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Abstract
Gradient Boosting Decision Tree (GBDT) has
achieved remarkable success in a wide variety of
applications. The split finding algorithm, which
determines the tree construction process, is one of
the most crucial components of GBDT. However,
the split finding algorithm has long been criticized
for its bias towards features with a large number
of potential splits. This bias introduces severe in-
terpretability and overfitting issues in GBDT. To
this end, we provide a fine-grained analysis of bias
in GBDT and demonstrate that the bias originates
from 1) the systematic bias in the gain estimation
of each split and 2) the bias in the split finding
algorithm resulting from the use of the same data
to evaluate the split improvement and determine
the best split. Based on the analysis, we propose
unbiased gain, a new unbiased measurement of
gain importance using out-of-bag samples. More-
over, we incorporate the unbiased property into the
split finding algorithm and develop UnbiasedGBM
to solve the overfitting issue of GBDT. We assess
the performance of UnbiasedGBM and unbiased
gain in a large-scale empirical study comprising
60 datasets and show that: 1) UnbiasedGBM ex-
hibits better performance than popular GBDT im-
plementations such as LightGBM, XGBoost, and
Catboost on average on the 60 datasets and 2) unbi-
ased gain achieves better average performance in
feature selection than popular feature importance
methods. The codes are available at https://github.
com/ZheyuAqaZhang/UnbiasedGBM.

1 Introduction
Gradient Boosting Decision Tree (GBDT) is one of the most
widely used machine learning models and has been ap-
plied in numerous domains, including medicine, finance, cli-
mate science, and healthcare. GBDT is particularly pop-
ular in modeling tabular data [Chen and Guestrin, 2016;
Shwartz-Ziv and Armon, 2022; Gorishniy et al., 2021; Grin-
sztajn et al., 2022]. In the training process of a GBDT model,
we need to construct decision trees one by one. During tree
construction, we need to determine the best split and the

split finding algorithm is one of the most crucial components
in GBDT. In the standard implementation [Friedman, 2001;
Chen and Guestrin, 2016; Ke et al., 2017], the best split
is chosen based on the reduction in loss (decrease in impu-
rity) of all candidate splits in all features. However, this
split finding algorithm has long been criticized for its bias
towards features that exhibit more potential splits [Breiman
et al., 1984; Strobl et al., 2007; Boulesteix et al., 2012;
Nicodemus, 2011]. Due to the increased flexibility afforded
by a larger number of potential split points, features with
higher cardinality (such as continuous features and features
with a large number of categories) have a higher probability
of being split than features with lower cardinality (such as bi-
nary features). This bias introduces two problems in GBDT:

• Interpretability issue. The gain importance [Breiman et
al., 1984; Hastie et al., 2001] in GBDT sums up the to-
tal reduction of loss in all splits for a given feature, and
is frequently used to explain how influential a feature is
on the models’ predictions. However, gain importance
is not reliable due to its bias towards features with high
cardinality [Breiman et al., 1984]. As we illustrate in
Example 1 in Section 4, a continuous feature indepen-
dent of the target may have higher gain importance than
a binary feature related to the target.

• Overfitting issue. During tree construction, the split
finding algorithm biases towards choosing features with
high cardinality [Breiman et al., 1984; Strobl et al.,
2007]. Moreover, the split finding algorithm uses train-
ing set statistics to determine the best split and does not
evaluate the generalization performance of each split.

Existing studies to address the bias problems mostly fall
into two categories: 1) they propose a post hoc approach to
calculate unbiased or debiased feature importance measure-
ment [Zhou and Hooker, 2021; Li et al., 2019], and 2) they
propose new tree building algorithms by redesigning split
finding algorithms [Loh and Shih, 1997; Kim and Loh, 2001;
Loh, 2009; Strobl et al., 2007]. However, these methods
mostly focus on random forests, and cannot generalize to
GBDT. One of the main reasons is that, different from most
random forest implementations, existing GBDT implementa-
tions employ the second-order approximation of the objective
function to evaluate split-improvement [Chen and Guestrin,
2016; Ke et al., 2017] (see more detailed discussions in the
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related work section). Since popular GBDT implementa-
tions, such as XGBoost [Chen and Guestrin, 2016] and Cat-
Boost [Dorogush et al., 2018], have been dominating tabu-
lar data modeling [Gorishniy et al., 2021; Shwartz-Ziv and
Armon, 2022], there is an urgent need to address the inter-
pretability and overfitting issues caused by the bias in GBDT.

To study the causes of the bias in GBDT, we conduct a fine-
grained analysis, which reveals that the bias originates from:
1) the systematic bias in each split’s gain estimation. We dis-
cover that the calculation of gain is a biased estimation of the
split improvement, and is almost always positive. 2) The bias
in the split finding algorithm due to the fact that it evaluates
the split improvement and determines the best split using the
same set of data. According to the analysis, first, we construct
an unbiased measurement of feature importance for GBDT
by using out-of-bag samples. This new measurement is un-
biased in the sense that features with no predictive power for
the target variable has an importance score of zero in expec-
tation. Next, we incorporate the unbiased property into the
split finding algorithm during tree construction and propose
UnbiasedGBM. Compared with existing GBDT implementa-
tions (such as LightGBM [Ke et al., 2017], XGBoost [Chen
and Guestrin, 2016], and CatBoost [Dorogush et al., 2018]),
UnbiasedGBM has two advantages:

1. The split finding algorithm unbiasedly chooses among
features with different cardinality to mitigate overfitting.

2. UnbiasedGBM evaluates the generalization perfor-
mance of each split and performs leaf-wise early-
stopping to avoid overfitting splits.

The contributions of this paper are summarized as follows:

1. We propose unbiased gain, an unbiased measurement of
feature importance in GBDT to address the interpretabil-
ity issue due to the bias in the split finding algorithm.

2. We propose UnbiasedGBM by integrating the unbiased
property into the split finding algorithm to mitigate over-
fitting.

3. We provide a large-scale empirical study comprising 60
datasets to show that: 1) UnbiasedGBM exhibits better
performance on average than LightGBM, XGBoost, and
Catboost, and 2) unbiased gain achieves better average
performance in feature selection than gain importance,
permutation feature importance, and SHAP importance.

2 Related Work
Existing methods to correct the bias in the split finding al-
gorithm fall primarily into two categories: 1) they propose a
new method to compute debiased or unbiased feature impor-
tance measurement. 2) They propose new tree construction
algorithms by redesigning the split finding algorithm.

There has been a line of work to develop new meth-
ods for computing debiased or unbiased feature importance.
Quinlan [Quinlan, 1986] proposed information gain ratio to
overcome the bias in classification trees. Sandri and Zuc-
colotto [Sandri and Zuccolotto, 2008] decomposed split-
improvement into the reduction in loss and a positive bias.
They used a pseudo dataset to estimate and subtract the

bias. Nembrini et al. [Nembrini et al., 2018] then improved
the computing efficiency of this approach. Li et al. [Li et
al., 2019] proposed a debiased feature importance measure.
However, their method still yields biased results. Zhou and
Hooker [Zhou and Hooker, 2021] proposed an unbiased mea-
surement of feature importance in random forests. Nonethe-
less, the theoretical analysis relies on using mean squared
error to justify the unbiased property of their method and
cannot be generalized to GBDT, which often employs dif-
ferent loss functions for tree construction. In this paper, we
propose unbiased gain, an unbiased measurement of feature
importance in GBDT. Our method enjoys several advantages
compared with previous methods: 1) Our method does not
generate pseudo data that incurs additional cost as in Sandri
and Zuccolotto [Sandri and Zuccolotto, 2008] and Nembrini
et al. [Nembrini et al., 2018]. 2) Our method can be easily
used in GBDT implementations and has the theoretical guar-
antee of being unbiased, whereas Zhou and Hooker [Zhou
and Hooker, 2021] cannot generalize to GBDT.

There has been another line of works that develop
new tree building algorithms to remove the bias, such as
QUEST [Loh and Shih, 1997], CRUISE [Kim and Loh,
2001], GUIDE [Loh, 2009], and cforest [Strobl et al., 2007].
However, these methods cannot generalize to GBDT for a va-
riety of reasons. For example, QUEST, CRUISE, and GUIDE
use classification trees, whereas GBDT uses regression trees
for both classification and regression tasks and supports var-
ious loss functions. cforest [Strobl et al., 2007] separates
the variable selection and the splitting procedure to remove
the bias. However, this method incurs an excessive amount
of computational overhead, as variable selection is typically
costly. We are the first to integrate the unbiased property into
GBDT and develop UnbiasedGBM to address the overfitting
problem caused by the bias in GBDT.

3 Background
We briefly introduce the GBDT model in which the second
order approximation is used in the training (e.g., XGBoost
[Chen and Guestrin, 2016], LightGBM [Ke et al., 2017]).
Note that we formulate the GBDT objective under the pop-
ulation distribution as opposed to the traditional formula-
tion of GBDT utilizing the empirical distribution [Chen and
Guestrin, 2016; Li, 2012]. This formulation is essential, and
it allows us to examine and comprehend the bias in GBDT.

3.1 Gradient Boosting Decision Trees
Consider the dataset D = {(x, y)}, where (x, y) are indepen-
dent and identically distributed from an unknown distribution
T . A tree ensemble model uses K additive functions to model
the distribution T and predict the output:

ŷ = ϕ(x) =
K

∑

k=1
fk(x), fk ∈ F ,

where F = {f(x) = wq(x)} is the space of regression trees.
Here q represents the tree structure and q(x) maps an ex-
ample x to the leaf index. We construct the tree ensem-
ble in an additive manner to minimize the objective function
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L(ϕ) = Ex,y [l(ϕ(x), y)] . Let ϕt be the model at the t-th it-
eration and ŷt be the corresponding prediction. We greedily
add a new regression tree ft that most improves the objective
function L(ϕt−1 + ft). This is achieved by using the second-
order approximation:

L(ϕt−1 + ft) ≈ Ex,y[l(ŷt−1, y) + g(x, y)ft(x)

+

1

2
h(x, y)ft(x)

2
],

where

g(x, y) =
∂l(ϕt−1(x), y)

∂ϕt−1(x)
, h(x, y) =

∂2l(ϕt−1(x), y)

(∂ϕt−1(x))
2

.

We can simplify the objective function by removing the con-
stant terms:

L̃(ϕt−1 + ft) = Ex,y [g(x, y)ft(x) +
1

2
h(x, y)ft(x)

2
] .

For a leaf node I in the tree structure, the loss L(I) con-
tributed by the leaf is

L(I) = Ex,y [1{q(x)=I} (g(x, y)f(x) +
1

2
h(x, y)f(x)2)]

= Ex,y [1{q(x)=I} (g(x, y)wI +
1

2
h(x, y)w2

I)]

= P (x ∈ I) (µg(I)wI +
1

2
µh(I)w

2
I) ,

where µg(I) = Ex,y [g(x, y)] and µh(I) = Ex,y [h(x, y)].
We can calculate the optimal weight wI of leaf I by

wI = −
µg(I)

µh(I)

and compute the corresponding optimal loss by

L(I) = −
1

2

µg(I)
2

µh(I)
P (x ∈ I). (1)

Consider a split on feature Xj at a splitting point s, which
results in two child nodes IL = {(x, y)∣xj ≤ s} and IR =
{(x, y)∣xj > s}. The gain of the split θ = (j, s) is defined as
the reduction in loss:

Gain(I, θ) = L(I) −L(IL) −L(IR). (2)

In practice, the distribution T is usually unknown, there-
fore we cannot directly calculate µg(I) and µh(I). Instead,
we use the training dataset to estimate µg(I) and µh(I).
Given a training dataset with n examples and m features
Dtr = (X,Y ) = {(xi, yi)}, where ∣Dtr ∣ = n and (xi, yi)

iid
∼

T , we estimate the loss on leaf I and the gain of a split by

L̃(I) = −
1

2

(
1
nI
∑i∈I gi)

2

1
nI
∑i∈I hi

nI

n
= −

1

2n

G2
I

HI
, (3)

G̃ain(I, θ) =
1

2n
(

G2
L

HL
+

G2
R

HR
−

G2
I

HI
) , (4)

where GI = ∑i∈I gi, HI = ∑i∈I hi, and nI is the number of
samples on node I .

3.2 Gain Importance

Gain importance [Breiman et al., 1984; Hastie et al., 2001],
also known as mean decrease in impurity, is a kind of feature
importance in tree-based methods. It is frequently used to
explain how influential a feature is on the model’s predictions.
Gain importance is calculated by summing up the split gain
in Eq 4 of all the splits for each feature respectively.

4 Analysis of Bias in GBDT
We analyze the bias in GBDT and demonstrate that it stems
from the systematic bias in the gain estimation and the bias in
the split finding algorithm. We show how this bias might lead
to serious interpretability and overfitting problems in GBDT.

4.1 Bias in The Gain Estimation

G̃ain estimates the reduction in loss of a given split on a fea-
ture, which is used in both tree construction and the interpre-
tation of a feature’s importance in the tree ensemble model.
Intuitively, we would like the G̃ain to be unbiased, i.e., it
should be zero in expectation when randomly splitting on a
feature that is independent of the target. However, G̃ain is
always non-negative for any split on any feature.

Theorem 1. For a dataset (X,Y ) sampled from a distribu-
tion T , for any split θ of node I on a given feature Xj , we
always have

G̃ain(I, θ) ≥ 0.

According to the theorem, the split gain for a random split
on a feature independent of the target is almost always pos-
itive (the split gain is zero in very rare cases, see the proof
and more discussions in Appendix A). This implies that 1)
we may split on an uninformative feature, and 2) a positive
split gain does not necessarily indicate that the feature con-
tributes to the model. One of the reasons causing this bias is
that, ( 1

n ∑
n
i=1 gi)

2 is not an unbiased estimation of µ2
g:

ED
⎡
⎢
⎢
⎢
⎢
⎣

(

1

nI
∑

i∈I
gi)

2⎤
⎥
⎥
⎥
⎥
⎦

= ED
⎡
⎢
⎢
⎢
⎢
⎣

1

n2
I

∑

i,j∈I,i≠j
2gigj

⎤
⎥
⎥
⎥
⎥
⎦

+ED [
1

n2
I

∑

i∈I
g2i ]

=

nI − 1

nI
µg(I)

2
+

1

nI

(µg(I)
2
+ σg(I)

2
)

= µg(I)
2
+

1

nI
σg(I)

2.

For an uninformative feature that is independent of the target,
any split on the feature yields µg(I) = µg(IL) = µg(IR) and
σg(I) = σg(IL) = σg(IR). Consider a regression problem
with the MSE loss where the hessian is always a constant,
according to Eq. 3 we have

ED [L̃(I)] =
1

2n
(ED [nI]µg(I)

2
+ σg(I)

2
) ,
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Figure 1: The features’ importance under different importance mea-
surements in the synthetic dataset. The box plot is based on 1000
repetitions. Unbiased gain correctly assigns the highest importance
to X1 and an importance of zero in expectation to X2 and X3.

hence the split gain on the uninformative feature is

ED [G̃ain(I, θ)]

= ED [L̃(IL)] +ED [L̃(IR)] −ED [L̃(I)]

=

1

2n
(σg(I)

2
+ED [nL + nR − nI]µg(I)

2
)

=

1

2n
σg(I)

2
≥ 0.

4.2 Bias in The Split Finding Algorithm

One of the main challenges in tree learning is to find the op-
timal split that maximize the reduction of the loss, as shown
in Eq. 2. To do this, a split finding algorithm iterates over
candidate splits on all features to identify the optimal split
that minimizes loss on the training dataset. This strategy for
identifying the optimal split introduces two problems in tree
learning: 1) the split finding algorithm favors features with
high cardinality (such as continuous features or categorical
features with many categories). Higher cardinality features
have a greater number of candidate splits, and thus a greater
likelihood of being split. 2) The split finding algorithm al-
ways selects the best split on the training set, without evalu-
ating the generalization performance of each split. The two
problems together lead to the overfitting problem in GBDT.
We use an example to illustrate how these two problems ad-
versely affect tree learning.

Example 1. We generate a synthetic dataset, so that X1 is a
binary feature, X2 is a categorical feature with 6 categories
(each category has equal probability), and X3 ∼ N(0,1) is
continuous. Consider a regression problem with y = 0.1X1+ϵ
where ϵ ∼ N(0,1). We train a GBDT on the synthetic dataset
and plot the gain importance of each feature in Figure 1(a).
We can see that the importance of X2 and X3 is larger than
that of X1, even if X2 and X3 are independent with the target
variable. This shows that GBDT overfits on the noise due
to the bias in the split finding algorithm. In addition, this
bias introduces interpretability issues, as X2 and X3 are more
important than X1 based on the gain importance.

5 Our Method
To solve the interpretability issue caused by the bias in
GBDT, we propose “unbiased gain”, an unbiased measure-
ment of feature importance in Section 5.1. Then we incorpo-
rate the unbiased property into the split finding algorithm and
propose UnbiasedGBM in Section 5.2 to address the issue of
overfitting caused by the bias in GBDT.

5.1 Unbiased Gain
Our earlier analysis revealed that there are two sources of the
bias in gain importance. First, gain importance biases towards
features with high cardinality due to the split finding algo-
rithm. Second, gain importance is always non-negative due to
the biased estimation of Eq 2. Our goal is to propose an un-
biased measurement of feature importance (unbiased gain).
This new measurement is unbiased in a sense that an unin-
formative feature will receive an importance score of zero in
expectation.

In order to design an unbiased measurement of feature im-
portance, we need to eliminate two sources of bias in the cur-
rent gain importance measurement mentioned above. The in-
tuitive rationale for the first source of bias is that we should
not determine the best split and assess its performance us-
ing the same set of data. Therefore, a separate validation set
is considered to estimate the gain importance. However, di-
rectly computing gain importance using the validation set still
suffers from the second source of bias. Therefore, we con-
struct a new form of estimation using the validation set that
meets the zero-expectation criterion.

Assume we have a training dataset D = {(xi, yi)} and a
validation dataset D′ = {(x′i, y

′
i)}. For a given leaf node I

and a given split I = IL ∪ IR, there are nI , nL, nR training
examples and n′I , n′L, n′R validation examples that fall into
leaf node I , IL, and IR. First, we estimate µg(I) using the
training examples

µ̂g(I) =
1

nI
GI =

1

nI
∑

q(xi)=I
gi.

Then, we randomly select k examples from n′I validation
examples, where k =min(n′L, n

′
R). Next, we estimate µg(I)

and µh(I) using k randomly selected validation examples

µ̂′g(I) =
1

k
G′I =

1

k
∑

q(x′i)=I
g′i ⋅ δ(I, i),

µ̂′h(I) =
1

k
H ′I =

1

k
∑

q(x′i)=I
h′i ⋅ δ(I, i),

where δ(I, i) is a binary indicator showing whether a valida-
tion sample has been selected. Finally we can calculate the
loss of leaf node I by

L̃(I) =
1

2

µ̂g(I) ⋅ µ̂
′
g(I)

µ̂′h(I)
⋅

nI

n
= −

1

2n
GI ⋅

G′I
H ′I

.

Here, GI is computed using the training set while G′I and
H ′I are computed using the validation set. We can also cal-
culate L̃(IL) and L̃(IR) in a similar way (the number of se-
lected validation example k is the same for I , IL, and IR).
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Finally, the unbiased gain is calculated as

G̃ainub(I, θ) = L̃(I) − L̃(IL) − L̃(IR). (5)

Theorem 2. For a feature Xj , a leaf node I , and a split θ, if
Xj is marginally independent of y within the region defined
by the leaf node I , then

ED′ [G̃ainub(I, θ)] = 0.

A critical design in the unbiased gain is that, instead of es-
timating µg(I), µg(IL), and µg(IR) using all the validation
examples on node I , IL, and IR, we randomly select k ex-
amples from node I , IL, and IR respectively for estimation.
This design is critical for the unbiased property of Eq 5 (see
the proof of Theorem 2 and more explanations in Appendix
B)

The unbiased gain we propose serves as a post hoc method
to address the interpretability issue. In Figure 1(b), we plot
the unbiased gain of the GBDT trained on the synthetic data.
We can see that the unbiased gain correctly assigns X1 with
the highest importance, and the importance of X2 and X3 is
zero in expectation.

5.2 UnbiasedGBM
We propose UnbiasedGBM to address the overfitting problem
introduced by the bias in GBDT: 1) The choice of each split
biases towards features with high cardinality. 2) We always
choose the best split on the training set, without evaluating
the generalization performance of each split.

In order to eliminate these two biases, we need two val-
idation sets. Assume we divide the training set into a sub-
training set D and two validation sets D′1 and D′2. Unbi-
asedGBM eliminates the bias by redesigning the split finding
algorithm. The design is conceptually simple but requires a
good understanding of the bias in GBDT. First, we calculate
the gain of each split G̃ain1 in the original fashion using the
sub-training setD. We determine the best split of each feature
using G̃ain1 of each split. Next, we calculate the gain G̃ain2
of each feature’s best split using the validation setD′1. We de-
termine which feature to split using G̃ain2 of each feature’s
best split. Since we determine the best split of each feature
and the feature to split using different data, we only need to
consider the best split of each feature when choosing the fea-
ture to split, thus eliminating the bias towards features with
high cardinality. Finally, we use the data set D′2 to calculate
the unbiased gain G̃ainub of the best split. G̃ainub measures
the generalization performance of the best split. We split on
the leaf node if G̃ainub > 0 and stop if G̃ainub ≤ 0.

Remark. We perform early-stopping on a leaf node when
the best split has G̃ainub ≤ 0. However, this negative G̃ainub
is taken into account when computing the importance of each
feature in UnbiasedGBM to maintain the unbiased property.

To sum up, UnbiasedGBM enjoys two advantages over
the existing GBDT: 1) UnbiasedGBM unbiasedly chooses
among features with different cardinality to mitigate overfit-
ting. 2) UnbiasedGBM measures the generalization perfor-
mance of each split and performs leaf-wise early-stopping to
avoid overfitting splits.

Discussion. Existing GBDT implementations can also per-
form leaf-wise early-stopping by using the minimal gain to
split. However, this method and our method have two con-
ceptual differences. First, we measure the generalization per-
formance of each split, whereas existing methods only use
statistics on the training set. Second, our “minimal gain to
split” is zero on a theoretic basis, whereas existing methods
require heuristic tuning of the minimal gain to split.

Implementation details. An important detail is how to
divide the dataset into D, D′1, and D′2. We experiment with
different ratios of splitting the dataset and find out that we
achieve the best performance when ∣D∣ = ∣D′1∣ = ∣D

′
2∣ (see

more details in Appendix E). An intuitive explanation is that
different datasets are equally important in our algorithm and
should have the same number of samples.

6 Experiments
In this section, we aim at answering two questions through
extensive experiments:

• Q1. How does UnbiasedGBM perform compared with
well-developed GBDT implementations such as XG-
Boost, LightGBM, and CatBoost?

• Q2. How does the proposed unbiased gain perform in
terms of feature selection compared with existing feature
importance methods?

6.1 Datasets
We collect 60 classification datasets in various application
domains provided by Kaggle, UCI [Dua and Graff, 2017],
and OpenML [Vanschoren et al., 2013] platforms. We se-
lect datasets according to the following criteria: 1) Real-
world data. We remove artificial datasets that are designed
to test specific models. 2) Not high dimensional. We re-
move datasets with m/n ratio above 1. 3) Not too small.
We remove datasets with too few samples (< 500). 4) Not
too easy. We remove datasets if a LightGBM with the de-
fault hyperparameters can reach a score larger than 0.95. The
detailed properties of datasets are presented in Appendix C.

6.2 Q1. UnbiasedGBM
In this subsection, we answer the Q1 question by comparing
UnbiasedGBM with XGBoost, LightGBM, and CatBoost us-
ing extensive experiments.

Evaluation Metrics
We use the area under the ROC curve (AUC) in the test set to
measure the model performance. In order to aggregate results
across datasets of different difficulty, we employ a metric
similar to the distance to the minimum, which is introduced
in [Wistuba et al., 2015] and used in [Feurer et al., 2020;
Grinsztajn et al., 2022]. This metric normalize each test AUC
between 0 and 1 via a min-max normalization using the worst
AUC and the best AUC of all the models on the dataset.

Baseline Methods
We compare with the following baseline methods:

• XGBoost [Chen and Guestrin, 2016].
• LightGBM [Ke et al., 2017].
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(a) 20 small-scale datasets with only numerical features.
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(b) 20 small-scale datasets with num. and cat. features.
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(c) 10 medium-scale datasets with only numerical features.
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(d) 10 medium-scale datasets with num. and cat. features.

Figure 2: Comparison of UnbiasedGBM with other baseline methods on four types of datasets. Each value corresponds the normalized test
AUC of the best model (on the validation set) after a specific number of tuning iterations, averaged on all the datasets. The shaded area
presents the variance of the scores.

XGBoost LightGBM CatBoost UnbiasedGBM

Average Rank 3.00 2.85 2.43 1.72
p-value ≤ 10−3 ≤ 10−3 0.013 -

Table 1: The average rank (where lower is better) over 60 datasets
and the p-value of Nemenyi test between UnbiasedGBM and the
baseline methods.

• CatBoost [Dorogush et al., 2018].

• UnbiasedGBM-w/o-SE. UnbiasedGBM without sepa-
rating the determination of the best split of each feature
and the feature to split. One of two validation sets is
merged with the subtraining set.

• UnbiasedGBM-w/o-UB. UnbiasedGBM without com-
puting the unbiased gain G̃ainub to measure the gener-
alization performance of the best split. Two validation
sets are merged into one to determine the best feature to
split and perform early stopping.

For each method, we perform hyperparameter optimization
using the popular Optuna [Akiba et al., 2019] Python pack-
age. See more details in Appendix D.

Results
In order to better present the advantage of UnbiasedGBM on
datasets with different properties, we classify 60 datasets into

four types of datasets, including small-scale (datasets with
less than 4000 samples) or medium-scale datasets with only
numerical features or both numerical and categorical features.
We present the results in Figure 2. The x-axis is the num-
ber of tuning iterations, visualizing the influence of the tun-
ing budget on the model performance. We can see that Un-
biasedGBM significantly outperforms XGBoost, LightGBM,
and CatBoost in both small and medium datasets. In addi-
tion, UnbiasedGBM is effective even if there is only numer-
ical features in the datasets. Categorical features are not the
only source of performance improvement in UnbiasedGBM.
We also visualize the comparison of each dataset in Figure 3
that demonstrates the improvement of our method. We lever-
age the Nemenyi test [Demsar, 2006] to perform statistical
analyses using the rank of each method after hyper-parameter
tuning of 100 iterations on 60 datasets. We present the results
in Table 1, where the Nemenyi test p-values show that Un-
biasedGBM significantly outperforms the baselines. More-
over, comparisons between UnbiasedGBM, UnbiasedGBM-
w/o-SE, and UnbiasedGBM-w/o-UB demonstrate that sepa-
rating the determination of the best split of each feature and
the feature to split is the primary source of improvement in
UnbiasedGBM. In most cases, computing the unbiased gain
to evaluate generalization performance of the best split can
also result in performance improvement.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4634



0.0 0.5 1.0
LightGBM Normalized test AUC

0.0

0.5

1.0
U

nb
ia

se
dG

BM
 N

or
m

al
iz

ed
 te

st
 A

U
C

Small-scale numerical
Small-scale categorical
Medium-scale numerical
Medium-scale categorical

(a) UnbiasedGBM vs. LightGBM
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(b) UnbiasedGBM vs. XGBoost
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(c) UnbiasedGBM vs. CatBoost

Figure 3: Comparison of UnbiasedGBM with LightGBM, XGBoost and CatBoost. Each dot denotes a dataset. The normalized test AUC is
higher the better. “numerical” means the dataset only contains numerical features. “categorical” means the dataset contains both numerical
and categorical features.

Figure 4: Comparison of different feature importance methods in
feature selection. We report the AUC on the test set of the model
using top k% selected features according to the feature importance.

6.3 Q2. Unbiased Gain
In this subsection, we demonstrate the performance of unbi-
ased gain in feature selection.

Baseline Methods
We compare unbiased gain with different feature importance
measurements:

• Gain importance [Breiman et al., 1984].
• Permutation feature importance (PFI) [Breiman, 2001].
• SHAP [Lundberg et al., 2018].

Evaluation
We follow the standard approach [Forman and others, 2003]
to evaluate different feature importance measurements in fea-
ture selection. For a given dataset, we first estimate the fea-
ture importance on the training set. Then, we select top
k% features according to the feature importance, where k ∈
{10,20,30}. Next, we build a GBDT model according to the
selected feature subset. Finally, we calculate the AUC of the
model on the test set. Higher AUC indicates that the feature
importance performs better in feature selection.

LightGBM UnbiasedGBM

Full feature set 0.779±0.000 0.809±0.003
Remove “nHM” with 11 categories 0.772±0.000 0.797±0.003
Remove “PCD” with 224 categories 0.787±0.000 0.811±0.002

Table 2: An example of the QSAR Bioconcentration dataset. Light-
GBM overfits on the “PCD” feature with many categories, because
removing the feature brings significant improvement in the test
AUC. UnbiasedGBM addresses the overfitting issue, because it has
better test AUC than LightGBM when using the full feature set, and
removing the “PCD” feature brings an insignificant difference.

Results
We evaluate these methods on 14 out of 60 datasets with more
than 30 features. Datasets with too few features may not need
feature selection. We consider selecting top k% features for
k ∈ {10,20,30}. For each method, we report the mean and
variance of the test AUC across these 14 datasets. The re-
sults are presented in Figure 4. We can see that unbiased gain
achieves better average performance than baseline methods
in feature selection.

6.4 Analyses of Features with Many Categories
We present an analysis of the QSAR Bioconcentration dataset
in Table 2 to show that UnbiasedGBM can address the over-
fitting issue of LightGBM on categorical features with many
categories. The details are in the caption of Table 2.

7 Conclusion
In this paper, we investigate the bias in GBDT and the conse-
quent interpretability and overfitting issues. We give a fine-
grained analysis of bias in GBDT. Based on the analysis, we
propose the unbiased gain and UnbiasedGBM to address the
interpretability and overfitting issues. Extensive experiments
on 60 datasets show that UnbiasedGBM has better average
performance than XGBoost, LightGBM, and Catboost and
unbiased gain can outperform popular feature importance es-
timation methods in feature selection.
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