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Abstract
Multi-modal image matching is very challenging
due to the significant diversities in visual appear-
ance of different modal images. Typically, the
existing well-performed methods mainly focus on
learning invariant and discriminative features for
measuring the relation between multi-modal im-
age pairs. However, these methods often take the
features as a whole and largely overlook the fact
that different scale features for a same image pair
may have different similarity, which may lead to
sub-optimal results only. In this work, we pro-
pose a Scale-Separative Metric Learning Quadru-
plet network (SSML-QNet) for multi-modal im-
age patch matching. Specifically, SSML-QNet
can extract both relevant and irrelevant features
of imaging modality with the proposed quadruplet
network architecture. Then, the proposed Scale-
Separative Metric Learning module separately en-
codes the similarity of different scale features with
the pyramid structure. And for each scale, cross-
modal consistent features are extracted and mea-
sured by coordinate and channel-wise attention se-
quentially. This makes our network robust to ap-
pearance divergence caused by different imaging
mechanisms. Experiments on benchmark datasets
(VIS-NIR, VIS-LWIR, Optical-SAR, and Brown)
have verified that the proposed SSML-QNet is
able to outperform other state-of-the-art methods.
Furthermore, the cross-dataset transferring experi-
ments on these four datasets also have shown that
the proposed method has powerful ability of cross-
dataset transferring.

1 Introduction
With the development of imaging sensor, more and more
applications integrate multiple imaging sensors to perform
the tasks with high performance requirements, such as mil-
itary exploration, medical detection, and security monitor-
ing [Barnea and Silverman, 1972]. As the key technol-
ogy for these applications, multi-modal image matching has
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drawn increasing attention from the research community
[Zagoruyko and Komodakis, 2015; Moreshet and Keller,
2021; Simo-Serra et al., 2015; Savinov et al., 2017], which
aims to measure the similarities between two image patches.
However, image matching, especially multi-modal image
matching, is still an ill-posed problem that suffers from the
significant diversities in visual appearance of different modal
images.

Multi-modal methods in general have been extensively ex-
plored [Own and Hassanien, 2002]. At an early stage, almost
traditional image matching algorithms were based on hand-
designed feature descriptors, such as SIFT [Lowe, 2004],
PCA-SIFT [Ke and Sukthankar, 2004], SURF [Bay et al.,
2006], and SSIF [Liu et al., 2008], etc. The above meth-
ods have achieved good performance on single modal image
matching task, but their accuracy and robustness were still
limited due to the significant appearance divergence between
different modal images.

Recently, the methods based on deep learning technology
have achieved great progress in this field. They can gen-
erally fall into two groups: descriptor learning [Simo-Serra
et al., 2015; Balntas et al., 2016a; Savinov et al., 2017;
Tian et al., 2017; Mishchuk et al., 2017; Quan et al., 2019]
and metric learning [Zagoruyko and Komodakis, 2015; Han
et al., 2015; Kumar BG et al., 2016; Baruch and Keller, 2021;
Moreshet and Keller, 2021]. Descriptor learning-based meth-
ods generate global descriptor of input image patches through
deep neural network, and measure their similarity by sim-
ple descriptor distance, then distinguish matching and non-
matching through a proper threshold. By contrast, metric
learning-based methods adopt a metric network to convert
image patch matching problem into a binary classification
task (matching and non-matching), which consists of a fea-
ture extraction part and classification part. Compared to de-
scriptor learning-based methods, metric learning-based meth-
ods are more flexible and effective, since they can simultane-
ously optimise feature representation and similarity measure-
ment.

The existing metric learning-based methods have achieved
a state-of-the-art performance in recent studies, but they only
focus on learning invariant and discriminative features. Espe-
cially when measuring the similarity, they often take the fea-
tures as a whole and largely overlook the fact that different
scale features for a same image pair may have different sim-
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Figure 1: Visualization of similarity of different scale features. The
left part shows the visualization result of matching patch-pairs, and
the right part shows the visualization result of non-matching patch-
pairs. From top to bottom are input image patch pairs, four feature
map groups generated by the last four parallel convolutional lay-
ers of the SSML module, and the output feature map after fusion
module, respectively. The brighter color area means that the corre-
sponding feature response is stronger.

ilarity, which may lead to sub-optimal results only. To solve
this problem, designing the fine-grained similarity metric is a
promising solution. As motivated by the above analysis, we
design a novel network architecture, which can encode the
similarity of different scale features of the input image patch
pair, as shown in Fig. 1.

The main contributions of this paper are summarized as
follows:

1) A novel Scale-Separative Metric Learning Quadruplet
network (SSML-QNet) is proposed for multi-model image
patch matching. With a quadruplet network architecture,
SSML-QNet can extract both relevant and irrelevant features
of imaging modality. The proposed SSML (Scale-Separative
Metric Learning) module separately encodes the similarity
of different scale features. For each scale, SSML can ac-
curately extract and measure cross-model consistent features
by the operations of coordinate attention and Squeeze-and-
Excitation (SE) attention. It makes our model robust to
appearance divergence caused by different imaging mecha-
nisms.

2) Experiments on benchmark datasets (VIS-NIR, VIS-
LWIR, Optical-SAR, and Brown) have verified that the pro-
posed SSML-QNet outperforms other state-of-the-art meth-
ods. The mean value of false positive rate at true positive rate
equal to 95% (FPR95) is reduced to 0.75, 1.56, 0.65 and 0.58
on VIS-NIR, VIS-LWIR, Optical-SAR and Brown dataset,
respectively. The transferring experiments also show that our
method has powerful ability of cross-dataset transferring.

The remainder of this paper is organized as follows. The
proposed method is described in Section 2. Section 3 presents
the experiment configuration, experimental results and anal-

Layer Output Kernel Stride Pad Dilation

Conv0 ∼ 1 64×64× 32 3×3 1 1 1
Conv2 ∼ 3 32×32× 64 3×3 1 1 1

Conv4 32×32× 128 3×3 1 1 1
Conv5 ∼ 7 16×16× 128 3×3 1 1 1

Table 1: The architecture of Siamese and Presudo-Siamese back-
bone.

ysis. Finally, the conclusion is given in Section 4.

2 Method
2.1 Overview
Fig. 2 shows the structure of the proposed Scale-Separative
Metric Learning Quadruplet network, which is composed
of three modules: quadruplet multi-model feature extraction
module, scale-separative metric learning module, and multi-
scale feature fusion and prediction module. When a new
multi-modal image pair arrives, the quadruplet multi-model
feature extraction module utilizes two types of CNN subnet-
works to generate the relevant and irrelevant features of imag-
ing modality. Then both relevant and irrelevant features are
fed into the scale-separative metric learning module to en-
code the similarity of different scale features for increasing
the accuracy of metric learning. After that, the multi-scale
feature fusion and prediction module firstly fuses multi-scale
features and the final prediction score is generated by adopt-
ing three fully connected layers. The technical details above
are presented in the sections as below.

2.2 Quadruplet Multi-model Feature Extraction
Due to distinct imaging mechanisms, there are vast differ-
ences in visual appearance between different multi-model im-
ages. To better extract and represent similar features and dis-
criminative features between image patch pairs, the quadru-
plet multi-model feature extraction module is adopted. As
shown in the left part of Fig. 2, it contains four branches with
the same structure. When a new multi-modal image pair ar-
rives, a Siamese sub-network formed by the top two branches
sharing parameters takes them as input to encode the features
irrelevant to imaging modality. And the bottom two branches
unsharing parameters form a Pseudo-Siamese sub-network to
encode image pairs’ features related to imaging modality. For
each branch, it consists of six convolution layers, whose de-
tails are shown in Table 1. Specially, an instance normaliza-
tion is added before batch normalization of the first three con-
volution layers, which reduces the feature difference caused
by the illumination variation and different imaging mecha-
nisms. Finally, the feature maps generated by both Siamese
sub-network and Pseudo-Siamese sub-network are concate-
nated together and then used as inputs to the SSML module.

2.3 Scale-Separative Metric Learning Module
Multi-scale feature integration strategy and proper attention
mechanism are proved to be beneficial for increasing the ac-
curacy of metric learning [Hou et al., 2021; Zhang et al.,
2021]. Inspired by this fact, we propose a Scale-Separative
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Figure 2: Overview of the proposed network architecture for multi-model image patch matching.

Metric Learning Module (SSML), which encodes the simi-
larity of different scale features of the input image patch pair
respectively, and then integrates them together to increase the
accuracy of metric learning. As shown in Fig. 1, the SSML
module focuses on the relevant features and suppresses irrel-
evant features of imaging modality. We do not add any ad-
ditional supervisory information for this module. It is only
learned by the objective function using a multi-scale feature
encoder mechanism.

As illustrated in the middle part of Fig. 2, the SSML mod-
ule mainly contains three steps. Firstly, four convolution lay-
ers with different receptive fields (3 × 3, 5 × 5, 7 × 7, and
9 × 9) are utilized to generate four feature map groups. By
splitting the input feature maps into four groups with differ-
ent scales, SSML module can better measure the similarity of
each scale. Then, coordinate attention (CA) [Hou et al., 2021]
and Squeeze-and-Excitation attention (SE) is performed se-
quentially to encode coordination and channel-wise correla-
tion for each feature map group. Finally, the four groups of
feature map refined by CA and SE are regarded as the outputs
of the SSML module. Visualization experimental result (Fig.
1) has shown that the similar features are highlighted for each
scale by adopting the proposed SSML module, which makes
the matching pairs and non-matching pairs becoming easier
to be distinguished.

Specifically, given an input feature map F ∈ RL×H×W ,
the output of SSML module represented by F

′ ∈ RL×H×W

can be computed as:

F
′
= Concat(F

′

0,F
′

1,F
′

2,F
′

3)

F
′

i = SE((CA(Fi))⊗ Fi)

F0,F1,F2,F3 = f3×3(F), f5×5(F), f7×7(F), f9×9(F)
(1)

where fn×n represents the convolution layer with kernel
size of n × n. Fi ∈ RC×H×W ( i = 1, 2, 3, 4;C = L/4)

denotes one of four different scale feature maps. ⊗ is an
element-wise multiplication. CA(·) represents the coordi-
nate attention, SE(·) is the Squeeze-and-Excitation attention.
F

′

i ∈ RC×H×W denotes scale-separative feature map.
The detailed structure of CA module presented in [Hou

et al., 2021] is illustrated in the right bottom of Fig. 2.
Given an input Fm ∈ RC×H×W , the spatial global aver-
age pooling kernel (H, 1) and (1,W ) are performed along
X-coordinate and Y-coordinate direction for each channel, re-
spectively. Correspondingly, two feature maps with the size
of C × H × 1 and C × 1 × W are generated. Then, these
two feature maps are concatenated by convolving with the fil-
ter (1 × 1) along the channel. After that, a new feature map
with the size of C/r × 1 × (H + W ) is generate by per-
forming Batch Normalization and Sigmoid operation. And
through two sets of independent operations (a 1 × 1 convo-
lution followed by a Sigmoid), the generated feature map is
splited into two direction-aware attentions, i.e., Y-coordinate
direction attention and X-coordinate direction attention with
the size of C ×H × 1 and C × 1×W , respectively. Finally,
these two attentions are multiplied with the input feature map
Fm to generate the final output feature map. Based on the
above descriptions, it decomposes coordinate attention into
two one-dimensional feature encoding processes. In this way,
it can capture long-range dependencies along one spatial di-
rection and preserve high precise location information along
another spatial direction. Therefore, CA module can capture
long-range dependencies with precise positional information.

Mathematically, CA(·) is defined as follows:

CA(Fm) = Fm(c, i, j)× Th(c, i, 1)× Tw(c, 1, j)

Th = δ(f1×1(Fh
t )),T

w = δ(f1×1(Fw
t ))

Ft = [Fh
t ,F

w
t ] = split(δ(σ(f1×1(Concat(Gh,Gw)))))

Gh(c, h) =
1

W

W−1∑
j=0

Fm(c, h, j)
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Gw(c, w) =
1

H

H−1∑
i=0

Fm(c, i, w) (2)

where Fm(c, i, j) is the feature value of Fm at the position
(c, i, j), in which c is the channel number, i and j denotes
the X-coordinate and Y-coordinate, respectively. f1×1 rep-
resents a 1 × 1 convolution layer. δ denotes Batch Normal-
ization and σ is Sigmoid operator. Gh(c, h) and Gw(c, w)
denote global pooling kernels to encode each channel along
the X-coordinate and Y-coordinate direction, respectively.
Gh and Gw denote the results after global pooling of the
X-coordinate direction and Y-coordinate direction, respec-
tively. Ft ∈ RC/r×1×(H+W ) is the intermediate feature map
that encodes spatial information in both X-coordinate and Y-
coordinate direction. Then, Ft is split into two separate ten-
sor along the spatial dimension, i.e. Fh

t ∈ RC/r×H×1 and
Fw

t ∈ RC/r×1×W , r is a reduction ratio for controlling the
feature map size. Th ∈ RC×H×1 and Tw ∈ RC×1×W

denote two attention vectors of the Y-coordination and X-
coordination direction, respectively.

Squeeze-and-Excitation can encode the relationship among
feature channels by an attention vector, which is calculated
among different channels of feature maps. The details about
our implementation of SE model are as follows. The input
feature maps firstly go through a global pooling layer, and
output a vector with the same size as the number of input
feature map channels. Then, a fully connected layer with 32
units followed by a ReLU activation function, a fully con-
nected layer with C (the channel size of the input feature
map) units, and a Sigmoid function are performed to gener-
ate the attention vector. Finally the input feature maps are
weighted by the attention vector, and element-wise added
with themselves to produce the channel-wise attentive fea-
tures. Through the SE module, the feature maps contributing
to the matching task are emphasized, and the others are re-
strained.

2.4 Multi-scale Feature Fusion and Prediction
Multi-scale feature fusion is very important for accurate pre-
diction, which is denoted MFFP . Given the output feature
map of SSML module F

′
, we first carry out a coordinate at-

tention operation on F
′
. Then, an addition operation is per-

formed to add F
′

and CA attentive features together. After
that, a 3 × 3 convolution is performed. Finally, three fully
connected layers are adopted to predict the result. MFFP (·)
can be described by the following formula.

MFFP (F
′
) = FC2(FC128(FC512(f

3×3(CA(F
′
)⊕F

′
))))
(3)

where CA(·) is the coordinate attention as shown in Formula
2. F

′
is the output feature map by SSML module. ⊕ is an

element-wise addition operator. FC2, FC128, FC512 repre-
sent fully connected layers with 2, 128, and 512 units, respec-
tively.

2.5 Loss Function
The image patch matching can be considered as a binary clas-
sification task (matching and non-matching). Cross-entropy

loss is commonly used in classification task. In this paper, we
adopt cross-entropy loss to train the network. In fact, we also
considered other loss functions, including contrastive loss,
hingle loss, and focal loss for experiments. However, these
loss functions did not outperform cross entropy loss. There-
fore, cross entropy loss Lenis more suitable for binary tasks
like our image patch matching.

Len = ylogŷ + (1− y)log(1− ŷ) (4)

where y and ŷ represent the ground truth and the predictive
value, respectively.

3 Experiments
3.1 Datasets
To verify the effectiveness of the proposed method, we carry
out experiments on public multi-model image datasets, in-
cluding VIS-NIR, VIS-LWIR and Optical-SAR, as well as
a single spectral multi-view stereo correspondence dataset
named Brown.

1) VIS-NIR is a multi-modal image patch matching dataset
[Brown and Süsstrunk, 2011], which consists of more than
1,000,000 image patch pairs of visual spectrum and near-
infrared spectrum. One Half of these patch pairs are matching
pairs and the other half are non-matching pairs. The size of
each image patch is 64 × 64 pixels. Totally, there are nine
categories in this dataset, i.e., Country, Field, Forest, Indoor,
Mountain, Oldbuilding, Street, Urban and Water. Same as the
methods [Baruch and Keller, 2021; Quan et al., 2021], the
proposed model is trained on the Country category and test
on the other categories. Since great differences among these
categories, it is hard to obtain a good generalization perfor-
mance on all test categories.

2) VIS-LWIR is a multi-modal dataset of visual spectrum
(VIS) and long-wave infrared (LWIR) spectrum [Aguilera et
al., 2015]. It contains 44 VIS-LWIR image pairs, which
are strictly aligned in time and space. Similar to VIS-NIR
dataset, we also crop image patch pairs from VIS and LWIR
images centered on SIFT points. The patch size is 64 × 64
pixels. Following previous studies [Quan et al., 2021], our
method is also trained on one half of the patch pairs and tested
on the other half. There are significant appearance differences
between VIS image and its corresponding LWIR image.

3) Optical-SAR is a multi-modal image patch dataset,
which contains optical images and synthetic aperture radar
(SAR) images. We generate these image patch pairs in the
same way as VIS-NIR dataset. SEN1-2 [Schmitt et al.,
2019] dataset contains 282,384 image pairs of optical im-
ages and corresponding SAR. Similar to [Quan et al., 2021],
583,180 image patch pairs are utilized for training and the
other 248274 pairs for testing.

4) Brown is a single spectral multi-view stereo correspon-
dence dataset [Brown et al., 2010]. It contains three subsets:
Liberty, Notredame and Yosemite, which contains 100K,
200K, and 500K image patch pairs, respectively. For each
subset, one half of the patch pairs are matching pairs with the
same 3D point and the other half are non-matching pairs. The
patch size is 64 × 64 pixels. Like the methods [Tian et al.,
2017; Han et al., 2015; Zagoruyko and Komodakis, 2015],
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Method Field Forest Indoor Mountain Oldbuilding Street Urban Water Mean

SIFT [Lowe, 2004] 39.44 11.39 10.13 28.63 19.69 31.14 10.85 40.33 23.95
GISIFT [Firmenichy et al., 2011] 34.75 16.63 10.63 19.52 12.54 21.80 7.21 25.78 18.60

EHD [Aguilera et al., 2012] 33.85 19.61 24.23 26.32 17.11 22.31 3.77 19.80 20.87
LGHD [Shechtman and Irani, 2007] 16.52 3.78 7.91 10.66 7.91 6.55 7.21 12.76 9.16

PN-Net [Balntas et al., 2016a] 20.09 3.27 6.36 11.53 5.19 5.62 3.31 10.72 8.26
Q-Net [Savinov et al., 2017] 17.01 2.70 6.16 9.61 4.61 3.99 2.83 8.44 6.91

L2-Net [Tian et al., 2017] 16.77 0.76 2.07 5.98 1.89 2.83 0.62 11.11 5.25
HardNet [Mishchuk et al., 2017] 10.89 0.22 1.87 3.09 1.32 1.30 1.19 2.54 2.80
Siamese [Simo-Serra et al., 2015] 15.79 10.76 11.60 11.15 5.27 7.51 4.60 10.21 9.61

Pseudo-Siamese [Zagoruyko and Komodakis, 2015] 17.01 9.82 11.17 11.86 6.75 8.25 5.65 12.04 10.31
2-Channel [Zagoruyko and Komodakis, 2015] 9.96 0.12 4.40 8.89 2.30 2.18 1.58 6.40 4.47

SCFDM [Quan et al., 2018] 7.91 0.87 3.93 5.07 2.27 2.22 0.85 4.75 3.48
Hybrid [Baruch and Keller, 2021] 5.62 0.53 3.58 3.51 2.23 1.82 1.90 3.05 2.52

Moreshet & K+ [Moreshet and Keller, 2021] 4.22 0.13 1.48 1.03 1.06 1.03 0.9 1.9 1.44
Quan & W+ [Quan et al., 2021] 4.21 0.11 1.12 0.87 0.67 0.56 0.43 1.90 1.23

AFD-Net [Quan et al., 2019] 3.47 0.08 1.48 0.68 0.71 0.42 0.29 1.48 1.08
MFD-Net [Yu et al., 2022] 2.59 0.02 1.24 0.95 0.48 0.24 0.12 1.44 0.88

SSML-QNet 0.97 0.55 0.65 0.24 0.62 0.69 0.43 1.71 0.73

Table 2: Comparisons with the-state-of-the-art on the VIS-NIR dataset.

Train Dataset
Test Dataset Brown

Mean
Notredame Yosemite Liberty

VIS-NIR 1.55 2.63 2.26 2.15
VIS-LWIR 2.92 3.16 2.50 2.86

Optical-SAR 3.51 2.83 4.69 3.68

Table 3: Cross-dataset Transfering Performance: trained on other
datasets and test on Brown dataset.

Method
Dataset VIS-LWIR Optical-SAR

Siamese 42.62 17.56
Pseudo-Siamese 43.27 19.30

2Channel 22.95 7.35
Hybrid 18.09 14.90

SSML-QNet 1.56 0.65

Table 4: Comparisons with the-state-of-the-art on the VIS-LWIR
dataset and Optical-SAR dataset.

the proposed model is trained on one of three subsets and test
on the other subsets.

3.2 Implementation Details
The code of the proposed model is implemented by Pytorch.
It is trained with Adam optimizer, and the learning rate is
0.0001. The batch size is set to 128. The training time is set
to 80 epochs, the momentum is initially set to 0.9 with the
decay factor 0.9. The cross-entropy loss is adopted to train
the network. To quantitatively evaluate the matching perfor-
mance, the false positive rate at true positive rate (positive
recall) equal to 95% (FPR95) is adopted.

3.3 Comparison with the State-of-the-Arts
1) Results on VIS-NIR Dataset: The proposed method
is compared with the state-of-the-art image patch matching
methods on the VIS-NIR dataset. Totally, there are seventeen
comparison algorithms. Among these methods, SIFT [Lowe,
2004], GISIFT [Firmenichy et al., 2011], EHD [Aguilera

Train Dataset
Test Dataset

VIS-NIR VIS-LWIR Optical-SAR

Brown
Yosemite 1.91 6.05 6.57

Notredame 1.21 3.95 2.49
Liberty 1.57 3.96 1.67

VIS-NIR - 6.72 10.44
VIS-LWIR 1.86 - 2.36

Optical-SAR 7.96 18.01 -

Table 5: Cross-dataset Transferring Performance: trained on other
datasets and test on the VIS-NIR, VIS-LWIR and Optical-SAR
dataset.

et al., 2012], LGHD [Shechtman and Irani, 2007] are tra-
ditional hand-designed descriptor-based methods, which are
limited by human prior-knowledge and have poor robustness
and adaptability. PN-NET [Balntas et al., 2016a], L2-Net
[Tian et al., 2017], and HardNet [Mishchuk et al., 2017]
are descriptor learning-based methods. They focus on learn-
ing a representation that can enable the two matched features
as close as possible, while making non-matched features far
apart. Siamese [Simo-Serra et al., 2015], Pseudo-Siamese
[Zagoruyko and Komodakis, 2015], 2-Channel [Zagoruyko
and Komodakis, 2015], SCFDM [Quan et al., 2018], Hybrid
[Baruch and Keller, 2021], Moreshet & K+ [Moreshet and
Keller, 2021], Quan & W+ [Quan et al., 2021], AFD-Net
[Quan et al., 2019], and MFD-Net [Yu et al., 2022] are all
metric learning-based methods. As shown in Table 2, our
method outperforms other comparison methods. Compared
with the second-best method MFD-Net [Yu et al., 2022], the
mean FPR95 value of our method is reduced by 0.15. Com-
pared with Hybrid [Baruch and Keller, 2021], which is simi-
lar to our baseline and also has both Siamese sub-network and
Pseudo-Siamese sub-network, the mean FPR95 value of our
method is reduced by 1.79. It demonstrates that our method
can effectively extract and measure the similarity of multi-
model image patches by using the proposed SSML module
and fusion strategy.
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Method
Test Dataset Field Forest Indoor Mountain Oldbuilding Street Urban Water Mean

Concat 1.13 0.70 0.68 0.26 0.69 0.81 0.48 1.82 0.82
Sum 2.23 2.51 1.80 1.77 2.41 1.69 1.94 2.53 2.11

MSSAM 1.88 1.17 1.01 0.50 0.98 1.22 0.68 2.77 1.28
TF 1.89 1.12 0.98 0.41 0.88 1.10 0.64 2.71 1.22

CA(Ours) 0.97 0.55 0.65 0.24 0.62 0.69 0.43 1.71 0.73

Table 6: Fusion strategy comparison results on the VIS-NIR dataset.

Training Notredame Yosemite Liberty Yosemite Liberty Notredame Mean
Test Liberty Notredame Yosemite

RootSIFT [Arandjelovic, 2012] 29.65 22.06 26.71 26.14
L-BGM [Trzcinski et al., 2012] 18.05 21.03 14.15 13.73 19.63 15.86 17.08

Convex optimization [Simonyan et al., 2014] 12.42 14.58 7.22 6.82 11.18 10.08 10.38
TNet-TGLoss [Kumar BG et al., 2016] 9.91 13.45 3.91 5.43 10.65 9.47 8.80
SNet-GLoss [Kumar BG et al., 2016] 6.39 8.43 1.84 2.83 6.61 5.57 5.27

PN-Net [Balntas et al., 2016a] 8.13 9.65 3.71 4.23 8.99 7.21 6.98
Q-Net [Savinov et al., 2017] 7.64 10.22 4.07 3.76 9.34 7.69 7.12

DeepDesc [Simo-Serra et al., 2015] 10.90 4.40 5.69 6.99
TFeat-ration [Balntas et al., 2016b] 8.07 9.53 3.47 4.23 8.53 7.24 6.84
TFeat-margin [Balntas et al., 2016b] 7.22 9.79 3.12 3.85 7.82 7.08 6.47

L2-Net [Tian et al., 2017] 2.36 4.70 0.72 1.29 2.57 1.71 2.22
HardNet [Mishchuk et al., 2017] 1.49 2.51 0.53 0.78 1.96 1.84 1.51

MathchNet [Han et al., 2015] 6.90 10.77 3.87 5.67 10.88 8.39 7.44
DeepCompare [Zagoruyko and Komodakis, 2015] 4.85 7.20 1.90 2.11 5.00 4.10 4.19

SCFDM [Quan et al., 2018] 1.47 4.54 1.29 1.96 2.91 5.20 2.89
Quan & W+ [Quan et al., 2021] 1.47 2.09 0.50 0.77 1.69 1.75 1.38

Moreshet & K+ [Moreshet and Keller, 2021] 0.35 0.91 1.31 0.85 1.58 0.41 0.9
AFD-Net [Quan et al., 2019] 1.53 2.31 0.47 0.72 1.63 1.88 1.42
MFD-Net [Yu et al., 2022] 1.21 2.10 0.40 0.74 1.85 1.77 1.35

SSML-QNet 0.85 0.86 0.53 0.65 0.47 0.12 0.58

Table 7: Comparisons with the-state-of-the-art on the Brown dataset.

2) Results on VIS-LWIR Dataset: As shown in Table
4, we compare the proposed method with five state-of-
the-art methods on VIS-LWIR dataset, including Siamese
[Simo-Serra et al., 2015], Pseudo-Siamese [Zagoruyko and
Komodakis, 2015], 2-Channel [Zagoruyko and Komodakis,
2015], and Hybrid [Baruch and Keller, 2021]. Our proposed
method achieves an excellent performance. The mean FPR95
value of our method is 1.56.
3) Results on Optical-SAR Dataset: As shown in Table 4,
although there are significant appearance differences between
optical images and SAR images, the mean FPR95 value of
our method is 0.65. Compared with the other methods, the
performance of our method is very excellent.
4) Results on Brown Dataset: To demonstrate the gen-
eralization ability of the proposal, we also test and com-
pare SSML-QNet with other methods on Brown, i.e., a sin-
gle spectral multi-view stereo correspondence benchmark
dataset. As shown in Table 7, compared with the second-
best method Moreshet & K+ [Moreshet and Keller, 2021], the
mean FPR95 value is significantly improved by 0.32. This
improvement demonstrates that our method can effectively
encode and evaluate the similarity between images of differ-
ent views and has a better generalization ability.

From the above four experiments, the proposed method

achieves much better performance than the other methods.
It can demonstrate that our model is effective not only for
multi-model images, but also for single-modal images. Note
that compared with VIS-NIR and Optical-SAR datasets, the
mean FPR95 value on VIS-LWIR dataset is lower. One possi-
ble reason is that the correspondence between VIS image and
LWIR image is more diverse, since the thermal radiation en-
ergy of observed objects will vary with many factors, such as
object status, material quality, environment temperature, and
observation distance.

3.4 Ablation Study
To verify the effectiveness of each module, we conduct ab-
lation experiments. “BL” means our baseline, consisting of
only quadruplet multi-model feature extraction and fully con-
nected layers. “SSML” is our scale-separative metric learn-
ing module. “CA” means adopting coordinate attention in
the feature fusion stage. “Sia” and “Pse-Sia” represents only
considering Siamese sub-network and Pseudo-Siamese sub-
network of our baseline, respectively.

As shown in Table 8, by adding SSML and CA into our
baseline respectively, the mean FPR95 value is reduced by
1.28 and 0.23. By adding both of SSML and CA modules, the
improvement becomes more significant, reaching 1.35. It can
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BL SSML CA Sia Pse-Sia Field Forest Indoor Mountain Oldbuilding Street Urban Water Mean
✓ 2.91 2.30 1.84 0.82 1.73 2.04 1.34 3.84 2.10
✓ ✓ 1.13 0.70 0.68 0.26 0.69 0.81 0.48 1.82 0.82
✓ ✓ 2.59 2.02 1.50 0.75 1.50 1.84 1.28 3.45 1.87

✓ ✓ ✓ 1.99 1.22 0.78 0.46 0.88 1.27 0.66 2.69 1.24
✓ ✓ ✓ 2.62 1.87 1.69 0.80 1.23 1.56 1.08 3.60 1.81

✓ ✓ ✓ 0.97 0.55 0.65 0.24 0.62 0.69 0.43 1.71 0.73

Table 8: Ablation results evaluated on the VIS-NIR dataset.

Figure 3: Image matching visualization result, from top to bottom: VIS-NIR, VIS-LWIR, Optical-SAR.

demonstrate the effectiveness of the proposed SSML mod-
ule and the fusion way by using CA. When only considering
Siamese or Pseudo-Siamese sub-network, the mean FPR95
value is 1.24 and 1.81, respectively. While considering both
of them, the mean FPR95 value is significantly reduced to
0.73. Therefore, our quadruplet network structure is effective
for multi-model image matching task.

3.5 Fusion Strategy Comparison
To verify the effect of our fusion strategy (CA), four typi-
cal fusion ways are adopted to compare with our method.
These four comparison fusion ways are simple concatenation,
element-wise sum fusion, multi-scale spatial feature atten-
tion module (MSSAM) [Zhang et al., 2022], and Transformer
encode module, which are denoted as “Concat”, “Sum”,
“MSSAM” and “TF”, respectively. Similar to CA, Trans-
former encode module can also establish long-distance de-
pendencies and obtain global context information. MSSAM
can automatically learn the weight map of each scale fea-
ture group and effectively fuse the spatial detail information
of different scale feature groups. We conduct an experiment
to replace CA by other comparison fusion way based on our
SSML-QNet, respectively. Specifically, the Transformer en-
coder has two layers and each layer consists of two multi-

head attention blocks. Same as Moreshet et al. [Moreshet and
Keller, 2021], the VIT pretrained model is loaded for Trans-
former encoder To improve the image matching performance.
The experiment results in Table 6 show that compared with
Transformer encoder and MSSAM, the mean FPR95 value
of our method is improved by 0.49 and 0.55 by using CA,
respectively. Therefore, CA is more suitable for fusing the
features extracted by SSML module.

3.6 Cross-dataset Transferring Performance
To evaluate the cross-dataset transferring performance of the
proposed method, we select one dataset for testing, and adopt
other three datasets to train three models, respectively. The
experimental results are shown in Table 3 and Table 5. We
can see that except the model trained on Optical-SAR dataset,
the other models can achieve good cross-dataset transferring
performance. The possible reason is that the imaging mech-
anism and features of SAR images are far apart from other
modal images and our model effectively learn the features
related to imaging modality through quadruplet multi-model
feature extraction module. While, the models trained on Lib-
erty of Brown and VIS-LWIR performs better on Optical-
SAR dataset and gains the mean FPR95 value of 1.67 and
2.36, respectively. Experimental results demonstrate that our
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Method FPS Memory(MB) FPR95

Siamese 1453.85 2647 9.61
Pseudo-Siamese 1359.34 2731 10.31

2Channel 1379.00 2283 4.47
Hybrid 1442.30 2947 2.52

SSML-QNet 1384.97 3013 0.73

Table 9: The comparison results in terms of computation efficiency,
memory usage and matching performance.

network has good generalization performance and robustness.

3.7 Computational Efficiency and Memory Usage
Table 9 shows the comparison of computation efficiency,
memory usage and matching performance. All compared
methods are tested on the same workstation (one RTX
3090Ti). Our method achieves the best FPR95 score while
achieving competitive computational efficiency.

3.8 Image Matching Visualization Experiment
This section analyzes the visualization results based on the
matching point pairs learned from the proposed SSML-QNet.
We compare the proposed method with baseline method on
three multi-modal dataset. As shown in Fig. 3, our method
achieves an excellent performance. The visualization results
of the baseline model are illustrated in Fig. 3(a), and that
of the proposed SSML-QNet model are shown in Fig. 3(b).
All modal images are processed by geometric transforma-
tion (rotation = 180◦, translation = 2 pixels). The green
lines represent matches and the red lines denote non-matches.
The experimental results show that the proposed SSML-
QNet achieves good results in VIS-NIR and VIS-LWIR im-
age pairs, but achieves relatively less matching point pairs in
SAR. There are two possible reasons. Firstly, the imaging
mechanism and characteristics of SAR images are quite dif-
ferent from those of other modal images, which leads to poor
generalization effect. Secondly, it may be difficult to detect
more robust feature points in SAR images due to the influence
of traditional detection operators in the early feature point de-
tection.

4 Conclusion
In this paper, we proposed a scale-separative metric learn-
ing quadruplet network for multi-modal image patch match-
ing, named SSML-QNet. It can effectively extract cross do-
main consistent features and measure feature similarity. The
experiments show that our proposal method performs much
better than the-state-of-the-art methods on three multi-modal
datasets (VIS-NIR, VIS-LWIR and Optical-SAR ) and a sin-
gle modal Brown dataset, and also has excellent cross-dataset
transferring performance.
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