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Abstract
Recently, graph neural networks (GNNs) have
drawn a surge of investigations in deep graph
clustering. Nevertheless, existing approaches pre-
dominantly are inclined to semantic-agnostic since
GNNs exhibit inherent limitations in capturing
global underlying semantic structures. Meanwhile,
multiple objectives are imposed within one la-
tent space, whereas representations from different
granularities may presumably conflict with each
other, yielding severe performance degradation for
clustering. To this end, we propose a Multi-
Level Graph Contrastive Prototypical Clustering
(MLG-CPC) framework for end-to-end clustering.
Specifically, a Prototype Discrimination (ProDisc)
objective function is proposed to explicitly cap-
ture semantic information via cluster assignments.
Moreover, to alleviate the issue of objectives con-
flict, we introduce to perceive representations of
different granularities within individual feature-,
prototypical-, and cluster-level spaces by the fea-
ture decorrelation, prototype contrast, and cluster
space consistency respectively. Extensive experi-
ments on four benchmarks demonstrate the superi-
ority of the proposed MLG-CPC against the state-
of-the-art graph clustering approaches.

1 Introduction
As one of the most fundamental tasks in graph analysis, clus-
tering divides nodes into different groups in absence of la-
bel annotations [Wang et al., 2022b; Li et al., 2020]. Re-
cently, unsupervised graph representation learning based on
GNNs [Kipf and Welling, 2017; Veličković et al., 2018;
Hamilton et al., 2017] has provoked tremendous interest and
shown promising capability for graph clustering [Park et al.,
2019; Zhu et al., 2021]. In the existing literature, their ap-
proaches can be roughly divided into two categories, i.e., gen-
erative and contrastive graph clustering.

Generative methods prevalently resort to reconstruc-
tion objectives, which generate self-supervised information
for representation learning. Following the auto-encoder
∗Corresponding author.

Figure 1: The middle picture shows the instance discrimination
(dashed arrows) in graphs. We propose to generate prototypes and
then conduct prototypical discrimination displayed in the right pic-
ture, alleviating the sampling bias occurred (red dashed arrows) in
the middle picture. Colors indicate the class of nodes.

paradigm, GAE [Kipf and Welling, 2016] first leverages to re-
construct the adjacency matrix. Inspired by adversarial mech-
anism, ARGA [Pan et al., 2018] derives to refine the latent
representations by discriminating real or fake samples. After
that, DAEGC [Wang et al., 2019] utilizes Kullback–Leibler
divergence to simultaneously learn representations and find a
better cluster-friendly space. Furthermore, DFCN [Tu et al.,
2021] considers multi-level features in a fusion manner. On
the contrary, contrastive methods currently maximize agree-
ments across views from an information theory perspective.
DGI [Velickovic et al., 2019] maximizes the mutual infor-
mation (MI) between node representations and the global
summary. MVGRL [Hassani and Khasahmadi, 2020] aug-
ments and contrasts with PageRank algorithm [Gasteiger et
al., 2018]. Inspired by Barlow Twins [Zbontar et al., 2021],
AGC-DRR [Gong et al., 2022] reduces redundant informa-
tion with an edge weight learner most recently.

Despite empirical successes have witnessed advances of
deep clustering, there exist following drawbacks to be ad-
dressed. (1) Many generative or contrastive methods [Kipf
and Welling, 2016; Gong et al., 2022] leverage shallow GNNs
to avoid the over-smoothing and over-squashing phenom-
ena [Keriven, 2022; Topping et al., 2022]. However, seman-
tic information as global knowledge is seldomly investigated,
which thus theoretically is inclined to semantic-agnostic for
graph clustering. Specifically, informative inner-class nodes
in graphs generally scatter beyond one-hop neighbors, which
benefits the downstream tasks. Generative methods based on
reconstruction objectives excessively emphasize local neigh-
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bors by direct connections, which presumably even deterio-
rates the clustering performance. Contrastive methods also
perceive limited global semantic information with shallow
encoders and their objectives [Chen et al., 2020] purely con-
jecture the rest of nodes are negatives, which simply pushes
all the other nodes away, causing the sampling bias problem
in Figure 1. (2) Some deep clustering approaches, such as
SDCN [Bo et al., 2020] and DFCN [Tu et al., 2021] simul-
taneously consider multiple objectives in a fusion manner to
explore multi-level information. Nevertheless, they impose
objectives constraints within the same latent space regardless
of whether representations have different granularities or not.
This thus induces the conflict and presumably hinders opti-
mization, leading serve performance degradation with labori-
ous hyper-parameter searching and balancing.

In this paper, we introduce a novel Multi-Level Graph Con-
trastive Prototypical Clustering (MLG-CPC) to tackle afore-
mentioned issues. Our goals include (1) optimizing repre-
sentations of different granularities at multiple levels and (2)
capturing semantic structures to explore the global informa-
tion. To be specific, we first leverage encoders to distill fea-
ture representations from raw data, and then generate high-
level semantic prototypes and clusters in sequence via projec-
tion heads as well as predictors on low-level yet fundamental
feature representations. Concurrently, for representations of
different granularities, we propose distinct optimization ob-
jectives within their respective spaces. Specifically, to facil-
itate the representation learning within high-level space, we
constrain feature representations within feature-level space
to be augmentation-invariant and non-degenerate. Then the
distilled representations are transformed and mapped into
prototypical-level space via projection heads. After that, pro-
totypes are generated via cluster assignments for semantic
exploitation by formulating a new Prototype Discrimination
(ProDisc) loss function, which gathers and disperses proto-
types between inter- and inner-views. Furthermore, we ren-
der output units of our cluster predictors to be identical with
the amount of classes, generating the cluster assignments
within cluster-level space. And the consistency of obtained
cluster assignments across views can be constrained by NT-
Xent [Chen et al., 2020]. Overall, the features, prototypes,
and clusters are individually optimized within their respec-
tive spaces, benefiting from each other and generating more
promising representations for clustering. Our contributions
are as follows:

• We propose a multi-level graph contrastive clustering
method (MLG-CPC), which can simultaneously per-
cieve representations of different granularities and con-
duct clustering in an end-to-end manner.

• To explore and exploit semantic knowledge, a Prototype
Discrimination (ProDisc) objective function is derived
on prototypes via cluster assignments.

• MLG-CPC optimizes different level of representations
within individual spaces, avoiding laborious hyper-
parameter searching to balance multiple objectives.

• Extensive experiments on four benchmarks demonstrate
that the proposed MLG-CPC outperforms state-of-the-
art graph clustering approaches.

2 Related Work
2.1 Deep Graph Clustering
Different from traditional graph clustering approaches such
as probabilistic and matrix decomposition, deep graph clus-
tering based on GNNs has received tremendous interest and
advances by virtue of deep learning. Inspired by varia-
tion Bayes inference, GAE [Kipf and Welling, 2016] as
the earliest deep clustering method leverages reconstruc-
tion objectives to reserve the graph structure. Following
that, ARGA [Pan et al., 2018] proposes to discriminate true
or false samples from latent space with adversarial train-
ing. DAEGC [Wang et al., 2019] simultaneously learns
representations and finds a cluster-friendly space inspired
by DEC [Xie et al., 2016]. DFCN [Tu et al., 2021] and
SDCN [Bo et al., 2020] both leverage more information from
different views combined with DEC [Wang et al., 2019], en-
hancing the quality of representations in a fusion manner.
GALA [Park et al., 2019] utilizes graph Laplacian sharpen-
ing to design a symmetric framework, further boosting the
clustering performance. DGI [Velickovic et al., 2019] adapts
the idea of InfoMax into the graph domain, which maximizes
the agreement between nodes and the global summary. MV-
GRL [Hassani and Khasahmadi, 2020] proposes to augment
graphs with PageRank algorithm [Gasteiger et al., 2018] and
maximizes the MI across views based on multi-view learn-
ing. Most recently, AGC-DRR [Gong et al., 2022] proposes
an adversarial edge leaner, which reduces redundant informa-
tion across views benefitted from Barlow Twins [Zbontar et
al., 2021]. Albeit above approaches ameliorate graph clus-
tering from various perspectives, methods such as DFCN and
SDCN optimize different objectives and then fuse within the
same space. Nevertheless, representations of different gran-
ularities may conflict with each other, thus requiring labori-
ous parameters searching and balancing. Meanwhile, most
approaches do not take global semantic structures into con-
sideration, which is harmful for graph clustering.

2.2 Semantic Structures in Contrastive Learning
Prototypes can model the class semantic information, which
are widely applied to few-shot learning [Snell et al., 2017].
Different from limited yet available labels in few-shot learn-
ing, there is no annotations in unsupervised scenarios.
PCL [Li et al., 2021] proposes prototypical contrastive learn-
ing for images with Expectation-Maximization algorithms,
which performs node-prototype interaction to improve the
quality of image representations. However, this is theoreti-
cally non-trivial for graphs due to their assumptions, where
images follow the independently and identically distributed
(IID) hypothesis [Yuan et al., 2018; Liu et al., 2022; Wang et
al., 2022a] while nodes in graphs manifest strong intrinsic de-
pendences by edges. Similarly, SwAV [Caron et al., 2020] si-
multaneously learns representations and cluster assignments
by extending the idea of deepCluster [Caron et al., 2018],
while they still omit multi-level information. For graphs
semantic exploitation, GraphLog [Xu et al., 2021] gener-
ates hierarchical prototypes and performs instance-prototype
alignment. PGCL [Lin et al., 2022] extends the SwAV for
graph domain, improving the representations of molecules.
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Figure 2: Overview of the proposed MLG-CPC. First, we generate two views by graph augmentations. Secondly, we learn representations of
different granularities, i.e., H via encoders fθ , Z and M via projection heads gθ , as well as P and Q via cluster predictors kθ respectively.
Then three distinct losses are formulated within their respective spaces. After that, the overall objective function is optimized jointly.

Notations Descriptions

A ∈ RN×N Original adjacency matrix
X ∈ RN×D Original feature matrix
Av ∈ RN×N Augmented adjacency matrix in v-th view
Xv ∈ RN×D Augmented feature matrix in v-th view
Hv ∈ RN×d Feature representation in v-th view
Zv ∈ RN×d Projected Hv in prototypical-level space
Mv ∈ RK×d Prototype representation in v-th view
Pv ∈ RN×K Cluster assignment matrix in v-th view
Qv ∈ RK×N Cluster statistic matrix in v-th view

Table 1: Notations for MLG-CPC

Nonetheless, these approaches are devised for graph-level
and are task-agnostic. Our MLG-CPC is for end-to-end clus-
tering and posses different motivations with distinct objec-
tives. Moreover, these methods adopt cosine similarities to
compute the cluster probabilities whereas our method can di-
rectly obtain the class assignments by virtue of end-to-end
architecture and cluster space, which may shed light upon
multi-view graph clustering for further investigations.

3 Methodology
Given a graph, we initially augment this original graph with
graph augmentations to produce two different views. Then
the augmented graphs are first transformed into H via mes-
sage passing encoders fθ, which are then projected by the
projection head gθ to generate Z and construct prototypes M.
Finally, we leverage cluster predictors kθ to learn assignments
P and statistic matrix Q. Three distinct losses are formulated
and optimized at different levels on H, M, P, and Q with re-

spective feature-, prototypical-, and cluster-level spaces. The
framework of our MLG-CPC is illustrated in Figure 2.

3.1 Notations and Problem Definitions
Let an attributed graph G = {V,A,X}, where nodes set
V = {v1,v2, . . . ,vN} associated with edges. The structure
of G can be defined by an adjacency matrix A ∈ RN×N .
Nodes with features can be denoted as X ∈ RN×D. I ∈
RD×D is the identity matrix. And lower case of the matrix
denotes vectors. The goal of graph clustering is to separate
the nodes into different clusters without requiring any anno-
tations. The concrete notations are encapsulated in Table 1.

3.2 Message Passing and Graph Augmentations
Encoders Based on Message Passing. Following the mes-
sage passing neural network (MPNN) [Gilmer et al., 2017],
we update the node by transporting messages of it and its
neighbors, which can be defined as:

hkN (v) ← MESSAGEk
({

hk−1u , ∀u ∈ N (v)
})
, (1)

hkv ← σ
(
Wk ·UPDATES

(
hk−1v ,hkN (v)

))
, (2)

whereN (v) denotes the neighbors representations of node v.
MESSAGEk is the message function at layer k, which should
be permutation invariant. hkN (v) ∈ R1×d denotes messages
of neighbors gathered by node v. UPDATES operator up-
dates the node. Wk ∈ RD×d is the transformation matrix at
layer k. hkv is the updated node v at layer k and h0v = xv .
For simplicity, we set the MESSAGEk and UPDATES to be
mean operation. Then the encoder can be represented as:

hkv ← σ
(
W ·MEAN

({
hk−1v

}
∪
{
hkN (v)

})
, (3)
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By this means, we locally generate feature representations
H into feature-level space from raw data X and A. For global
semantic exploration, we will detail it in section 3.3.

Graph Augmentations. Following the multi-view con-
trastive learning paradigm, we resort to contrasting across
views and adopt two widely used graph augmentations tech-
niques, edge dropping and feature masking, which augment
graphs from perspectives of structures and features. Specifi-
cally, for edge dropping, we randomly drop a portion of edges
in graphs by a mask matrix R ∈ {0, 1}N×N , whose elements
are produced via Bernoulli distribution with probability ri for
generating view i ∈ {A,B}, which can be defined as:

Ai = A ◦R, (4)

where ◦ is Hadamard product. For feature masking, we define
an indicator m ∈ {0, 1}d×1 with probabilitymi for assigning
0 to features, and then mask a portion of the node features for
generating view i ∈ {A,B}, which can be computed as:

Xi = [x1 ◦m;x2 ◦m; · · · ;xN ◦m]
>
, (5)

Note that different from previous approaches [Xia et al.,
2022], which set distinct value for two views, we set identical
values for two views to draw them from the same distribution.

3.3 Multi-Level Graph Clustering
Feature Orthogonality with Invariance. Given the repre-
sentations H of a graph, we formulate the feature distillation
problem within feature-level space inspired by W-MSE [Er-
molov et al., 2021], which is represented as:

min
θ

E
[
dist

(
HA
·,i,H

B
·,i
)]
,

s.t. cov
(
HA,HA

)
= cov

(
HB ,HB

)
= I,

(6)

where dist denotes the mean squared error, i.e., the L2 dis-
tance, and cov is the covariance measurement between vari-
ables across views. Different from W-MSE whitens the em-
bedding for implicitly satisfying the condition, we tackle this
problem by via Lagrangian multiplier, so Lfl is computed as:

min
θ

E
[
dist

(
HA
·,i,H

B
·,i
)]

+λ ·
(∥∥∥(HA

)>
HA − I

∥∥∥2 +
∥∥∥(HB

)>
HB − I

∥∥∥2) , (7)

where the first term renders representations across views to
be invariant to augmentations, capturing the permutation in-
variant information. The second term encourages different
features in the same view to be orthogonal, minimizing cor-
relation of features within views. λ is a parameter to balance
the objective and conditions.

Prototypical-level Contrast. SimCLR [Chen et al., 2020]
adopts instance discrimination strategy, which is semantic-
agnostic. We explore and regard prototypes as globally se-
mantic structures and propose to conduct discrimination on
prototypical-level. Specifically, we adopt Multi-Layer Per-
ceptions (MLPs) as projection heads gθ within prototypical-
level space. The prototypes constructed by cluster assign-
ments generated by cluster predictors, formally, we calculate

prototypes for each cluster as follows:

µk =

∑
z p(k | z) · z

‖
∑

z p(k | z) · z‖2
, (8)

where z ∈ R1×d is the output by projection heads based on h,
and p(k | z) is the cluster assignment generated by predictors,
which will be detailed in section 3.3.3. Cluster assignments
indicate the node belong to certain cluster k. Then we define
our ProDisc loss for one pair as:

`
(
µAi ,µ

B
i

)
= − log

eθ(µ
A
i ,µ

B
i )/τ

Φinter + Φintra
, (9)

where θ (, ) /τ is the cosine similarity with temperature pa-
rameter. Φ sums total negative sample pairs from inter or
intra perspectives and K is the number of classes. Thus, the
denominator can disperse negative prototypes pairs from dif-
ferent views and the same views:

Φinter =
K∑
k=1

eθ(µ
A
i ,µ

B
k )/τ , (10)

Φintra =

K∑
k=1,k 6=i

eθ(µ
A
i ,µ

A
k )/τ , (11)

Then we calculate the loss for all pairs symmetrically, so
the overall ProDisc loss of prototypical-level is:

Lpl =
1

2N

N∑
i=1

[
`
(
µAi ,µ

B
i

)
+ `

(
µBi ,µ

A
i

)]
, (12)

the prototype discrimination interacts globally from the se-
mantic perspective, alleviating sampling bias to some extent.
Moreover, similar to contrastive algorithms, this loss is the-
oretically coherent with [Wang and Isola, 2020], where the
positive prototype pair encourages the alignment and nega-
tive prototype pairs guarantee the uniformity.

Cluster Space Consistency. Consequently, we formulate
our cluster predictors kθ via MLPs followed by softmax ac-
tivation. The units of predictor are equal to the amount of
classes K. By this way, our model can predict nodes cluster
assignments Pi ∈ RN×K of two views based on Zi. To con-
strain the consistency of two cluster distributions, we adopt
the idea of cross-entropy and leverage a more flexible variant
of it [Chen et al., 2020], which is defined as:

`
(
pAi ,p

B
i

)
= − log

eθ(p
A
i ,p

B
i )/τ∑N

k=1,k 6=i e
θ(pA

i ,p
B
k )/τ

, (13)

we calculate the loss for all pairs symmetrically, so the as-
signments consistency loss is:

Lacl =
1

2N

N∑
i=1

[
`
(
pAi ,p

B
i

)
+ `

(
pBi ,p

A
i

)]
. (14)

In addition, we regard column pi of P as the cluster statis-
tics vectors qi, and further constrain the consistency between
them for stability, which is denoted as:

`
(
qAi ,q

B
i

)
= − log

eθ(q
A
i ,q

B
i )/τ∑K

k=1,k 6=i e
θ(qA

i ,q
B
k )/τ

, (15)
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Algorithm 1 The training procedure of MLG-CPC
Input: Graph G = {V,A,X}; The number of clusters K;
Maximum iterations T ; Edge dropping rates ri and feather
masking rates mi; Hyper-parameter λ.
Output:The clustering results.

1: for i = 1 to T do
2: Obtain GB via Eq.(4) and Eq.(5) augmentations.
3: Calculate feature HA and HB via Eq.(3).
4: Calculate representations µA and µB via Eq.(8).
5: Calculate assignments pA and pB by predictor.
6: Calculate statistics qA and qB by transposition.
7: Calculate Lfl, Lpl, and Lcl, respectively.
8: Update MLG-CPC via minimizing Eq.(18).
9: end for

10: Calculate clustering results via the clustering assign-
ments P1 and P2.

11: return The clustering results.

and we calculate the loss for all pairs symmetrically, so the
statistic consistency loss is:

Lscl =
1

2N

N∑
i=1

[
`
(
qAi ,q

B
i

)
+ `

(
qBi ,q

A
i

)]
. (16)

here, the overall cluster-level consistency loss is:
Lcl = Lacl + Lscl. (17)

3.4 Objective Function
We separately formulate different levels of representations
within their own space, avoiding the objectives conflict is-
sue. We do not need specific hyper-parameter tuning to bal-
ance the different objectives [Liu et al., 2023], thus keeping
importance of each objective identical. The total objective
function of our MLG-CPC is denoted as:

L = Lfl + Lpl + Lcl. (18)
Feature representations are distilled by feature orthogonal-
ity in feature-level space, and then contribute to generating
accurate prototypes within prototypical-level space. Conse-
quently, representations refined by prototype discrimination
are further optimized via cluster-level consistency. Lastly, we
average cluster assignments from two views as labels output
by our MLG-CPC for evaluation testing. The procedure of
MLG-CPC is illustrated in Algorithm 1.

4 Experiments
In following sections, we first introduce experimental setups.
Second, we conduct extensive experiments of graph cluster-
ing and verify the effectiveness of different sub-modules. Af-
ter that, we investigate the influence of different graph aug-
mentation strategies. Finally, the learned representations and
similarity matrices are visualized for display intuitively.

4.1 Datasets
We adopt four commonly used graph datasets [Shchur et al.,
2018] in our experiments including CITE, ACM, DBLP, and
AMAP. Each dataset contains an adjacency matrix and a fea-
ture matrix. Concrete descriptions of these datasets are illus-
trated in Table 2.

Dataset #Node #Dimension #Edges #Class

ACM 3025 1870 13128 3
DBLP 4057 334 3528 4
CITE 3327 3703 4552 6

AMAP 7650 745 119081 8

Table 2: Datasets in experiments

4.2 Experiment Setup
Implementation Details. We implement our MLG-CPC on
PyTorch platform and Deep Graph Library (DGL)1 with the
NVIDIA GeForce RTX 3090. Our encoders and prototype
projection heads are shared graph convolutional networks
(GCNs) and MLPs, respectively. Also, we leverage one-layer
MLP followed by softmax to construct cluster predictors.

Parameters Settings. For all datasets, we set the learning
rate at 1e-3, τ at 0.2, and λ at 5e-4. We use grid-search to find
the optimal graph augmentation parameters, i.e., edge drop-
ping and feature masking rates ranging from 0 to 1. We will
analyse these two parameters in the following section. The
training procedure of MLG-CPC is optimized until reaching
max epochs. We set max epochs at 40, 200, 400, 1000 for
CITE, AMAP, ACM, and DBLP, respectively. We report the
average mean scores and standard deviation of 10 times run-
ning. For other baselines, we follow and directly compare the
results reported in AGC-DRR [Gong et al., 2022].

Evaluation Metrics. In our graph clustering experiments,
the Accuracy (ACC), Normalized Mutual Information (NMI),
adjusted rand index (ARI), and F1-score (F1) [Tu et al., 2021;
Bo et al., 2020] are presented for evaluation.

4.3 Clustering Results
Comparison Methods. To demonstrate the validity of our
MLG-CPC, we compare with 12 clustering methods. K-
means [Hartigan and Wong, 1979] as one of the most classic
algorithm can cluster data into different groups. AE [Yang
et al., 2017] follows the auto-encoder paradigm to perform
clustering. DEC [Xie et al., 2016] and IDEC [Guo et al.,
2017] further enhance the AE with co-clustering mechanism,
GAE/VGAE [Kipf and Welling, 2016] and DAEGC [Wang
et al., 2019] extends the idea of AE to the graph domain.
ARGA [Pan et al., 2018] combines adversarial networks with
GAE. SDCN [Bo et al., 2020] and DFCN [Tu et al., 2021] in-
tegrate the representations of AE and GAE in a fusion man-
ner. MVGRL [Hassani and Khasahmadi, 2020] adopts the
MI maximization and Pagerank to improve the quality of rep-
resentations. AGC-DRR [Gong et al., 2022] devises a edge
learner for more robust clustering.

We present the graph clustering results in Table 3. Com-
pared with the first three methods, our MLG-CPC consis-
tently outperforms them by a large margin. These methods do
not utilize the graph topological information though they are
effective for tackling non-graph data such as images and tab-
ular samples. Compared with generative graph clustering al-
gorithms such as GAE [Kipf and Welling, 2016], ARGA [Pan

1https://www.dgl.ai/
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Method ACM DBLP
ACC NMI ARI F1 ACC NMI ARI F1

K-means 67.31 ± 0.71 32.44 ± 0.46 30.60 ± 0.69 67.57 ± 0.74 38.65 ± 0.65 11.45 ± 0.38 6.97 ± 0.39 31.92 ± 0.27
AE 81.83 ± 0.08 49.30 ± 0.16 54.64 ± 0.16 82.01 ± 0.08 51.43 ± 0.35 25.40 ± 0.16 12.21 ± 0.43 52.53 ± 0.36

DEC 84.33 ± 0.76 54.54 ± 1.51 60.64 ± 1.87 84.51 ± 0.74 58.16 ± 0.56 29.51 ± 0.28 23.92 ± 0.39 59.38 ± 0.51
IDEC 85.12 ± 0.52 56.61 ± 1.16 62.16 ± 1.50 85.11 ± 0.48 60.31 ± 0.62 31.17 ± 0.50 25.37 ± 0.60 61.33 ± 0.56
GAE 84.52 ± 1.44 55.38 ± 1.92 59.46 ± 3.10 84.65 ± 1.33 61.21 ± 1.22 30.80 ± 0.91 22.02 ± 1.40 61.41 ± 2.23

VGAE 84.13 ± 0.22 53.20 ± 0.52 57.72 ± 0.67 84.17 ± 0.23 58.59 ± 0.06 26.92 ± 0.06 17.92 ± 0.07 58.69 ± 0.07
DAEGC 86.94 ± 2.83 56.18 ± 4.15 59.35 ± 3.89 87.07 ± 2.79 62.05 ± 0.48 32.49 ± 0.45 21.03 ± 0.52 61.75 ± 0.67
ARGA 86.29 ± 0.36 56.21 ± 0.82 63.37 ± 0.86 86.31 ± 0.35 64.83 ± 0.59 29.42 ± 0.92 27.99 ± 0.91 64.97 ± 0.66

ARVGA 83.89 ± 0.54 51.88 ± 1.04 57.77 ± 1.17 83.87 ± 0.55 54.41 ± 0.42 25.90 ± 0.33 19.81 ± 0.42 55.37 ± 0.40
SDCN Q 86.95 ± 0.08 58.90 ± 0.17 65.25 ± 0.19 86.84 ± 0.09 65.74 ± 1.34 35.11 ± 1.05 34.00 ± 1.76 65.78 ± 1.22

SDCN 90.45 ± 0.18 68.31 ± 0.25 73.91 ± 0.40 90.42 ± 0.19 68.05 ± 1.81 39.50 ± 1.34 39.15 ± 2.01 67.71 ± 1.51
MVGRL 86.73 ± 0.76 60.87 ± 1.40 65.07 ± 1.76 86.85 ± 0.72 42.73 ± 1.02 15.41 ± 0.63 8.22 ± 0.50 40.52 ± 1.51
DFCN 90.90 ± 0.20 69.40 ± 0.40 74.90 ± 0.40 90.80 ± 0.20 76.00 ± 0.80 43.70 ± 1.00 47.00 ± 1.50 75.70 ± 0.80

AGC-DRR 92.55 ± 0.09 72.89 ± 0.24 79.08 ± 0.24 92.55 ± 0.09 80.41 ± 0.47 49.77 ± 0.65 55.39 ± 0.88 79.90 ± 0.45

Ours 93.20 ± 0.1293.20 ± 0.1293.20 ± 0.12 75.57 ± 0.1075.57 ± 0.1075.57 ± 0.10 81.11 ± 0.1081.11 ± 0.1081.11 ± 0.10 93.16 ± 0.1493.16 ± 0.1493.16 ± 0.14 82.13 ± 0.5282.13 ± 0.5282.13 ± 0.52 52.41 ± 0.6152.41 ± 0.6152.41 ± 0.61 57.78 ± 0.8257.78 ± 0.8257.78 ± 0.82 80.32 ± 0.4780.32 ± 0.4780.32 ± 0.47

Method CITE AMAP
ACC NMI ARI F1 ACC NMI ARI F1

K-means 39.32 ± 3.17 16.94 ± 3.22 13.43 ± 3.02 36.08 ± 3.53 27.22 ± 0.76 13.23 ± 1.33 5.50 ± 0.44 23.96 ± 0.51
AE 57.08 ± 0.13 27.64 ± 0.08 29.31 ± 0.14 53.80 ± 0.11 48.25 ± 0.08 38.76 ± 0.30 20.80 ± 0.47 47.87 ± 0.20

DEC 55.89 ± 0.20 28.34 ± 0.30 28.12 ± 0.36 52.62 ± 0.17 47.22 ± 0.08 37.35 ± 0.05 18.59 ± 0.04 46.71±0.12
IDEC 60.49 ± 1.42 27.17 ± 2.40 25.70 ± 2.65 61.62 ± 1.39 47.62 ± 0.08 37.83 ± 0.08 19.24 ± 0.07 47.20 ± 0.11
GAE 61.35 ± 0.80 34.63 ± 0.65 33.55 ± 1.18 57.36 ± 0.82 71.57 ± 2.48 62.13 ± 2.79 48.82 ± 4.57 68.08 ± 1.76

VGAE 60.97 ± 0.36 32.69 ± 0.27 33.13 ± 0.53 57.70 ± 0.49 74.26 ± 3.63 66.01 ± 3.40 56.24 ± 4.66 70.38 ± 2.98
DAEGC 64.54 ± 1.39 36.41 ± 0.86 37.78 ± 1.24 62.20 ± 1.32 76.44 ± 0.01 65.57 ± 0.03 59.39 ± 0.02 69.97 ± 0.02
ARGA 61.07 ± 0.49 34.40 ± 0.71 34.32 ± 0.70 58.23 ± 0.31 69.28 ± 2.30 58.36 ± 2.76 44.18 ± 4.41 64.30 ± 1.95

ARVGA 59.31 ± 1.38 31.80 ± 0.81 31.28 ± 1.22 56.05 ± 1.13 61.46 ± 2.71 53.25 ± 1.91 38.44 ± 4.69 58.50 ± 1.70
SDCN Q 61.67 ± 1.05 34.39 ± 1.22 35.50 ± 1.49 57.82 ± 0.98 35.53 ± 0.39 27.90 ± 0.40 15.27 ± 0.37 34.25 ± 0.44

SDCN 65.96 ± 0.31 38.71 ± 0.32 40.17 ± 0.43 63.62 ± 0.24 53.44 ± 0.81 44.85 ± 0.83 31.21 ± 1.23 50.66 ± 1.49
MVGRL 68.66 ± 0.36 43.66 ± 0.40 44.27 ± 0.73 63.71 ± 0.39 45.19 ± 1.79 36.89 ± 1.31 18.79 ± 0.47 39.65 ± 2.39
DFCN 69.50 ± 0.2069.50 ± 0.2069.50 ± 0.20 43.90 ± 0.20 45.50 ± 0.30 64.30 ± 0.20 76.88 ± 0.80 69.21 ± 1.00 58.98 ± 0.84 71.58 ± 0.31

AGC-DRR 68.32 ± 1.83 43.28 ± 1.41 45.34 ± 2.33 64.82 ± 1.6064.82 ± 1.6064.82 ± 1.60 78.11 ± 1.69 72.21 ± 1.6372.21 ± 1.6372.21 ± 1.63 61.15 ± 1.65 72.72 ± 0.97

Ours 69.31 ± 1.47 44.47 ± 0.5844.47 ± 0.5844.47 ± 0.58 45.66 ± 0.6945.66 ± 0.6945.66 ± 0.69 64.21 ± 1.25 79.65 ± 0.9479.65 ± 0.9479.65 ± 0.94 68.57 ± 1.32 64.13 ± 1.2164.13 ± 1.2164.13 ± 1.21 75.52 ± 0.7675.52 ± 0.7675.52 ± 0.76

Table 3: The average clustering performance with mean±std on four benchmarks. The bold and underlined values indicate the best and the
second best results, respectively.

et al., 2018], DAEGC [Wang et al., 2019], which pursue re-
construction for optimization. From the table, we can see
MLG-CPC outperforms DAEGC [Wang et al., 2019], a state-
of-the-art generative graph clustering algorithm, by 6.26%,
20.08%, 4.77%, 3.21% on ACM, DBLP, CITE, and AMAP
datasets in terms of ACC evaluation, respectively. Mean-
while, compared with contrastive and fusion-fashion graph
clustering methods such as MVGRL [Hassani and Khasah-
madi, 2020], AGC-DRR [Gong et al., 2022], and DFCN [Tu
et al., 2021], our method perceives multi-level optimization,
and different granularities of representations facilitate each
other to some degree. Moreover, MLG-CPC takes global se-
mantic structures into consideration and optimizes different
objectives with distinct spaces, whereas these methods still
omits the semantic knowledge and might be risk of objec-
tives optimization conflict issues. Overall, aforementioned
clustering performance observations have demonstrated the
effectiveness of our MLG-CPC for graph clustering.

4.4 Ablation Study
In this section, we analyse different components of MLG-
CPC and results are presented in Table 4. As we can observe,
the MLG-CPC w/o feature-level leads to severe degradation.
Taking results on AMAP for example, our MLG-CPC ex-
ceeds the MLG-CPC w/o feature-level loss by 5.65%, 4.75%,
11.46%, 4.42% performance increment in terms of ACC,
NMI, ARI and F1, which demonstrates the low-level yet fun-
damental feature representations are crucial for the high-level
spaces. The MLG-CPC w/o prototypical-level loss also is in-

ferior to the MLG-CPC, showing that the global prototypical
information can benefit the model training. Besides, since the
cluster loss plays essential role in our end-to-end framework,
when we remove this sub-module, our MLG-CPC sharply de-
grades a lot, specifically, by 11.89%, 10.72%, 17.46%, 8.22%
performance decrement with respect to ACC, NMI, ARI and
F1, due to poor labels generated for clustering.

Dataset Model ACC NMI ARI F1

ACM

w/oLfl 70.02 ± 3.9 32.36 ± 2.2 34.64 ± 2.5 69.95 ± 3.3
w/oLpl 90.53 ± 1.1 70.03 ± 1.7 75.10 ± 1.6 90.50 ± 0.9
w/oLcl 73.75 ± 4.1 34.47 ± 5.2 37.97 ± 4.7 73.89 ± 3.9

fully model 93.20 ± 0.193.20 ± 0.193.20 ± 0.1 75.57 ± 0.175.57 ± 0.175.57 ± 0.1 81.11 ± 0.181.11 ± 0.181.11 ± 0.1 93.16 ± 0.193.16 ± 0.193.16 ± 0.1

DBLP

w/oLfl 76.78 ± 2.2 45.08 ± 1.5 49.67 ± 1.7 75.79 ± 2.0
w/oLpl 80.93 ± 1.3 50.67 ± 2.5 57.15 ± 2.2 78.83 ± 1.7
w/oLcl 59.30 ± 4.7 24.18 ± 4.3 23.91 ± 4.3 58.59 ± 4.8

fully model 82.13 ± 0.582.13 ± 0.582.13 ± 0.5 52.41 ± 0.652.41 ± 0.652.41 ± 0.6 57.78 ± 0.857.78 ± 0.857.78 ± 0.8 80.32 ± 0.580.32 ± 0.580.32 ± 0.5

CITE

w/oLfl 59.62 ± 3.1 36.82 ± 2.2 35.52 ± 1.8 55.81 ± 2.9
w/oLpl 65.28 ± 2.3 40.23 ± 1.7 41.66 ± 1.6 61.29 ± 1.9
w/oLcl 47.55 ± 4.4 27.59 ± 3.6 29.96 ± 2.9 43.59 ± 3.8

fully model 69.31 ± 1.569.31 ± 1.569.31 ± 1.5 44.47 ± 0.644.47 ± 0.644.47 ± 0.6 45.66 ± 0.745.66 ± 0.745.66 ± 0.7 64.21 ± 1.364.21 ± 1.364.21 ± 1.3

AMAP

w/oLfl 74.00 ± 2.9 63.82 ± 2.2 52.67 ± 2.0 71.10 ± 3.1
w/oLpl 76.12 ± 1.7 65.58 ± 1.2 58.83 ± 1.3 73.32 ± 1.5
w/oLcl 67.76 ± 3.3 57.85 ± 2.5 46.67 ± 2.7 67.30 ± 4.2

fully model 79.65 ± 0.979.65 ± 0.979.65 ± 0.9 68.57 ± 1.368.57 ± 1.368.57 ± 1.3 64.13 ± 1.264.13 ± 1.264.13 ± 1.2 75.52 ± 0.875.52 ± 0.875.52 ± 0.8

Table 4: Ablation comparisons of MLG-CPC on four datasets.

4.5 Parameters Analysis
Graph augmentations play vital roles in multi-view graph
learning. To this end, we investigate the influence of differ-
ent augmentation strategies for our MLG-CPC framework in
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Figure 3: Graph augmentations with different edge dropping and
feature masking rates on the DBLP dataset.

Figure 3, i.e., the edge dropping rate (E) and feature mask-
ing rate (F) with different probabilities, ranging from 0 to 1.
Since NMI, ARI, and F1-score have similar trends with ACC
from our experiments, we only present the ACC value cor-
respond to DBLP dataset due to the space limitations, and
results of ACC, NMI, ARI and F1 values on all four datasets
can be found in supplementary files.

We can see our MLG-CPC is stable for most parame-
ters settings, though there exists several severe performance
degradation, we conjecture this due to two main causes. On
the one hand, when structural and feature corruptions are
larger than a relatively large value such as 0.8, the aug-
mented (distorted) graphs have been overwhelmed in the en-
tire framework, and thus encoders and sub-modules cannot be
trained steadily without enough graph information, capturing
limited and useless representations. On the other hand, we
observe that the poor capability happens when augmentations
are slightly weak. For instance, when edge dropping rates are
0.1, performances degrade sharply on datasets. The reason
behind this is that augmented graphs across views in these
cases change slightly. Since multi-view contrastive learn-
ing needs proper and informative views to perform discrim-
ination, this cannot provide sufficient information for multi-
view learning. Overall, with moderate views, MLG-CPC can
yield competitive performances, which demonstrates more el-
egant graph augmentations are significant for multi-view con-
trastive graph learning.

4.6 Visualization
In this section, we provide visualization results of our MLG-
CPC. To be specific, we utilize t-SNE [Van der Maaten and
Hinton, 2008] to visualize embedding of our MLG-CPC at
different stages intuitively in Figure 4. At the initial stage,
raw features are non-discriminative for clustering. During the
model training phase, embedding gradually becomes more

ACM DBLP CITE AMAP

Figure 4: 2D visualization on datasets. The first row and second row
correspond to raw features and learned representations, respectively.

Figure 5: Similarity matrix without and with feature orthogonality
on ACM (warm colors indicate large values), respectively.

discriminative because objectives of MLG-CPC are opti-
mized as epoch increases. At last, we can see the learned
embedding is more promising, which has smaller intra-class
distances as well as larger inter-class distances compared with
raw features for the clustering task.

We also plot similarity matrices of embedding on the ACM
dataset in Figure 5. Compared with the matrix without feature
orthogonality on the left, the embedding of MLG-CPC on the
right is more approximate to the diagonal matrix. Thanks to
this feature orthogonality, different dimensions are encour-
aged to capture distinct information, and thus the overlap in-
formation of different feature dimensions is minimized. This
discriminative information will serve for the prototypical- and
cluster-level space in the overall model, further enhancing the
underlying performances of other sub-modules.

5 Conclusion

We introduce a novel graph contrastive framework for end-to-
end clustering. Specifically, our MLG-CPC distills the fea-
tures by orthogonality and generates assignments via clus-
ter predictors. Currently, assignments are leveraged to gener-
ate prototypes, which then can perform prototype discrimina-
tion for semantic exploitation globally. Moreover, by virtue
of different-level representation spaces, MLG-CPC concen-
trates on their objectives individually and jointly optimizes
without laborious parameters balancing. Extensive experi-
mental results on four datasets demonstrate the superiority of
MLG-CPC. We will investigate the validity of MLG-CPC for
graphs with heterophily in our future work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4617



Acknowledgments
This work was supported by the National Natural Science
Foundation of China under Grant U21B2041, 61825603, Na-
tional Key R&D Program of China 2020YFB2103902.

References
[Bo et al., 2020] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi

Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In Proceedings of The Web Conference, pages
1400–1410, 2020.

[Caron et al., 2018] Mathilde Caron, Piotr Bojanowski, Ar-
mand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. In Proceedings of
the European Conference on Computer Vision, pages 132–
149, 2018.

[Caron et al., 2020] Mathilde Caron, Ishan Misra, Julien
Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by con-
trasting cluster assignments. Advances in Neural Informa-
tion Processing Systems, 33:9912–9924, 2020.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Inter-
national Conference on Machine Learning, pages 1597–
1607, 2020.

[Ermolov et al., 2021] Aleksandr Ermolov, Aliaksandr
Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. In International
Conference on Machine Learning, pages 3015–3024,
2021.

[Gasteiger et al., 2018] Johannes Gasteiger, Aleksandar Bo-
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Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Inter-
national Conference on Machine Learning, pages 12310–
12320, 2021.

[Zhu et al., 2021] Hao Zhu, Ke Sun, and Peter Koniusz.
Contrastive laplacian eigenmaps. Advances in Neural In-
formation Processing Systems, 34:5682–5695, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4619


	Introduction
	Related Work
	Deep Graph Clustering
	Semantic Structures in Contrastive Learning

	Methodology
	Notations and Problem Definitions
	Message Passing and Graph Augmentations
	Multi-Level Graph Clustering
	Objective Function

	Experiments
	Datasets
	Experiment Setup
	Clustering Results
	Ablation Study
	Parameters Analysis
	Visualization

	Conclusion

