral networks hinders their applications in high-stake domains,
such as finance, education, and healthcare [Rudin, 2019]. In
contrast to deep neural networks, the symbolic approaches in
the first generation of AI possess high interpretability and a
strong logical reasoning ability, yet they usually suffer from
worse performance. To combine the merits of deep neural
networks and symbolic computation, the research community
has started to resort to neuro-symbolic AI [Marra et al., 2020;
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Figure 1: One-hot encoding for categorical and continuous features.

Sarker et al., 2021; Garcez et al., 2022]. It is believed to be a
vital technical direction towards the next generation of AI.

The past several years have witnessed gratifying progress
in some research subfields of neuro-symbolic AI, like neural
logic programming for proving [Manhaeve et al., 2018] and
neural Markov logic network for incorporating rules [Qu and
Tang, 2019; Marra and Kuzelka, 2021]. Different from them,
the recently proposed Neuro-Rule Networks (NRNs) [Wang
et al., 2020; Qiao et al., 2021; Wang et al., 2021] are a novel
type of neuro-symbolic method. Their impressive charac-
ter is to equate fully-connected neural networks with logic
rules, and thus neural networks and logic rules have the same
reasoning process. This is remarkable progress in logic rule
learning through neural networks and is in contrast to the ap-
proaches requiring knowledge graphs [Meilicke et al., 2019;
Cheng et al., 2022] or pre-defined meta-rules [Glanois et al.,
2022]. Due to the advantages in both accuracy and inter-
pretability, NRNs have been successfully applied to domains
such as explainable product recommendation [Zhang et al.,
2022a], financial fraud detection [Zhang et al., 2022b], etc.

A logic rule uses operations such as conjunction (AND,∧)
and disjunction (OR,∨) to combine some Boolean variables
to generate inference results. A Boolean variable takes value
one (True) if a given feature satisfies the corresponding condi-
tion, and otherwise, it takes value zero (False). NRNs require
the input to take binary values, facilitating logic rule learn-
ing. For categorical features, it is straightforward to utilize
one-hot encoding to transform them into binary vectors, the
size of which is equal to the number of categories. However,
using the same strategy for binarizing continuous features is
infeasible. As shown in Figure 1, after transformation by one-
hot encoding, the size of the binary vector for the continuous
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Figure 2: Comparison between fixing (left) and optimizing (right)
interval bounds during training.

feature (i.e., Height) is much larger than that for the categor-
ical feature (i.e., Marital). In theory, the number of values a
continuous feature can take is infinite. As such, this will lead
to high-dimensional and very sparse vectors, which inevitably
increases the difficulty of optimization

To reduce the dimension of binarized continuous feature
vectors, some studies [Wang et al., 2020; Qiao et al., 2021;
Wang et al., 2021] resort to interval-based binarization. In
this way, the dimension equals the number of intervals. How-
ever, these studies employ empirical strategies to determine
the bound values of intervals, such as random bound sam-
pling and equal-width interval, and fix them during the train-
ing process. This loses the chance of optimizing the in-
terval bounds with the overall NRNs, which might be sub-
optimal for ultimate task performance. Although regarding
the bound values as parameters to be automatically learned
is promising and intuitive, there are two main technical chal-
lenges to be resolved: (1) The procedure of interval-based
binarization is not differentiable w.r.t. bound parameters and
thus commonly-adopted optimization methods for neural net-
works like gradient back-propagation could not be directly
applied. (2) The learned intervals should match the original
feature value distribution to some extent, which is also bene-
ficial for reducing the risk of overfitting the intervals.

In this paper, we propose a new approach, named AutoInt,
to automatically optimize intervals with NRNs in an end-to-
end fashion. As shown in Figure 2, compared to fixing in-
tervals during training, AutoInt iteratively updates the inter-
vals to make them adapt to the overall model during train-
ing. Specifically, for the first challenge, AutoInt calculates
the distances between a feature value and interval centres, and
uses the distances to represent the probabilities that the fea-
ture value belongs to different intervals. The soft probability
vector is further leveraged to derive an approximate binary

input vector. Benefiting from this, the learning procedure of
interval-related parameters is differentiable. For the second
challenge, AutoInt exploits K-means to cluster feature values
and takes the cluster centers equivalent to interval centres.
An additional soft K-means clustering loss is introduced to
optimize interval centres jointly with the main target loss to
approach the original feature value distribution.

To sum up, the contributions of this paper are as follows:

• A differentiable binarization methodology is proposed, en-
abling the automatic optimization of intervals with NRNs
in an end-to-end fashion.

• A soft K-means clustering loss is used in conjunction with
an ultimate task loss to make the learned intervals approach
the original feature value distribution.

• Comprehensive experiments on several public datasets with
continuous features demonstrate the effectiveness of Au-
toInt over conventional feature binarization approaches.
The source code of AutoInt is available at https://github.
com/yxliu99/AutoInt.

2 Preliminaries
2.1 Neuro-Rule Networks
Neuro-rule networks are actually a type of fully-connected
neural network but with some special designs. Firstly, logi-
cal activation functions are devised to replace standard action
functions (e.g., ReLU). They are the key factor to imitate con-
junction and disjunction operations for forming logic rules.
One of the main differences between different NRNs also lies
in the instantiations of logical activation functions. Secondly,
all the parameters of NRNs except for the last layer are con-
strained in the range of [0, 1] and the input is also required
to have binary values. This is because logic rules consist of
Boolean variables that take a value of zero or one.

From the overall perspective, NRNs are composed of a bi-
narization layer, several logical layers, and a prediction (in-
ference) layer. The binarization layer is responsible for con-
verting all categorical and continuous features to binary val-
ues. The logical layer is the core part of NRNs. It involves
the aforementioned logical activation functions and uses the
constrained weights to connect different layers. The predic-
tion layer makes the final estimation for a given instance. In
some NRNs, this layer could calculate the rule importance by
assigning rules with different weights.

2.2 Problem Formulation
Let D = {(X1, y1), . . . , (XN , yN )} denote the training data
set, where N is the size. Xi denotes the features of the i-th
instance in the set and yi is the corresponding ground-truth
class. Assume Xi involves both categorical features (X

′

i ) and
continuous features (X

′′

i ), then Xi = {X ′

i , X
′′

i }. For the cat-
egorical features, it is straightforward to use one-hot encod-
ing to convert them to binary vectors (e.g., x

′

i,1 for the first
categorical feature). Then the feature value vector of Xi is
formulated as follows:

x̄i = [x
′

i,1; · · · ;x
′

i,M ′︸ ︷︷ ︸
Categorical

;x
′′

i,1; · · · ;x
′′

i,M ′′︸ ︷︷ ︸
Continuous

] ,
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Figure 3: Sketch of how the proposed AutoInt works with an NRN,
where we use three intervals for illustration.

where M
′

and M
′′

represent the number of categorical and
continuous features, respectively. x

′′

i,1 is the value of the 1st
continuous feature. Based on the notations, we define the
studied problem in the following.

Problem (Continuous Feature Binarization for Neuro-Rule
Networks). Given a neuro-rule network NRN and a feature
value vector x̄i, the goal of this problem is to pursue a contin-
uous feature binarization function f that is compatible with
the network for better inferring the label ŷi, defined as

ŷi = NRN([x
′

i,1; · · · ;x
′

i,M ′ ; f(x
′′

i,1); · · · ; f(x
′′

i,M ′′ )]) .

For brevity, we omit the subscripts and superscripts, and
use x as the value of a given continuous feature, which is
later used for illustrating the proposed approach.

3 Methodology

In this section, we first give an overview of the proposed Au-
toInt. Then we go into the details of two critical modules
of AutoInt. Finally, we introduce how to optimize AutoInt,
along with the neuro-rule network.

3.1 Overview

As shown in Figure 3, AutoInt mainly contains two mod-
ules. The differential binarization module serves NRNs by
converting input continuous features to binary vectors, which
are further concatenated with categorical features and fed into
NRNs. The differential clustering module is responsible for
clustering feature values and associating cluster centers with
interval centres. Moreover, both the classification loss and
clustering loss are leveraged to jointly optimize intervals.

3.2 Interval-based Differentiable Feature
Binarization

Interval Bound Representation
To binarize continuous features, AutoInt utilizes the interval-
based discretization technique. Specifically, for a given con-
tinuous feature, let the minimal value and the maximal value
that the feature can take be denoted as bmin and bmax, re-
spectively. We specify the number of intervals for the feature
to be K. Then an intuitive way to represent the intervals is
[bmin, b1], (b1, b2], · · · , (bK−1, bmax], where {bk}k=K−1

k=1 are
the interval bound values.

Since the main goal of AutoInt is to optimize the inter-
vals, it is natural to regard the bound values (except for bmin

and bmax) as trainable parameters. However, directly opti-
mizing them poses a risk that the partial order relation of
the bound values (i.e., b1 < b2 < · · · < bK−1) might be
changed when they are iteratively updated during the training
process. This will lead to invalid intervals and adversely af-
fect the accuracy of logic rules. To tackle this, we consider
an increment-based interval representation manner. Firstly,
we define increments {δk}k=K−1

k=1 , wherein δk is the width of
the k-th interval and should be larger than zero. Furthermore,
we utilize the increments to represent intervals as follows:
[bmin, bmin + δ1], (bmin + δ1, bmin + δ1 + δ2], · · · , (bmin +
δ1 + · · ·+ δK−1, bmax].

Interval Selection
Based on the above intervals, a simple way to get the binary
vector x for a given feature value x is hard selection defined
as follows:

xk+1 =

{
1 , if bmin + · · ·+ δk < x ≤ bmin + · · ·+ δk+1

0 , otherwise .
(1)

However, the above computational procedure is not differen-
tiable w.r.t. {δk}k=K−1

k=1 , since the corresponding function is
not continuous in the value range of x and the parameters
only occur in the condition terms.

To enable the learning procedure of bound parameters dif-
ferentiable, we resort to soft selection by calculating the prob-
ability that a feature value belongs to an interval. For continu-
ous features, it is natural to use the distance between a feature
value and the centre of an interval to derive the probability.
The centre can be calculated by averaging the lower bound
and upper bound of its interval. For example, the centre of
the k-th interval is bmin + δ1 + · · · + δk−1 + δk/2. Nev-
ertheless, using this type of centres to compute the distance
and probability will cause inconsistency in rule construction.
Suppose there are two given intervals, i.e., [1, 2] with cen-
tre 1.5 and (2, 6] with centre 4. For a feature value 2.5, its
distance with the first interval is smaller than that with the
second interval. Therefore the probability that the feature be-
longs to the first interval is larger. However, we can easily
find that 2.5 is actually within the interval (2, 6].

To tackle the aforementioned problem, we propose first
representing interval centres based on increments and then
determining interval bounds based on the centres. As shown
at the bottom part of Figure 3, AutoInt uses increments
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{∆k}k=K
k=1 . For the k-th interval, the corresponding centre

ck is formulated as
ck = bmin +∆1 + · · ·+∆k−1 +∆k . (2)

Consequently, the lower and the upper bounds of the inter-
val are bmin + · · ·+∆k/2 and bmin + · · ·+∆k +∆k+1/2,
respectively. Note that the centre ck is not exactly the true
centre, since it is very likely that ∆k ̸= ∆k+1. However,
this way could ensure the correctness of the logic rule con-
struction, which is a top priority for NRNs. Considering this
reason, AutoInt takes the pseudo centres {ck}k=K

k=1 as the in-
terval centres throughout this paper.

Based on the obtained centres, we can calculate the proba-
bilities of the value belonging to different intervals. The com-
putational formula is formulated as follows:

pk =
exp

(
− τ1D(x, ck)

)∑K
k′=1 exp

(
− τ1D(x, ck′)

) k ∈ {1, · · · ,K} ,

(3)
where D denotes a distance function and squared distance is
used. τ1 is a hyper-parameter to control the sharpness of the
distribution. Thanks to this soft selection manner, the train-
able parameters {∆k}k=K

k=1 are moved from condition terms
(similar as Equation 1) to the main computational graph.
Based on the probability distribution p, AutoInt selects the
interval that has the largest probability and obtains the binary
vector b through the following function:

bk = Φ(p)[k] =

1 , k = argmax
k′∈{1,··· ,K}

pk′ ,

0 , otherwise .
(4)

This function is not differentiable w.r.t. {∆k}k=K
k=1 and we

will show how to settle this problem in Section 3.4. Now b
can be fed into an NRN for label inference.

3.3 Differentiable Clustering for Interval Centres
Besides being used for continuous feature binarization, the
learned intervals should also match the original feature value
distribution to some extent. This is advantageous because it
could reduce the risk of overfitting and make them more ro-
bust towards the training process. To realize this, we propose
to cluster the feature values occurring in a given dataset. This
is motivated by the fact that clusters could reflect the char-
acteristics of the value distribution. Moreover, cluster center
points are associated with interval centres. In this way, the
number of clusters is equal to the number of intervals. As a
result, the clustering process could affect the optimization of
intervals.

To make the objective function of clustering differentiable
w.r.t. the interval-related parameters, we adopt the soft K-
means clustering algorithm [Bezdek, 2013; Fard et al., 2020]
(note that AutoInt can also use other differentiable cluster-
ing algorithms). Specifically, the probability p̄k that x be-
longs to the k-th cluster is computed in a similar fashion as
Equation 3. The only difference is the introduction of another
hyper-parameter τ2 with the same role. Afterwards, we define
the K-means clustering loss for this feature value as follows:

Lclu =
K∑

k=1

p̄kD(x, ck) . (5)

Dataset #instances #classes #total
features

#continuous
features

adult 32561 2 14 6
bank 45211 2 16 7
credit 30000 2 23 14

redwineQ 1599 6 11 11
whitewineQ 4898 7 11 11

wine 178 3 13 13

Table 1: Dataset statistics. Note that “bank” corresponds to the
bank-marketing dataset in the UCI dataset repository.

The above loss could be easily extended to include all the
continuous features in a training set.

3.4 Optimization
Since the intervals are optimized with a neuro-rule network,
we first use Lcla to represent the classification loss for the
whole network. Then backward computation flow from the
loss to {∆k}k=K

k=1 should be generated. However, this flow
is blocked by Equation 4 which is not differentiable. To
open the blocked flow, we adopt the straight-through esti-
mator (STE) [Bengio et al., 2013], an approximate method
that uses the binary vector b for forward computation (infer-
ence) and the probability distribution p as an approximation
for backward computation (gradient optimization). When τ1
in Equation 3 takes a large value, the distribution becomes
sharp and could approximate the binary vector well. Specif-
ically, it inserts the following computation formula between
the probability distribution p and the binary vector b,

b = p+ Stop-grad(b− p) , (6)

where Stop-grad denotes stopping the gradient computation.
The final optimization target for AutoInt is as follows:

L = Lcla + λLclu , (7)

where λ is a hyper-parameter to control the relative influ-
ence of Lclu. Considering the constraints that ∆k (k ∈
{1, · · · ,K}) must take positive values, we use the simple
trick, i.e., ∆k = max(∆k, ϵ), during the training process.
ϵ is a very small positive constant (e.g., 1e-3).

All the trainable parameters introduced by AutoInt are only
{∆k}k=K

k=1 for each continuous feature. Suppose the number
of continuous features is M

′′
. Then the total number of pa-

rameters is KM
′′

, which is usually small and not affected
by the number of instances in a dataset. Therefore, AutoInt
brings a very low space overhead to train NRNs. Besides, al-
though the training time of NRNs becomes longer, the com-
plexity of inference time is the same as the original NRNs.
This is attributed to the fact that the learned intervals can be
easily stored after training and all the modules of AutoInt will
be removed when performing inference.

4 Experiments
4.1 Experimental Setup
In the experimental setup, we describe the datasets used for
experiments, the baselines adopted for comparison, and the
implementation details.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4587



Dataset XGBoost RanInt WidInt FreInt KInt EntInt RanInt+ WidInt+ FreInt+ KInt+ EntInt+ AutoInt
adult 80.64 80.72 80.47 79.84 80.59 80.70 78.30 79.60 78.79 79.84 78.64 80.74
bank 74.71 76.32 75.72 75.89 76.34 76.48 74.39 75.35 75.67 75.91 75.45 77.59
credit 68.04 69.96 69.85 69.86 69.92 69.87 68.55 69.82 69.94 69.95 69.88 70.54

redwineQ 37.22 35.78 35.58 35.55 35.86 34.79 33.09 33.36 33.42 34.07 33.25 37.53
whitewineQ 43.78 39.21 39.48 39.07 39.53 38.79 36.61 37.75 38.34 38.66 37.24 40.93

wine 97.78 98.23 97.40 97.73 97.74 97.73 96.62 96.89 97.16 96.80 96.65 99.01

Table 2: F1 score (%) of all the methods on all the six datasets. The best results are in bold and the second-best results are underlined.

Datasets
We use six public datasets from the UCI dataset repository1.
All of them satisfy to contain some continuous features for
testing the effectiveness of binarization methods. Table 1
summarizes the statistics of the 6 datasets. The number of
continuous features ranges from 6 to 14 in the experiments,
occupying large ratios in total. Considering that all these
datasets are used for classification and the instance counts
of different classes are imbalanced, we adopt the F1 score
(Macro) as the evaluation metric.

Baselines
We compare the following continuous feature binarization
methods with the proposed AutoInt:

◦ Random interval sampling (RanInt) is adopted by
RRL [Wang et al., 2021], which determines interval bounds
through random sampling from a uniform distribution.

◦ Equal-width interval (WidInt) is leveraged by
Qiao et al. [2021]. It partitions the value range of a
feature into K intervals with an equal width.

◦ Equal-frequency interval (FreInt), summarized
in [Dougherty et al., 1995], divides a feature into K
intervals where each interval contains nearly the same
number of feature values.

◦ K-means clustering-based interval (KInt), also summa-
rized in [Dougherty et al., 1995], utilizes K-means to clus-
ter feature values into K clusters. Interval bounds are
straightforwardly obtained based on the clusters.

◦ Recursive minimal entropy partitioning (EntInt) [Wang
et al., 2020] is an entropy-based method that recursively
partitions feature values according to the class information
entropy of each candidate partition.

Considering RRL [Wang et al., 2021] is the SOTA neuro-
rule network, we train it with different feature binarization
methods in the experiments. It is noteworthy that RRL uses
another interval type where different intervals have overlaps
(e.g, [bmin, b2], (bmin, b3], [bmin, b4] where bmin < b2 <
b3 < b4). For a comprehensive study, we test binarization
methods using both overlapping and non-overlapping inter-
vals. To distinguish one from another, we use RanInt to rep-
resent using overlapping intervals and RanInt+ to denote us-
ing non-overlapping intervals, and the same is true for other
baseline methods.

1https://archive.ics.uci.edu/ml/datasets.php

Implementation Details
To have a reliable performance evaluation, we adopt 5-
fold cross-validation and report the average performance,
the same as [Wang et al., 2021]. When there are hyper-
parameters needing to be tuned, we use 80% of the train-
ing set for optimization and the left for validation. For the
neuro-rule network RRL and XGBoost (XGBoost directly
uses the continuous features as input), we also follow [Wang
et al., 2021] to set their hyper-parameters. For the pro-
posed AutoInt, both the temperature τ1 and τ2 are selected in
{500, 1000, 2000}, K is searched in {5, 10, 15, 20, 30, 50},
and λ is tuned in {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}. The inter-
vals are initialized by FreInt, if not otherwise stated. Besides,
all the continuous feature values are pre-processed through
standard normalization.

4.2 Overall Performance
The overall performance of different binarization methods on
six datasets is presented in Table 2. XGBoost is used as a
reference because it is generally acknowledged as a well-
performed model in different classification tasks. Based on
the results, we have the following observations:

• The results of the baseline methods using overlapping in-
tervals are better than the baseline methods using non-
overlapping intervals in most cases. The main reason might
be that the sparsity of binary vectors obtained through over-
lapping and non-overlapping intervals are apparently dif-
ferent. For the former one, the obtained binary vector is
very likely to have multiple non-zero entries. By contrast,
non-overlapping intervals definitely lead to one-hot vectors,
which are much sparser. As a result, using non-overlapping
intervals for binarization might increase the training diffi-
culty of NRNs a little bit.

• By comparing the performance of the baseline methods us-
ing the same type of intervals, it can be concluded that each
method has its own merits. One counterintuitive aspect is
that RanInt is competitive among the baselines. This could
be explained by the following reason. RanInt might ran-
domly generate some good intervals than other unlearnable
interval schemes for RRL and the effect of the generated
inferior intervals is alleviated for overlapping intervals.

• AutoInt behaves much better than the baseline binariza-
tion methods that also use non-overlapping intervals. This
demonstrates that through optimizing intervals with NRNs,
AutoInt obtains intervals compatible with the final classifi-
cation ask. Moreover, AutoInt also outperforms XGBoost
and the baseline methods that utilize overlapping intervals.
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Dataset AutoInt w/o Clu. Loss AutoInt(Fixed)

adult 80.74 80.29 78.79
bank 77.59 76.85 75.67
credit 70.54 70.04 69.94

redwineQ 37.53 35.18 33.42
whitewineQ 40.93 38.83 38.34

wine 99.01 97.31 97.16

Table 3: F1 score (%) of AutoInt and its variants.

In summary, the superiority of AutoInt is validated, show-
ing that optimizing intervals is promising.

• AutoInt is not applied to overlapping intervals. This is be-
cause AutoInt relies on measuring the distance between a
feature value and interval centres. And the interval with
the shortest distance (the largest probability) is selected. If
the intervals are overlapped, it is not easy to use distance to
select the most probable interval. Moreover, we have also
tried using the sigmoid function (σ) to approximate the bi-
narization process of using overlapping intervals. To be
specific, if x > bk, we let σ(x − bk) approach value zero,
and otherwise, we let it approach value one. However, this
method does not exhibit performance improvements in our
local experiments.

4.3 Ablation Study
An ablation study is further conducted to show the contribu-
tions of the key modules in AutoInt. We consider the fol-
lowing two variants: (1) “w/o Clu. Loss” denotes removing
the module of differentiable clustering. (2) “AutoInt(Fixed)”
represents removing both differentiable binarization and dif-
ferentiable clustering, equivalent to fixing the interval bounds
when training an NRN.

Table 3 shows the results of the three methods. Firstly,
AutoInt boosts the performance of “w/o Clu. Loss” consis-
tently. This phenomenon reveals that incorporating cluster-
ing into AutoInt is really beneficial. Secondly, by comparing
“w/o Clu. Loss” with “AutoInt(Fixed)”, we can see the per-
formance drop is obvious. As such, the contribution of differ-
entiable binarization is verified. Besides, we observe that for
different datasets, the ratios of relative performance improve-
ments differ to some extent. This could be explained by the
various feature value distributions of the datasets.

4.4 Hyper-parameter Analysis
This part mainly analyzes how the variation of the interval
number (K) and the relative influence (λ) of K-means clus-
tering loss affect the classification performance.

Effect of K
Figure 4 depicts the performance curves of AutoInt w.r.t. the
adult and redwineQ datasets, from which we have the follow-
ing key findings:

• Both the two curves first show an upward trend, then keep
relatively stable, and finally decline. This phenomenon
conforms to the expectation because when the number of
intervals is a little too small, it is hard to separate all the

Figure 4: Performance change with different K.

feature values well. This reduces the feature discrimination
for classification. And when the number becomes a little
too large, the problem of overfitting intervals is amplified.

• AutoInt takes optimal performance when K = 15 on adult
and K = 10 on redwineQ, respectively. The reason might
be that the instance count in the first dataset is much larger
than that in the latter dataset, as shown in Table 1. As such,
more numerical feature values might need more intervals to
better partition the corresponding value space.

• The interval number range that makes AutoInt retain rela-
tively good results is not small. This indicates the hyper-
parameter K is not very sensitive.

Effect of λ
Figure 5 portrays the performance curves on adult and red-
wineQ as well. The results again validate the contribution of
introducing soft K-means clustering to interval optimization.
When λ = 0.05, the optimal results are achieved. But if we
further increase λ, the performance continuously decreases
and is even worse than not using the clustering loss. This is
due to the reason that the effect of the main loss (classifica-
tion) is weakened.

Figure 5: Performance change with different λ.

4.5 Case Study
This section conducts a case study to show how the opti-
mized interval bounds are distributed. Two specific features
are chosen as examples for illustration. The first is Age from
the adult dataset and the second is pH from the whitewineQ
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Figure 6: Visualization of the optimized intervals for two features. The left figure is for Age and the right is for pH.

dataset. Figure 6 show the interval bounds and centres. Be-
cause the leftmost intervals and the rightmost intervals are a
little too wide, we do not show them in the figure for clear
visualization.

From an overall perspective, the intervals of AutoInt are
distributed somewhere in between “AutoInt w/o Clu. Loss”
and “KInt+”. This is reasonable because the intervals of Au-
toInt are affected by both the classification loss and the clus-
tering loss. On the contrary, “AutoInt w/o Clu. Loss” only
uses the classification loss while “KInt+” purely performs
clustering. By further comparing the interval distributions of
AutoInt and “AutoInt w/o Clu. Loss”, we can find AutoInt is
able to let the pseudo centres become more compliant. For
example, as shown in Figure 6a, the centres of the third and
fourth intervals from the left are biased towards each other for
“AutoInt w/o Clu. Loss”. Luckily, this issue is alleviated by
AutoInt, thanks to the introduction of the clustering loss.

5 Related Work
5.1 Logic Rule Learning
Logic rule learning is a long-standing goal in AI due to its
transparency, interpretability, and reasoning ability. In the
early days, template-based [Alexander and Mozer, 1994] and
frequent pattern-based [Dehaspe and Toivonen, 1999] logic
rule extraction methods dominate this research area. The
former relies on manual endeavors for designing templates,
while the latter uses frequent pattern mining algorithms and
then converts frequent patterns into association rules. These
rule extraction methods cannot be optimized with target ob-
jective functions.

In recent years, the trend towards fusing neural networks
and logic rules continually spreads. There are two main di-
rections: incorporating logic rules into neural networks [Hu et
al., 2016; Xie et al., 2019] and using neural networks to learn
logic rules [Yang et al., 2017]. This paper concentrates on the
second direction. Yang et al. [2016] has performed matrix
multiplications over entities in a knowledge base (KB) and
derived rules from the optimized matrices. Some other stud-
ies [Dong et al., 2019; Qu et al., 2021] follow this work but
all of them need relational knowledge from KBs. Similarly,
Dong et al. [2019] and Glanois et al. [2022] have used neural
networks to learn rules based on some background knowl-
edge expressed in first-order logic. Some other studies use
reinforcement learning [Jin et al., 2022] or evolutionary com-
putation [Yadav et al., 2021] to learn rules.

Despite learning rules by means of neural networks,

Neuro-rule networks [Wang et al., 2020] equate full-
connected neural networks with logic rules. Therefore, neu-
ral networks and logic rules share the same logical reasoning
process. As aforementioned, this advantage is attributed to
the novel logical layers. To improve the scalability and accu-
racy of Neuro-rule networks, Wang et al. [2021] have devel-
oped novel logical activation functions within logical layers
and a gradient-discrete training method. Based on neuro-rule
networks, Zhang et al. [2022a] have further realized person-
alized rule weight computation, which exhibits good perfor-
mance in recommender systems.

5.2 Feature Discretization

Different from parameter binarization in neural net-
works [Yang et al., 2022], feature discretization [Dougherty
et al., 1995] usually converts a continuous feature into a one-
hot vector, used for feature selection [Liu and Setiono, 1997;
Sharmin et al., 2019]. The commonly-used discretization
methods include equal-width interval, equal-frequency in-
terval, etc. Decision trees [Quinlan, 2014] also largely
rely on feature discretization (e.g., entropy-based methods)
to construct conjunctive-form decision rules. For neuro-
rule networks, Wang et al. [2020] have adopted an entropy-
based discretization method, i.e., the recursive minimal en-
tropy partitioning algorithm, to binarize continuous features.
Qiao et al. [2021] have exploited quantile discretization (i.e.,
equal-width interval) for binarization. Later, RRL [Wang
et al., 2021] even introduces random sampling for interval
bounds, hoping that NRNs will not connect unreasonable in-
tervals with any learned rule. In contrast to the above studies,
this work introduces a differentiable approach to optimize in-
tervals together with NRNs.

6 Conclusion
In this paper, we propose an automatic continuous feature bi-
narization approach, named AutoInt, that can serve as a basic
component for neuro-rule networks. The strengths of Au-
toInt lie in two key modules: (1) Differentiable binarization
enables the intervals to be optimized with NRNs in an end-to-
end manner. (2) Differentiable clustering makes the learned
interval better match the original feature value distributions.
The comprehensive experiments demonstrate the superiority
and rationality of AutoInt. In future work, we plan to auto-
matically learn the optimal interval number instead of setting
the same number for different features.
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