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Abstract
One of the major challenges of the current of-
fline reinforcement learning research is to deal with
the distribution shift problem due to the change in
state-action visitations for the new policy. To ad-
dress this issue, we present a novel reward shifting-
based method. Specifically, to regularize the behav-
ior of the new policy at each state, we modify the
reward to be received by the new policy by shifting
it adaptively according to its proximity to the be-
havior policy, and apply the reward shifting along
opposite directions for in-distribution actions and
the ones not. In this way we are able to guide the
learning procedure of the new policy itself by influ-
encing the consequence of different actions explic-
itly, helping it to achieve a better balance between
behavior constraints and policy improvement. Em-
pirical results on the popular D4RL benchmarks
show that the proposed method obtains competitive
performance compared to the state-of-art baselines.

1 Introduction
The success of modern deep reinforcement learning (RL)
mainly relies on a large number of online interactions with
the environment. This characteristic limits its broader ap-
plications to real-world scenes, where online data may be
costly and dangerously collected, e.g., in such fields as health-
care [Yu et al., 2021a], autonomous driving [Grigorescu et
al., 2020], and so on. Offline RL instead attempts to ad-
dress this issue by learning from a fixed dataset collected by
the behavior policy in advance. This involves learning from
behaviors generated by a policy different than the new pol-
icy. Unfortunately, the direct employment of the common
off-policy strategy often fails to achieve the same level of
performance as in the online setting [Fujimoto et al., 2019;
Levine et al., 2020].

The extrapolation error from out-of-distribution (OOD)
actions is generally thought of as the main reason respon-
sible for the aforementioned performance degradation [Fuji-
moto et al., 2019]. More specifically, the distribution shift be-
tween the learned policy and behavior policy may easily lead
to the overestimated Q-value of OOD actions and such error
compounds, leading to potentially dangerous consequences.

Hence it’s important to prevent the agent from taking over-
estimated OOD actions. One way for this is to enforce
the learned policy to stay close to the behavior policy, e.g.,
by imposing regularizations on the actor or critic learning.
Specifically, actor regularization usually [Wu et al., 2019;
Kumar et al., 2019] restricts the actor from being updated
within a small range of the behavior policy via policy con-
straints. Nevertheless, these constraints lack direct regular-
ization on critic updates to prevent the propagation of extrap-
olation errors. To address this issue, various critic regulariza-
tion schemes have been proposed in previous literature to reg-
ularize value function, either through penalizing Q-values for
OOD actions [Kumar et al., 2020; Yu et al., 2021b] or through
only selecting in-sample actions to construct the bootstrapped
targets [Fujimoto et al., 2019].

An alternative but less studied strategy to address the above
issue is through reward shifting, a specific mechanism for
reward shaping. For example, [Sun et al., 2022] show that
adding a constant positive shift to the reward of the in-sample
data is beneficial to avoid taking OOD actions in offline RL.
Intuitively, in this setting, the positive shift has the effect of
initializing the policy pessimistically [Sun et al., 2022], hence
encouraging the agent to exploit in-distribution data more fre-
quently than the OOD data. One main advantage of reward
shifting lies in its capability to influence the consequence of
different actions explicitly, which, compared with the afore-
mentioned regularization-based methods, essentially allows
us to have some direct control over the learning procedure
itself. This highlights the usefulness of reward shifting for
offline RL, but many problems remain unsolved and more ex-
ploration is needed, e.g., in seeking practical schemes to set
the reward shifting for more efficient and stable offline RL.

Inspired by this, we propose a novel reward shifting
method for offline RL, which utilizes two opposite reward
shifting schemes to reduce OOD behaviors and alleviate the
consequent extrapolation error. Specifically, we introduce a
positive reward shifting for in-distribution data, seeking more
exploitation for the observed data. Meanwhile, a negative
shift will be added to the reward function of OOD data for
less exploration of itself. We dub this proposed method Bi-
direction Reward Shifting (BRS) to emphasize the fact that
two opposite reward shifting schemes are adopted. To achieve
a better balance between the OOD behavior constraint and the
policy improvement, we further present a Proximity-based
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BRS (PBRS) method, which adjusts the magnitude of re-
ward shifting adaptively for each state according to the prox-
imity of the learned policy to behavior policy. Finally, we
evaluate the performance on the popular D4RL benchmark
and show that our method is competitive compared with the
SOTA baselines.

2 Related Work

Current researches on offline RL usually tackle the extrap-
olation error issue by regularizing the learning of the ac-
tor or critic. Specifically, policy constraint methods in-
troduce different regularization terms into the actor objec-
tive in order to keep close to the behavior policy. Previ-
ous work either adds the policy constraint term into the pol-
icy optimization objective [Wu et al., 2019; Fujimoto and
Gu, 2021] or directly updates the policy using the closed-
form solution to the joint objective comprised of the policy
improvement and the policy constraint [Peng et al., 2019;
Siegel et al., 2020]. As for the critic regularization methods,
these works usually learn a conservative value function to
mitigate the overestimation issue of OOD actions. To achieve
this, conservative Q-learning (CQL) [Kumar et al., 2020] di-
rectly minimizes the Q-values of OOD samples besides the
TD-error objective. Some other studies [Kumar et al., 2019;
Fujimoto et al., 2019] choose to construct the bootstrapped
target using the maximum within in-sample actions while not
the one over the whole action space. In practice, these ad-
ditional regularization terms usually need to be designed and
finetuned carefully.

Instead of the actor and critic regularization methods, re-
search on reward engineering is also considered to address
the issues in offline RL. Some related studies utilize dif-
ferent prior information to learn the additional supplemen-
tary reward. For example, Mezghani et al. focus on the
goal-conditioned offline RL and propose to learn a distance
function used to shape a dense reward function via self-
supervised learning [Mezghani et al., 2022], while several
works [Konyushkova et al., 2020; Cabi et al., 2020] attempt
to learn reward functions from offline data with human pref-
erence or few human annotations. Different from the above
studies that focus on incomplete reward information in offline
RL, some other methods aim to address the common extrap-
olation error issue by modifying the original reward function.
Specifically, MOPO [Yu et al., 2020] reshapes the reward
with the uncertainty of ensemble dynamic models, and TD3-
CVAE [Rezaeifar et al., 2022] subtracts an anti-exploration
bonus defined by the reconstruction error from the reward
function. Both methods utilize the reward penalty on pos-
sible OOD data to reshape reward functions, which are ex-
pected to regularize the OOD behavior. Our work is related
to TD3-CVAE and MOPO in the sense of reward shaping, but
in contrast, our method can not only add opposite bonuses
for different data but also adjust the bonus along with the
policy learning process, while MOPO and TD3-CVAE add
the bonus absolutely dependent on the property of pretrained
model and may be affected by some abnormal actions values.

3 Priliminaries
In this paper, we choose to solve RL problem within the
Markov Decision Process (MDP) framework specified by
the tuple M = ⟨S,A, P, r, γ⟩, where S,A denote the
state and action space, P : S × A × S → [0, 1] and
r : S × A → [Rmin, Rmax] represent the Markov transi-
tion probability function and reward function respectively,
and γ ∈ (0, 1) is the discounted factor. The goal of RL
is to learn a policy π : S × A → [0, 1] that can maxi-
mize the corresponding expected discounted cumulative re-
turn: Eπ [

∑∞
t=0 γ

tr(st, at)] = Es∼dπ,a∼π [r(s, a)], where dπ
is the stationary state distribution. To evaluate the quality of
policy, the Bellman operator is usually used to estimate its
Q-value via bootstrapping:

T πQ(s, a) = r(s, a) + γEs′∼P,a′∼π [Q(s′, a′)] (1)

For the online RL problem, one can conduct the policy
evaluation after the online data is collected by the current pol-
icy, where the estimation error can be corrected through this
online trial and error.

3.1 Offline Reinforcement Learning
Different from online RL setting, offline RL [Levine et al.,
2020] is required to evaluate and learn the policy based on a
fixed dataset D = {si, ai, ri, si+1}Ni=1 generated in advance
by the unknown behavior policy πβ . Traditional off-policy
methods [Lillicrap et al., 2015; Mnih et al., 2015] usually fail
in this setting due to the distribution shift between the learned
policy and behavior policy πβ . This is because the OOD ac-
tion a′ rarely visited by policy πβ may be easily overesti-
mated and chosen to construct the bootstrapped target using
Eq.(1), and thus accumulate and propagate extrapolation er-
rors in estimated value function.

3.2 Reward Shifting for Reinforcement Learning
Reward shifting is a special case of reward shaping method
[Laud, 2004; Ng et al., 1999] that uses a linear transforma-
tion. In particular, given a MDP M, the original reward func-
tion r is replaced with its linear form: r′ = k · r + b, ∀k >
0, b ∈ R. This linear transformation will not change the op-
timal policy and the optimal Q-value before and after this
change also satisfies a linear transformation:

Q∗
k,b(s, a) = k ·Q∗(s, a) +

b

1− γ
(2)

⇒π∗(s) = argmax
a∈A

Q∗
k,b(s, a) = argmax

a∈A
Q∗(s, a)

Where Q∗
k,b and Q∗ represent the optimal Q-values using

transformed reward r′ and original reward r respectively. Pre-
vious work [Sun et al., 2022] provides a key insight into the
different effects of reward shifting. For convenience, they
fixed the scaling factor k = 1 and studied how the opposite
bias b affects the reinforcement learning in different settings:

a) Online RL: The online RL prefers a negative reward
shifting, i.e., b < 0, which may lead to the relatively op-
timistic initialization. This is because the values of visited
state-action pairs may be negatively shifted lower than the
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initialization. And in subsequent interactions, the greedy pol-
icy will be prone to select under-explored actions.

b) Offline RL: In contrast, according to Eq.(2), a positive
bias b > 0 will lead to universally optimistic optimal values
(positively shifted by b

1−γ ). Since only the observed offline
data is updated with the optimistic target, this will enlarge the
value gap with the unobserved data (i.e., OOD data) that has
relatively pessimistic initialization. The larger gap can lead to
more exploitation on observed data when choosing the action
greedily, which is beneficial to avoid taking OOD actions in
offline RL.

In this paper, we also keep the fixed k = 1 and utilize the
different reward shifting with the positive or negative bias b.

4 Method
In this section, we first introduce a simple Bi-direction Re-
ward Shifting (BRS) method for offline RL, which utilizes the
opposite reward shifting for training data in and out of distri-
bution, achieving the anti-exploration on OOD data. Then,
to balance the OOD behavior constraint and policy improve-
ment, we further present an adaptive version of BRS, which
adjusts the reward shifting for each state according to the
proximity of the learned policy to the behavior policy. Be-
sides, we show a close connection of our BRS to the repre-
sentative conservative-based method. Finally, we detail the
practical algorithm with some specific designs.

4.1 Bi-direction Reward Shifting for Offline RL
As mentioned above, different RL settings prefer different re-
ward shifting, i.e., a positive reward bias b+ > 0 favors the
more exploitation of the given dataset in offline RL, while a
negative reward bias b− < 0 is beneficial for optimistic ex-
ploration in online RL.

In this paper, we focus on the offline RL setting, which
suffers from the extrapolation error and has to avoid OOD
behavior. Inspired by the effects of reward shifting, we pro-
pose to apply the positive reward shifting to the provided of-
fline data. Mathematically, we define the iterative operator of
in-distribution transitions (s, a, s′, r) sampled from D by:

TinQk(s, a) = r(s, a) + b+ + γEa∼π [Qk(s
′, a′)] (3)

The positive bias b+ > 0 added to the reward function
of sampled data from buffer D is expected to lead to more
exploitation of in-distribution data.

As for the unobserved data, i.e., (s, a) /∈ D, we add a neg-
ative shift b− < 0 into its reward function, which can result
in less exploration and queries on out-of-distribution data and
mitigate its potential overestimation issue. Similarly, we de-
fine the iterative operator of OOD data as:

ToodQk(s, a) = Qk(s, a) + b− (4)

Note that since the offline dataset doesn’t contain the out-
of-distribution data, we have no information about its reward
and transitioned state. So we use the current approximated Q-
value Qk(s, a) as the pseudo value target, which is dependent
on the generalization of the learned value function.

Both the more exploitation of in-distribution data and the
less exploration of OOD data will make the learned policy

avoid the OOD behavior as much as possible (called anti-
exploration on OOD actions[Rezaeifar et al., 2022]). Specif-
ically, TD3-CVAE[Rezaeifar et al., 2022] achieves this anti-
exploration by subtracting a bonus from the reward function,
while our method adds opposite reward biases for different
data. Besides, the subtracted bonus for each action in TD3-
CVAE depends on the reconstruction error itself. In contrast,
our method determines the bias by the policy difference for
each state (introduced in the next section), which may mit-
igate the effects of individual abnormal action values. Due
to the opposite reward shifting imposed on different data, we
dub this method Bi-direction Reward Shifting (BRS).

4.2 Proximity-based BRS
The proposed BRS method utilizes the opposite reward shift-
ing to achieve the anti-exploration of OOD actions. Note that
the magnitude of reward shifting controls the strength of this
anti-exploration. This means that, according to the above def-
initions in Eq.(3) and Eq.(4), the BRS method will impose
the same strength of anti-exploration across all states via two
constant reward biases b+ and b−. However, it may not be the
best choice - e.g., for some states where π and πβ behave very
differently, a higher magnitude of reward shifting is preferred
as this will help to increase the strength of anti-exploration
by restricting the learned policy π from performing OOD ac-
tions. On the other hand, for those states where π has already
been trained to behave similarly with πβ , the same amount
of high magnitude would instead make both policies become
over-consistent and hinder the performance improvement of
target policy π. In such cases, a lower magnitude of reward
shifting is obviously desired.

Based on the above observations, we propose a Proximity-
based BRS (PBRS) method that adjusts the shifted reward
adaptively for each state according to the proximity between
the learned policy and behavior policy as the following:

bk(s) = c · g (Df [πk(·|s)∥πβ(·|s)]) (5)

where c > 0 is a scaling coefficient for this adaptive re-
ward shifting, and the f -divergence between πk and πβ ,
Df [πk(·|s)∥πβ(·|s)], is used to measure the proximity of the
learned policy to behavior policy at state s. g(·) is a mono-
tonically increasing function which satisfies that g(0) ≥ 0.

Note that the proposed function bk(s) finally returns an
adaptive non-negative shifted reward for each state at any k-
th iteration, and we apply this state-wise reward shifting for
the training data in and out of distribution along opposite di-
rections in PBRS:

Qk+1(s, a)

=

{
r(s, a) + γEa∼π [Qk(s

′, a′)] + bk(s) (s, a) ∼ D
Qk(s, a)− bk(s) (s, a) /∈ D (6)

The motivation behind Eq.(6) is to utilize a larger reward
shifting to regularize OOD actions at those states where a sig-
nificant difference exists between both πk and πβ . In con-
trast, if πk approaches to πβ at some states, the decreasing
bk(s) is beneficial to obtain more policy improvements within
a broader range by relaxing the behavior constraint. We fi-
nally expect to achieve a balance between the behavior con-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4622



straint and the policy improvement for each state by an adap-
tive strength of anti-exploration for OOD actions.

4.3 A Link to CQL
The conservative-based methods in offline RL follow the pes-
simistic principle and aim to learn a conservative Q-value
function to mitigate the overestimation issue for OOD actions
so as to reduce the extrapolation error. Taking the represen-
tative CQL algorithm [Kumar et al., 2020] as an example,
although CQL derives its original critic objective from the
perspective of the Q-value regularization, we show that CQL
is also equivalent to a special case of our BRS method. Re-
calling the definition of critic objective in CQL:

min
Q

Jcql(Q) =
1

2
Es,a,s′∼D

[
(Q(s, a)− T πkQk(s, a))

2
]

+α

(
E s∼D,
a∼µ(a|s)

[Q(s, a)]− E s∼D,
a∼πβ(a|s)

[Q(s, a)]

)
(7)

Where the actions sampled by the special policy µ(a|s)1

can be viewed as OOD data. Note that, besides minimizing
the Bellman error, the minimization of the Q-value regular-
ization term helps to push down the Q-values for actions from
µ, and pull up the Q-values for in-distribution data simulta-
neously. Considering the derivative of Eq.(7), we can rewrite
its objective:

∇Jcql(Q)

=Es,a,s′∼D [(Q(s, a)− T πkQk(s, a)) · ∇Q(s, a)]

+ α

(
E s∼D,
a∼µ(a|s)

[∇Q(s, a)]− E s∼D,
a∼πβ(a|s)

[∇Q(s, a)]

)
=Es,a,s′∼D [(Q(s, a)− T πkQk(s, a)− α) · ∇Q(s, a)]

+ E s∼D,
a∼µ(a|s)

[(Qk(s, a)−Qk(s, a) + α) · ∇Q(s, a)]

=
1

2
∇Es,a,s′∼D

[
(Q(s, a)− (T πkQk(s, a) + α))

2
]

+
1

2
∇E s∼D,

a∼µ(a|s)

[
(Q(s, a)− (Qk(s, a)− α))

2
] ∣∣∣∣
Q=Qk

(8)

Where we use a fact that all in-distribution data in D is
sampled from the unknown behavior policy πβ . Note that if
we treat the actions sampled by µ as OOD actions, the above
Eq.(8) indicates that CQL is a special BRS method under the
conditions that the opposite shifted rewards are b+ = α and
b− = −α,

And according to the original analysis (Theorem 3.4 in
[Kumar et al., 2020]), compared with the Bellman operator,
CQL can expand the difference in expected Q-values under
behavior policy πβ and µ which is beneficial to prevent over-
optimistically erroneous OOD actions when choosing a large
enough α. However, a large α may also become problem-
atic in some cases, especially when the given offline dataset

1µ is assumed to match the state-marginal of behavior policy, i.e.,
µ(s, a) = dπβ (s)µ(a|s), avoiding unseen states. And µ is learned
by an adversarial training objective to maximize the critic objective.

doesn’t contain the optimal actions a∗ for some states. We
provide the analysis of this case in the following Theorem:
Theorem 1. When using CQL algorithm in discrete action
space, assume that the corresponding optimal action a∗ be-
longs to OOD actions for any state s, i.e., πβ(a

∗|s) =
0, and ∀a ∈ As

in = {a : πβ(a|s) > 0|s} satisfies that
maxa∈As

in
|Qk(s, a) − Qk+1(s, a)| < α, then the proba-

bility of a∗ induced by Boltzmann policy will decrease, i.e.,
πk+1(a

∗|s) < πk(a
∗|s).

We refer to the Appendix.A for its detailed proof. Theorem
1 shows that a large α will lead to the probability decreasing
of a∗ earlier, which may hinder the policy improvement and
learn a suboptimal policy finally. This suggests the necessity
of adaptive reward shifting for different states, which is im-
portant to balance the OOD actions constraints and the policy
improvement, especially for the non-expert datasets.

4.4 Practical Algorithm
In the previous sections, we propose the general framework of
the PBRS method, while the practical algorithm still involves
some special designs. In this paper, we build our algorithm
upon the popular off-policy RL algorithm, Soft Actor-Critic
(SAC) [Haarnoja et al., 2018], and provide more details about
the specific choices here.
Loss functions. According to the above definition, we
should construct the Q-value targets for in-distribution and
out-of-distribution data separately. We directly sample in-
distribution tuple (s, a, s′, r) from the offline dataset D. As
for OOD data, we sample OOD states from in-distribution
dataset D and sample OOD actions for these OOD states by
following the current learned policy π. It’s reasonable to sam-
ple OOD data in this way since in continuous action space,
the sampled OOD actions by learned policy π are almost im-
possible to be included in offline dataset D except π is the
same with πβ . Combining both the in-distribution value tar-
get and OOD target in Eq.(6), we get the final loss function
of the critic objective:

L(Q) = Es∼D,a∼π

[(
Q(s, a)− (Qk(s, a)− bk(s))

)2]
+ Es,a,r,s′∼D

[(
Q− (r(s, a) + bk(s) + γQk(s

′, a′))
)2]

(9)

After updating the critic objective, we learn the actor by
maximizing the SAC-style policy optimization objective:

L(π) = Es∼D,a∼π

[
min
i=1,2

Qi(s, a)− τ log π(·|s)
]

(10)

Where τ is the coefficient of the entropy term and the min-
imum of double Q functions mini=1,2 Q

i(s, a) is used to ad-
dress the overestimation issue following the SAC algorithm.
Both the critic and actor are parameterized by the neural net-
work and updated by the above objectives.
Behavior policy. The calculation of adaptive reward shift-
ing term bk(s) requires the information of behavior policy
πβ . Thus, we need to fit a behavior policy model using the
offline dataset D = {si, ai}Ni=0. Though previous studies
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Algorithm 1 Proximity-based BRS

Input: Dataset D = {si, ai, ri, si+1}Ki=0.
1: initialize behavior policy πβ , learned policy network πθ,

Q-function network Qψ .
2: for t=0, 1, · · · , M do
3: Sample mini-batch samples (s, a) ∼ D.
4: Update πβ using Eq.(11).
5: end for
6: for k=0, 1, · · · , N do
7: Sample mini-batch samples (s, a, r, s′) ∼ D.
8: Calculate adaptive reward shifting bk(s) using Eq.(5)
9: Update Qψ by Eq.(9).

10: Update πθ by Eq.(10).
11: end for

often adopt the conditional variational autoencoder (CVAE)
[Sohn et al., 2015; Rezaeifar et al., 2022] or the Mixture of
Gaussians [Kostrikov et al., 2021] as the density estimator to
model the behavior policy πβ , in this paper, we found that
a simple single Gaussian model is sufficient to achieve good
performance. So we choose to train a Gaussian policy model
using the maximum likelihood estimation (MLE) objective:

πβ = argmax
πθ

LMLE(πθ) = Es,a∼D [log πθ(s, a)] (11)

To be consistent with the learned policy, we can further add
a policy entropy term −τ log πθ(a|s) to the above Eq.(11).

Adaptive reward shifting. When computing the adaptive
reward shifting term bk(s) according to Eq.(5), we tried
both Maximum Mean Discrepancy and KL-divergence as the
proximity measurement of both policies and found that the
latter can achieve a better result on broader tasks. We estimate
this KL-divergence using the Monte Carlo sampling method:
D̂KL[π∥πβ ](s) ≈ 1

N

∑N
i=1 log π(ai|s)/ log πβ(ai|s) and re-

place D̂KL(s) by [D̂KL(s)]
u
0 , where the clipping function

[·]ul is used to avoid the numerical issue and ensure the non-
negativity of KL-divergence. We fix u = 10 for practical
runs. As for the monotonically increasing function g(·), we
found both the softplus function g(x) = log(1 + ex) and
the simple identity function g(·) = I(·) could lead to simi-
lar performance improvements. We show the results of using
softplus function in the main text and supplement the results
of using the identity function in the Appendix. Finally, we
summarize the overall algorithm in Algorithm 1

5 Experiments
In this section, to verify the feasibility and effectiveness of
our proposed method, we first empirically evaluate the perfor-
mance on the D4RL benchmark [Fu et al., 2020] and compare
it with several strong baselines. Furthermore, we empirically
analyze some critical properties to confirm the rationality of
our motivation.

5.1 Experiment Setup
Baselines. In the D4RL benchmark, We compare our PBRS
method with some current state-of-the-art methods. These

representative algorithms attempt to solve the existing issues
in offline RL from different perspectives:

• UWAC [Wu et al., 2021] that reweights the TD-error
according to the uncertainty estimation;

• TD3-CVAE [Rezaeifar et al., 2022] that penalizes the
rewards of OOD actions via a reconstruction error;

• MOPO [Yu et al., 2020] that imposes reward penalty via
the uncertainty of dynamic models;

• CQL [Kumar et al., 2020] that learns a conservative Q
function by minimizing the Q-values of OOD actions;

• TD3-BC [Fujimoto and Gu, 2021] that regularizes the
policy update via a simple BC constraint;

• IQL [Kostrikov et al., 2022] that learns the V-value
function so as to avoid the queries on OOD actions.

Datasets and implementation. We choose to conduct ex-
periments on 12 MuJoCo locomotion tasks made up of all
combinations of three environments (HalfCheetah, Hopper,
Walker2d) across four different types of collected datasets
(medium, medium-replay, medium-expert, expert). Since we
adopt the latest bug-fixed ‘-v2’ dataset for empirical com-
parison, we reimplement the CQL that evaluates the perfor-
mance on ‘-v0’ datasets in the original paper. As for the other
baselines, we take their reported results from their paper di-
rectly. Note that the coefficient c used in our adaptive reward
shifting term bk(s) controls the strength of anti-exploration.
Due to the significant differences between different types of
datasets, we tune this coefficient for each task over a small set
c ∈ {0.3, 0.5, 0.7, 0.9}, and the corresponding ablation study
will be provided later. Besides, we also evaluate our method
on the more challenging AntMaze domains and provide the
complete results as well as more experimental details in the
Appendix.B.

5.2 Performance Comparison
We summarize and compare the average normalized score of
our PBRS with all mentioned baselines in Table 1, where 0
represents a random policy and 100 corresponds to an ex-
pert policy. All the scores are averaged over the final 10
evaluations after one million training steps. We provide the
complete learning curves in Appendix.B. We can see that our
method can significantly outperform these strong baselines
across most tasks. Especially in ‘medium’ and ‘medium-
replay’ datasets that include many suboptimal samples, our
method can suppress the most baselines with a large margin.
Even for the high-quality datasets (‘medium-expert’ and ‘ex-
pert’), our PBRS can still achieve competitive performance
except on the ‘HalfCheetah-medium-expert’ task. Compared
with TD3-CVAE and MOPO that add the negative bonus to
reward functions, our method achieves superior performance
on many tasks except a few ones (‘HalfCheetah-medium’ and
‘Halfcheetah-medium-replay’), which verifies the effective-
ness of the opposite reward shifting.

Note that our proposed method can achieve remarkable
performance improvements over the CQL algorithm on 11
out of 12 datasets. Since the CQL method can be seen as
a special case of our method using constant reward shift-
ing, we attribute these inferior results to the rigid strength of
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Task Name UWAC TD3-CVAE MOPO CQL TD3+BC IQL PBRS

HalfCheetah-m 42.2±0.4 43.2±0.4 73.1±2.4 49.1±0.1 48.3±0.3 47.4±0.2 58.2±0.5
Hopper-m 50.9±4.4 55.9±11.4 38.3±34.9 67.5±2.4 59.3±4.2 66.3±5.7 75.4±1.8

Walker2d-m 75.4±3.0 68.2±18.7 41.2±30.8 83.1±0.6 83.7±2.1 78.3±8.7 88.5±0.8
HalfCheetah-m-r 35.9±3.7 45.3±0.4 69.2±1.1 45.5±0.2 44.6±0.5 44.2±1.2 49.4±0.2

Hopper-m-r 25.3±1.7 46.7±17.9 32.7±9.4 95.5±0.8 60.9±18.8 94.7±8.6 102.3±0.7
Walker2d-m-r 23.6±6.9 15.4±7.8 73.7±9.4 82.5±2.1 81.8±5.5 73.9±7.1 88.9±1.0

HalfCheetah-m-e 42.7±0.3 86.1±9.7 70.3±21.9 74.5±6.4 90.7±4.3 86.7±5.3 66.5±7.8
Hopper-m-e 44.9±8.1 111.6±2.3 60.6±32.5 104.6±2.2 98.0±9.4 91.5±14.3 109.4±1.7

Walker2d-m-e 96.5±9.1 84.9±20.9 77.4±27.9 109.5±0.3 110.1±0.5 109.6±1.0 111.7±0.4
HalfCheetah-e 92.9±0.6 - 81.3±21.8 98.2±1.3 96.7±1.1 95.0±0.5 102.3±1.0

Hopper-e 110.5±0.5 - 62.5±29.0 107.7±2.4 107.8±7.0 109.4±0.5 111.8±0.3
Walker2d-e 108.4±0.4 - 62.4±3.2 109.4±0.1 110.2±0.3 109.9±1.2 111.9±0.4

Total 749.2 - 742.7 1027.1 992.1 1006.9 1076.3

Table 1: Normalized score comparison of all mentioned methods above on D4RL benchmark. All results are evaluated on ‘-v2’ datasets,
where m = medium, m-r = medium-replay, m-e = medium-expert, e = expert. Except for some results taken from the corresponding paper,
we report the mean and standard deviation of score performance over four random seeds and bold the highest results.

anti-exploration for OOD data, which may lead to too much
or too little regularization on OOD actions at some specific
states, while our proposed adaptive reward shifting mecha-
nism can adjust this strength according to the necessity of be-
havior constraint at each state, i.e., the proximity between the
learned and behavior policy and the effectiveness is verified
by the outperformance of our PBRS.

5.3 Property Analysis
Adaptive reward shifting variation. To demonstrate
the effectiveness of our adaptive reward shifting, we
record the variation of bk(s) in the training process.
Specifically, we record the mean and standard deviation
of bk(s) for ‘Walker2d-medium’ and ‘Walker2d-medium-
expert’ datasets. All the results are shown in the top row of
Figure 1. We can see that the mean of bk(s) (left subplot) will
decrease sharply at the beginning of training due to the warm-
up of behavior cloning, and when starting training following
our PBRS, the mean will gradually decrease and converge
to a small level as the training process. This suggests that
the learned policy by our PBRS would approach the behavior
policy and the corresponding decrease in bk(s) can mitigate
the potential excessive regularization on OOD actions, which
is considered beneficial for policy improvement. As for the
standard deviation of bk(s), the right subplot implies that the
proximity to behavior policy varies significantly among dif-
ferent states, though this variation will decrease as the train-
ing process. These results demonstrate the necessity to adjust
the strength of reward shifting at each state for more robust
behavior constraints.

OOD actions regularization. In this part, to compare the
strength of OOD action regularization, we compute the dis-
tance between the actions selected by the learned policy and
the ones from the dataset. Mathematically, this action dis-
tance is formulated by E(s,a)∼D,â∼πθ(·|s)

[
∥â− a∥22

]
. We

choose to estimate the action distance using a batch of sam-
ples from both datasets and plot the histograms of distance
in the middle row of Figure 1. In particular, we compare
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Figure 1: Property comparisons on both ‘Walker2d-medium’ and
‘Walker2d-medium-expert’ datasets. top row: Variation curves
of mean and standard deviation about the adaptive reward shifting
bt(s); middle row: Histograms of the distance between the actions
from the learned policy and actions from the datasets; bottom row:
Value difference between in-distribution and OOD actions.
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Figure 2: Performance comparison on the scaling coefficient candidates c = {0.3, 0.5, 0.7, 0.9} over all the combinations of environments
(HalfCheetah, Hopper, Walker2d) and datasets (m = medium, m-r =medium-replay, m-e = medium-expert, e = expert).

the action distance for CQL and our PBRS. The results show
that our method owns a larger action distance than the CQL
method; this suggests that the conservative-based method
imposes a stronger OOD action regularization, leading to a
more similar behavior with the dataset. While our PBRS can
choose more diverse actions, which is thought of as the reason
to achieve more policy improvement and better performance.
Q-value difference. Conservative Q-values of OOD ac-
tions play an important role in mitigating the potential overes-
timation issue, which could lead to the extrapolation error. In
fact, these conservative OOD action values would enlarge the
Q-value gaps between in-distribution and out-of-distribution
actions. And the larger gaps could decrease the probability
that OOD actions are chosen. So we further record and com-
pare the value difference between different actions. Specifi-
cally, we use E(s,a)∼D [Q(s, a)− Eaood [Q(s, aood)]] to esti-
mate the value difference between in-distribution and out-of-
distribution actions. And we sample actions from the mix-
ture of a uniform action distribution and the learned policy as
the approximation of aood. We compare the estimated value
difference for the conservative-based method and our PBRS,
and the results are shown in bottom row of Figure 1. From
this, we can see that our method owns a smaller value differ-
ence between data in and out of distribution. However, the
outperformance achieved by our PBRS method implies that
the sufficiently conservative Q-values of OOD actions are not
necessary to achieve better performance via OOD behavior
regularization. And our proposed adaptive reward shifting is
a reasonable and promising attempt to control the conserva-
tive Q-function adaptively.
Ablation study. According to the definition of Eq.(5), in
addition to the policy distance, the adaptive reward shifting
is also related to the scaling coefficient c. Though c doesn’t
adjust the reward shifting at each state, it still determines the
magnitude of adaptive reward shifting and affects the perfor-
mance trained on different datasets. In this section, we eval-
uate and compare the performance over all the combinations
of three environments and four datasets, using different coef-
ficients within the candidate set c = {0.3, 0.5, 0.7, 0.9}. We
demonstrate the results in Figure 2 and provide the learning
curves in Appendix. We can see that low-quality datasets,
e.g., ‘medium’ dataset, usually favor a small scaling coeffi-

cient (blue histograms), while for the high-quality ones, e.g.,
‘expert’ dataset, a large c is preferred to achieve better per-
formance (red histograms). This indicates that a high-quality
dataset with a relatively higher scale coefficient (larger c
value) generally leads to better results, implying that more
behavior constraints are necessary if the offline dataset is gen-
erated with a better behavior policy. We think both the scal-
ing coefficient and the proximity-based adaptation are com-
plementary because the former controls the overall strength
of anti-exploration of OOD actions, and the latter can further
refine it for each state.

6 Conclusion
As a linear transformation case of reward shaping, the simple
reward shifting method is considered in this paper to control
the exploitation and exploration effects through different re-
ward shifting constants. Specifically, we propose to apply
two opposite reward shifting schemes for in-distribution and
out-of-distribution actions respectively, resulting in more ex-
ploitation of in-distribution data and less exploration of OOD
data. However, the constant reward shifting for all states may
ignore the balance between OOD behavior regularization and
policy improvement. To address this issue, we propose a
proximity-based adaptive mechanism to adjust the strength of
reward shifting with respect to different states in the training
process. The empirical results on the D4RL benchmark verify
the feasibility and effectiveness of the proposed method.

For future studies, one interesting avenue is to consider
more fine-grained reward shifting. For example, shifting the
reward adaptively for each state-action pair so as to control
the action regularization more precisely. Another interesting
direction is to extend this adaptive reward shifting method to
unobserved states for better policy generalization.
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