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Abstract
Communication lays the foundation for cooper-
ation in human society and in multi-agent re-
inforcement learning (MARL). Humans also de-
sire to maintain their privacy when communicat-
ing with others, yet such privacy concern has
not been considered in existing works in MARL.
To this end, we propose the differentially private
multi-agent communication (DPMAC) algorithm,
which protects the sensitive information of indi-
vidual agents by equipping each agent with a lo-
cal message sender with rigorous (ϵ, δ)-differential
privacy (DP) guarantee. In contrast to directly
perturbing the messages with predefined DP noise
as commonly done in privacy-preserving scenar-
ios, we adopt a stochastic message sender for
each agent respectively and incorporate the DP
requirement into the sender, which automatically
adjusts the learned message distribution to allevi-
ate the instability caused by DP noise. Further,
we prove the existence of a Nash equilibrium in
cooperative MARL with privacy-preserving com-
munication, which suggests that this problem is
game-theoretically learnable. Extensive experi-
ments demonstrate a clear advantage of DPMAC
over baseline methods in privacy-preserving sce-
narios.

1 Introduction
Multi-agent reinforcement learning (MARL) has shown re-
markable achievements in many real-world applications such
as sensor networks [Zhang and Lesser, 2011], autonomous
driving [Shalev-Shwartz et al., 2016], and traffic control [Wei
et al., 2019]. To mitigate non-stationarity when training
the multi-agent system, centralized training and decentral-
ized execution (CTDE) paradigm is proposed. The CTDE
paradigm yet faces the hardness to enable complex coop-
eration and coordination for agents during execution due
to the inherent partial observability in multi-agent scenarios
[Wang et al., 2020b]. To make agents cooperate more ef-
ficiently in complex partial observable environments, com-
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munication between agents has been considered. Numerous
works proposed differentiable communication methods be-
tween agents, which can be trained in an end-to-end manner,
for more efficient cooperation among agents [Foerster et al.,
2016; Jiang and Lu, 2018; Das et al., 2019; Ding et al., 2020;
Kim et al., 2021; Wang et al., 2020b].

However, the advantages of communication, resulting from
full information sharing, come with the possible privacy leak-
age of individual agents for both broadcasted and one-to-one
messages. Therefore, in practice, one agent may be unwill-
ing to fully share its private information with other agents
even though in cooperative scenarios. For instance, if we
train and deploy an MARL-based autonomous driving sys-
tem, each autonomous vehicle involved in this system could
be regarded as an agent and all vehicles work together to im-
prove the safety and efficiency of the system. Hence, this
can be regarded as a cooperative MARL scenario [Shalev-
Shwartz et al., 2016; Yang et al., 2020]. However, owners
of autonomous vehicles may not allow their vehicles to send
private information to other vehicles without any desensitiza-
tion since this may divulge their private information such as
their personal life routines [Hassan et al., 2020]. Hence, a
natural question arises:

Can the MARL algorithm with communication under the
CTDE framework be endowed with both the rigorous privacy
guarantee and the empirical efficiency?

To answer this question, we start with a simple motivating
example called single round binary sums, where several play-
ers attempt to guess the bits possessed by others and they can
share their own information by communication. In Section
4, we show that a local message sender using the random-
ized response mechanism allows an privacy-aware receiver
to correctly calculate the binary sum in a privacy-preserving
way. From the example, we gain two insights: 1) The in-
formation is not supposed to be aggregated likewise in pre-
vious communication methods in MARL [Das et al., 2019;
Ding et al., 2020], as a trusted data curator is not available in
general. On the contrary, privacy is supposed to be achieved
locally for every agent; 2) Once the agents know a priori,
that certain privacy constraint exists, they could adjust their
inference on the noised messages. These two insights indi-
cate the principles of our privacy-preserving communication
scheme that we desire a privacy-preserving local sender and
a privacy-aware receiver.
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Our algorithm, differentially private multi-agent communi-
cation (DPMAC), instantiates the described principles. More
specifically, for the sender part, each agent is equipped with a
local sender which ensures differential privacy (DP) [Dwork,
2006] by performing an additive Gaussian noise. The mes-
sage sender in DPMAC is local in the sense that each agent
is equipped with its own message sender, which is only used
to send its own messages. Equipped with this local sender,
DPMAC is able to not only protect the privacy of communi-
cations between agents but also satisfy different privacy levels
required from different agents. In addition, the sender adopts
the Gaussian distribution to represent the message space and
sample stochastic messages from the learned distribution.
However, it is known that the DP noise may impede the
original learning process [Dwork et al., 2014; Alvim et al.,
2011], resulting in unstable or even divergent algorithms, es-
pecially for deep learning-based methods [Abadi et al., 2016;
Chen et al., 2020]. To cope with this issue, we incorporate
the noise variance into the representation of the message dis-
tribution, so that the agents could learn to adjust the message
distribution automatically according to varying noise scales.
For the receiver part, due to the gradient chain between the
sender and the receiver, our receiver naturally utilizes the
privacy-relevant information hidden in the gradients. This
implements the privacy-aware receiver described in the moti-
vating example.

When protecting privacy in communication is required in
a cooperative game, the game is not purely cooperative any-
more since each player involved will face a trade-off between
the team utility and its personal privacy. To analyze the con-
vergence of cooperative games with privacy-preserving com-
munication, we first define a single-step game, namely the
collaborative game with privacy (CGP). We prove that un-
der some mild assumptions of the players’ value functions,
CGP could be transformed into a potential game [Monderer
and Shapley, 1996], subsequently leading to the existence of a
Nash equilibrium (NE). With this property, NE could also be
proven to exist in the single round binary sums. Furthermore,
we extend the single round binary sums into a multi-step
game called multiple round sums using the notion of Markov
potential game (MPG) [Leonardos et al., 2021]. Inspired by
Macua et al. (2018) and modeling the privacy-preserving
communication as part of the agent action, we prove the ex-
istence of NE, which indicates that the multi-step game with
privacy-preserving communication could be learnable.

To validate the effectiveness of DPMAC, extensive ex-
periments are conducted in multi-agent particle environment
(MPE) [Lowe et al., 2017], including cooperative navigation,
cooperative communication and navigation, and predator-
prey tasks. Specifically, in privacy-preserving scenarios, DP-
MAC significantly outperforms baselines. Moreover, even
without any privacy constraints, DPMAC could also gain
competitive performance against baselines.

To sum up, the contributions of this work are threefold:

• To the best of our knowledge, we make the first attempt to
develop a framework for private communication in MARL,
named DPMAC, with provable (ϵ, δ)-DP guarantee.

• We prove the existence of the Nash equilibrium for co-

operative games with privacy-preserving communication,
showing that these games are game-theoretically learnable.

• Extensive experiments show that DPMAC clearly outper-
forms baselines in privacy-preserving scenarios and gains
competitive performance in non-private scenarios.

2 Related Work
2.1 Learning to Communicate in MARL
Learning communication protocols in MARL by backprop-
agation and end-to-end training has achieved great advances
in recent years [Sukhbaatar et al., 2016; Foerster et al., 2016;
Jiang and Lu, 2018; Das et al., 2019; Wang et al., 2020b;
Ding et al., 2020; Kim et al., 2021; Rangwala and Williams,
2020; Zhang et al., 2019; Singh et al., 2019; Zhang et al.,
2020; Zhang et al., 2021; Lin et al., 2021; Peng et al., 2017].
Amongst these works, Sukhbaatar et al. (2016) propose
CommNet as the first differentiable communication frame-
work for MARL. Further, TarMAC [Das et al., 2019] and
ATOC [Jiang and Lu, 2018] utilize the attention mechanism
to extract useful information as messages. I2C [Ding et al.,
2020] makes the first attempt to enable agents to learn one-to-
one communication via causal inference. Wang et al. (2020b)
propose NDQ, which learns nearly decomposable value func-
tions to reduce the communication overhead. Kim et al.
(2021) consider sharing an imagined trajectory as an inten-
tion for effectiveness. Besides, to communicate in the sce-
narios with limited bandwidth, some works consider learn-
ing to send compact and informative messages in MARL
via minimizing the entropy of messages between agents us-
ing information bottleneck methods [Wang et al., 2020a;
Tucker et al., 2022; Tian et al., 2021; Li et al., 2021]. While
learning effective communication in MARL has been exten-
sively investigated, existing communication algorithms po-
tentially leave the privacy of each agent vulnerable to infor-
mation attacks.

2.2 Privacy Preserving in RL
With wide attention on reinforcement learning (RL) algo-
rithms and applications in recent years, so have concerns
about their privacy. Sakuma et al. (2008) consider privacy
in the distributed RL problem and utilize cryptographic tools
to protect the private state-action-state triples. Algorithmi-
cally, Balle et al. (2016) make the first attempt to establish
a policy evaluation algorithm with DP guarantee, where the
Monte-Carlo estimates are perturbed with Gaussian noises.
Wang and Hegde (2019) generalize the results to Q-learning,
where functional noises are added to protect the reward func-
tions. Theoretically, Garcelon et al. (2021) study regret
minimization of finite-horizon Markov decision processes
(MDPs) with DP guarantee in the tabular case. In a large or
continuous state space where function approximation is re-
quired, Liao et al. (2021) and Zhou (2022) subsequently take
the first step to establish the sublinear regret in linear mix-
ture MDPs. Meanwhile, a large number of works focus on
preserving privacy in multi-armed bandits [Tao et al., 2022;
Tenenbaum et al., 2021; Dubey, 2021; Zheng et al., 2020;
Dubey and Pentland, 2020; Tossou and Dimitrakakis, 2017].
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Privacy is also studied in recent literature on MARL and
multi-agent system. Ye et al. (2020) study differential advis-
ing for value-based agents, which share action values as the
advice, largely differing in both the communication frame-
work and the CTDE framework. Dong et al. (2020) propose
an average consensus algorithm with a DP guarantee in the
multi-agent system.

3 Preliminaries

We consider a fully cooperative MARL problem where N
agents work collaboratively to maximize the joint rewards.
The underlying environment can be captured by a decen-
tralized partially observable Markov decision process (Dec-
POMDP), denoted by the tuple ⟨S,A,O,P,R, γ⟩. Specifi-
cally, S is the global state space, A =

∏N
i=1 Ai is the joint

action space, O =
∏N

i=1 Oi is the joint observation space,
P (s′ | s,a) := S×A×S → [0, 1] determines the state tran-
sition dynamics, R(s,a) : S × A → R is the reward func-
tion, and γ ∈ [0, 1) is the discount factor. Given a joint pol-
icy π = {πi}Ni=1, the joint action-value function at time t is
Qπ (st,at) = E [Gt | st,at,π], where Gt =

∑∞
i=0 γ

iRt+i

is the cumulative reward, and at = {ati}Ni=1 is the joint ac-
tion. The ultimate goal of the agents is to find an optimal
policy π∗ which maximizes Qπ (st,at).

Under the aforementioned cooperative setting, we study
the case where agents are allowed to communicate with a
joint message space M =

∏N
i=1 Mi. When the communica-

tion is unrestricted, the problem is reduced to a single-agent
RL problem, which effectively solves the challenge posed
by partially observable states, but puts the individual agent’s
privacy at risk. To overcome the challenges of privacy and
partial observable states simultaneously, we investigate algo-
rithms that maximize the cumulative rewards while satisfying
DP, given in the following definition.

Definition 3.1 ((ϵ, δ)-DP, [Dwork, 2006]). A randomized
mechanism f : D → Y satisfies (ϵ, δ)-differential privacy
if for any neighbouring datasets D,D′ ∈ D and S ⊂ Y , it
holds that Pr[f(D) ∈ S] ≤ eϵ Pr [f (D′) ∈ S] + δ.

DP offers a mathematically rigorous way to quantify the
privacy of an algorithm [Dwork, 2006]. An algorithm is
said to be “privatized” under the notion of DP if it is statisti-
cally hard to infer the presence of an individual data point in
the dataset by observing the output of the algorithm. More
intuitively, an algorithm satisfies DP if it provides nearly
the same outputs given the neighbouring input datasets (i.e.,
Pr[f(D) ∈ S] ≈ Pr [f (D′) ∈ S]), which hence protects the
sensitive information from the curious attacker.

With DP, each agent i is assigned with a privacy budget
ϵi, which is negatively correlated to the level of privacy pro-
tection. Then we have ϵ = {ϵi}Ni=1 as the set of all privacy
budgets. In addition to maximizing the joint rewards as usu-
ally required in cooperative MARL, the messages sent from
agent i are also required to satisfy the privacy budget ϵi with
probability at least 1− δ.

4 Motivating Example
Before introducing our communication framework, we first
investigate a motivating example, which is a cooperative
game and inspires the design principles of private commu-
nication mechanisms in MARL. The motivating example is a
simple yet interesting game, called single round binary sums.
The game is extended from the example provided in [Cheu,
2021] for analyzing the shuffle model, while we illustrate the
game from the perspective of multi-agent systems. We note
that though this game is one-step, which is different from the
sequential decision process like MDP, it is illustrative enough
to show how the communication protocol works as a tool to
achieve a better trade-off between privacy and utility.

Assume that there are N agents involved in this game.
Each agent i ∈ [N ] has a bit bi ∈ {0, 1} and can tell
other agents the information about its bit by communica-
tion. The objective of the game is for every agent to guess∑

i bi, the sum of the bits of all agents. Namely, each agent
i makes a guess gi and the utility of the agent is to maximize
ri = −|

∑
j bj − E[gi]|. The (global) reward of this game is

the sum of the utility over all agents, i.e.,
∑

i ri.
Without loss of generality, we write the guess gi into gi =∑
j ̸=i yij + bi, where yij is the guessed bit of agent j by

agent i. If all agents share their bits without covering up, the
guessed bit yij will obviously be equal to bj and all agents
attain an optimal return. Hence this game is fully cooperative
under no privacy constraints. However, the optimal strategy
is under the assumption that everyone is altruistic to share
their own bits.

To preserve the privacy in communication, the message
(i.e., the sent bit) could be randomized using randomized re-
sponse, which perturbs the bit bi with probability p, as shown
below:

xi = RRR (bi) :=

{
Ber(1/2) with probability p

bi otherwise ,

where xi is the random message and Ber(·) indicates the
Bernoulli distribution. Under our context, RRR is a privacy-
preserving message sender, whose privacy guarantee is guar-
anteed by the following proposition.

Proposition 4.1 ([Beimel et al., 2008]). Setting p = 2
eϵ+1 in

RRR suffices for (ϵ, 0)-differential privacy.

When each agent is equipped with such a privacy-
preserving sender RRR while adhering to the originally op-
timal strategy (i.e., believing what others tell and doing the
guess), all agents would make an inaccurate guess. The bias
of the guess denoted as erri caused by RRR is then

erri = E[gi]−
∑
i

bi =
∑
j ̸=i

E[xj − bj ] = p
∑
j ̸=i

(
1

2
− bj)

=
p(N − 1)

2
− p

∑
j ̸=i

bj .

Without any prior knowledge, the bias could not be reduced
for (ϵ, 0)-DP algorithms. However, if the probability p of
perturbation is set as prior common knowledge for all agents
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before the game starts, things will be different. One could
transform the biased guess into

gAi = ARR(x⃗−i) :=
1

1− p

∑
j ̸=i

xj − (N − 1)p/2

 ,

where x⃗−i = [x1, . . . , xi−1, xi+1, . . . , xN ]⊤ denote the mes-
sages received by agent i. Then the estimate will be unbiased
as

E
[
gAi

]
=

1

1− p

E

∑
j ̸=i

xj

− p(N − 1)

2

+ bi =
∑
i

bi .

This example inspires that a communication algorithm
could be both privacy-preserving and efficient. From the
perspective of privacy, by the post-processing lemma of DP,
any post-processing does not affect the original privacy level.
From the perspective of utility, we could eliminate the bias
erri if the agent is equipped with the receiver ARR and the
prior knowledge p is given.

In general, our motivating example gives two princi-
ples for designing privacy-preserving communication frame-
works. First, to prevent sensitive information from being in-
ferred by other curious agents, we equip each agent with a
local message sender with certain privacy constraints. Sec-
ond, given prior knowledge about the privacy requirement
of other agents, the receiver could strategically analyze the
received noisy messages to statistically reduce errors due to
the noisy communication. These two design principles cor-
respond to two parts of our DPMAC framework respectively,
i.e., a privacy-preserving local sender, and a privacy-aware
receiver.

5 Methodology
Based on our design principles, we now introduce our DP-
MAC framework, as shown in Figure 1. Our framework is
general and flexible, which makes it compatible with any
CTDE method.

5.1 Privacy-preserving Local Sender with
Stochastic Gaussian Messages

In this section, we present the sender’s perspective on the pri-
vacy guarantee. At time t, for agent i, a message function fs

i
is used to generate a message for communication. fs

i takes
a subset of transitions in local trajectory τ ti as input, where
the subset is sampled uniformly without replacement from τ ti
(denote the sampling rate as γ1). This message is perturbed
by the Gaussian mechanism with variance σ2

i
[Dwork, 2006].

Agent i then samples a subset of other agents to share this
message (denote the sampling rate as γ2). The following the-
orem guarantees the DP of the sender.
Theorem 5.1 (Privacy guarantee for DPMAC). Let γ1, γ2 ∈
(0, 1), and C be the ℓ2 norm of the message functions. For
any δ > 0 and privacy budget ϵi, the communication of agent
i satisfies (ϵi, δ)-DP when σ2

i =
14γ2γ

2
1NC2α
βϵi

, if we have α =
log δ−1

ϵi(1−β) + 1 ≤ 2σ′2 log
(
1/γ1α

(
1 + σ′2)) /3 + 1 with β ∈

(0, 1) and σ′2 = σ2
i /(4C

2) ≥ 0.7 .

With Theorem 5.1, one can directly translate a non-private
MARL with a communication algorithm into a private one.
However, as we shall see in our experiment section, directly
injecting the privacy noise into existing MARL with commu-
nication algorithms may lead to serious performance degra-
dation. In fact, the injected noise might jeopardize the useful
information incorporated in the messages, or even leads to
meaningless messages. To alleviate the negative impacts of
the injected privacy noise on the cooperation between agents,
we adopt a stochastic message sender in the sense that the
messages sent by our sender are sampled from a learned mes-
sage distribution. This makes DPMAC different from exist-
ing works in MARL that communicate through determinis-
tic messages [Sukhbaatar et al., 2016; Foerster et al., 2016;
Jiang and Lu, 2018; Das et al., 2019; Ding et al., 2020;
Kim et al., 2021].

In the following, we drop the dependency of parame-
ters on t when it is clear from the context. Without loss
of generality, let the message distribution be multivariate
Gaussian and let pi be the message sampled from the mes-
sage distribution N (µi,Σi), where µi = fµ

i (oi, ai; θ
µ
i ) and

Σi = fσ
i (oi, ai; θ

σ
i ) are the mean vector and covariance ma-

trix learned by the sender, and θµi and θσi are the parameters
of the sender’s neural networks. Then θµi and θσi will be op-
timized towards making all the agents to send more effec-
tive messages to encourage better team cooperation and gain
higher team rewards. For notational convenience, let θsi =

[θµ⊤i , θσ⊤i ]⊤. Then the sent privatized message mi = pi + ui

where ui ∼ N (0, σ2
i Id) is the additive privacy noise. It is

clear that mi ∼ N (µi,Σi + σ2
i Id) since pi is independent

from ui. Counterfactually, let m′
i ∼ N (µ′

i,Σ
′
i) be the sent

message when it was not under any privacy constraint, where
µ′
i = fµ

i (oi, ai; θ
µ′
i ) and Σ′

i = fσ
i (oi, ai; θ

σ′
i ).

Let the optimal message distribution be N (µ∗
i ,Σ

∗
i ). We

are interested to characterize θs
′

i and θsi . By the optimality of
µ∗
i ,Σ

∗
i ,

θs
′

i = argmin
θ

DKL(N (µ′
i,Σ

′
i)∥N (µ∗

i ,Σ
∗
i ))

= argmin
θ

log
|Σ∗

i |
|Σ′

i|
+ tr{Σ∗−1

i Σ′
i}+ ∥µ′

i − µ∗
i ∥2Σ∗−1

i

.

(1)

Then under the privacy constraints, the stochastic sender will
learn θsi such that

θsi = argmin
θ

DKL(N (µi,Σi + σ2
i Id)∥N (µ∗

i ,Σ
∗
i ))

= argmin
θ

log
|Σ∗

i |
|Σi + σ2

i Id|
+ tr{Σ∗−1

i (Σi + σ2
i Id)}

+ ∥µi − µ∗
i ∥2Σ∗−1

i

. (2)

Through Equation (2), it is possible to directly incorporate
the distribution of privacy noise into the optimization process
of the sender to help to learn θsi such that DKL(N (µi,Σi +
σ2
i Id)∥N (µ∗

i ,Σ
∗
i )) ≤ DKL(N (µ′

i,Σ
′
i)∥N (µ∗

i ,Σ
∗
i )), which

means that the sender could learn to send private message
mi = pi + ui that is at least as effective as the non-private
message m′

i. In this manner, the performance degradation is
expected to be well alleviated.
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Figure 1: The overall structure of DPMAC. The message receiver of agent i integrates other agents’ messages {mji,mki,mli} with the
self-attention mechanism and the integrated message is fed into the policy πi together with the observation oi. Agent i interacts with the
environment by taking action ai. Then oi and ai are concatenated and encoded by a privacy-preserving message sender and sent to other
agents.

5.2 Privacy-aware Message Receiver
As shown in our motivating example, the message receiver
with knowledge a priori could statistically reduce the commu-
nication error in privacy-preserving scenarios. In the practical
design, this motivation could be naturally instantiated with
the gradient flow between the message sender and the mes-
sage receiver.

Specifically, agent i first concatenates all the received pri-
vatized messages as m(−i)i := {mji}Nj=1,j ̸=i and then de-
codes m(−i)i into an aggregated message qi = fr

i (m(−i)i |
θri ) with the decoding function fr

i parameterized by θri . Then
a similar argument to the policy gradient theorem [Sutton et
al., 1999] states that the gradient of the receiver is

∇θr
i
J (θri ) = Eτ ,o,a

[
Eπi

[∇θr
i
fr
i

(
qi | m(−i)i

)
·∇qi log πi (ai | oi, qi)Qπ(a,o)]] ,

where J (θri ) = E[G1 | π] is the cumulative discounted
reward from the starting state. In this way, the receiver
could utilize the prior knowledge σi of the privacy-preserving
sender encoded in the gradient during the optimization pro-
cess. Please refer to Appendix A and Appendix E for the
complete pseudo code of DPMAC, and detailed optimization
process of the message senders and receivers, respectively.

6 Privacy-preserving Equilibrium Analysis
As aforementioned, when considering the privacy constraints,
the “cooperative” multi-agent games will not be purely coop-
erative anymore, due to the appearance of the trade-off be-
tween the team utility and each player’s personal privacy.
As the convergence of MARL algorithms could depend on
the existence of NE, we first investigate such existence in
privacy-preserving single-step games and then extend the re-
sult to privacy-preserving multi-step games.

6.1 Single-step Games
We study a class of two-player collaborative games, denoted
as collaborative game with privacy (CGP). The game in-
volves two agents, each equipped with a privacy parameter
pn, n ∈ {1, 2}. The value of pn represents the importance of
privacy to agent n, with the larger value referring to greater
importance. Let M be some message mechanism. We de-
note the privacy loss by cM(pn), which measures the quan-
tity of the potential privacy leakage and is formally defined in
Definition C.2. Besides, let b

(
Vn, V

M
n (p1, p2)

)
be the util-

ity gained by measuring the gap between private value func-
tion V M

n (p1, p2) and non-private value function Vn. Then the
trade-off between the utility and the privacy is depicted by the
total utility function un(p1, p2) in Equation (3). The formal
definition of CGP is given in Definition 6.1. See more details
in Appendix C.1.
Definition 6.1 (Collaborative game with privacy (CGP)).
The collaborative game with privacy is denoted by a tu-
ple ⟨N ,Σ,U⟩, where N = {1, 2} is the the set of players,
Σ = {p1, p2} is the action set with p1, p2 ∈ [0, 1] represent-
ing the privacy level, and U = {u1, u2} is the set of utility
functions satisfying ∀n ∈ N ,

un (p1, p2) = Bnb
(
Vn, V

M
n (p1, p2)

)
− CM

n cM (pn) . (3)

Then the following theorem shows that if changes in the
value function of each player can be expressed as a change
in their own privacy parameter, then CGP is a potential game
and a pure NE thereafter exists. The proof is deferred to Ap-
pendix C.1.
Theorem 6.1 (CGP’s NE guarantee). The collaborative
game with privacy has at least one non-trivial pure-strategy
Nash equilibrium if ∂i

p1
V1 = ∂i

p2
V2, ∀i ∈ {1, 2}.

Equilibrium in single round binary sums. Let us revisit
our motivating example. Armed with the CGP framework, it
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(a) Performance of DPMAC, TarMAC, I2C, and MADDPG on three MPE tasks.
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(b) Performance of different algorithms under the privacy budget ϵ = 0.10. MADDPG (non-communication) is
also displayed for comparison.
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(c) Performance of different algorithms under the privacy budget ϵ = 1.0. MADDPG (non-communication) is
also displayed for comparison.
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(d) Performance of DPMAC under different privacy budgets (ϵ = 0.01, 0.10, 1.00).

Figure 2: Performance of DPMAC and baseline algorithms. The curves are averaged over 5 seeds. Shaded areas denote 1 standard deviation.
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is immediate that the single round binary sums game guaran-
tees the existence of a NE. This result is formally stated in
Theorem C.2 in Appendix C.1.

6.2 Multi-step Games
We now consider an extended version of single round bi-
nary sums named multiple round sums. Consider an N -player
game where player i owns a saving xi,t. Rather than sending
a binary bit, the agent can choose to give out bi,t at round t.
Meanwhile, each player i selects privacy level pi,t and sends
messages to each other with a sender fs

i encoding the infor-
mation of bi,t with the privacy level pi,t. The reward of the
agent is designed to find a good trade-off between privacy and
utility.

We first transform this game into a Markov potential game
(MPG), with the reward of each agent transformed into a
combination of the team reward and the individual reward.
Then with existing theoretical results from Macua et al.
(2018), we present the following result while deferring its
proof to Appendix C.2.

Theorem 6.2 (NE guarantee in multiple round sums). If As-
sumptions 1, 2, 3, 4 (see Appendix C.2) are satisfied, our
MPG has a NE with potential function J defined as,

J(xt, π(xt)) =
∑
j∈[N ]

((1− pj,t)bj,t + αxj,t + βpi,t) . (4)

7 Experiments
In this section, we present the experiment results and corre-
sponding experiment analyses. Please see Appendix H for
more detailed analyses of the experiment results.

Baselines. We implement our DPMAC upon MADDPG
[Lowe et al., 2017] (see Appendix D for concrete implemen-
tation details) and evaluate it against TarMAC [Das et al.,
2019], I2C [Ding et al., 2020], and MADDPG. All algorithms
are tested with and without the privacy requirement except for
MADDPG, which involves no communication among agents.
Since TarMAC and I2C do not have a local sender and have
no DP guarantee, we add Gaussian noise to their receiver ac-
cording to the noise variance specified in Theorem 5.1 for a
fair comparison. Please see Appendix E for more training
details.

Environments. We evaluate the algorithms on the multi-
agent particle environment (MPE) [Mordatch and Abbeel,
2017], which is with continuous observation and discrete ac-
tion space. This environment is commonly used among exist-
ing MARL literature [Lowe et al., 2017; Jiang and Lu, 2018;
Ding et al., 2020; Kim et al., 2021]. We evaluate a wide range
of tasks in MPE, including cooperative navigation (CN), co-
operative communication and navigation (CCN), and preda-
tor prey (PP). More details on the environmental settings are
given in Appendix F.

Experiment results without privacy. We first compare
DPMAC with TarMAC, I2C, and MADDPG on three MPE
tasks without the privacy requirement. As shown in Figure 2a,

DPMAC outperforms baselines on CCN task, and has compa-
rable performance on CN and PP tasks. More detailed anal-
yses of the experiment results without privacy are deferred to
Appendix H.1.

Experiment results with privacy. We now investigate the
performance of algorithms with communication under pri-
vacy constraints. In particular, Figure 2b and 2c show the
performance under the privacy budget ϵ = 0.10, 1.0 and
both with δ = 10−4. We also include MADDPG as a non-
communication baseline method. Overall, the privacy con-
straints impose obvious disturbances to the performance of
all algorithms. Specifically, the performance of TarMAC and
I2C degenerates significantly and becomes even inferior to
the performance of MADDPG. However, in most cases, the
performance of DPMAC with privacy constraints only suffers
a slight decline and is still superior or comparable to the per-
formance of MADDPG. See Appendix H.2 for more concrete
analyses on the experiment results with privacy.

DPMAC under different privacy budgets. In Figure 2d,
we further present the comparison between the performance
of DPMAC under different privacy budgets. When ϵ = 0.01,
DPMAC still gains remarkable performance on CN and CCN
tasks, while other baselines’ performance suffers serious de-
generation, as we have analyzed above. Besides, on the PP
task under the privacy constraint with ϵ = 0.01, DPMAC also
suffers clear performance degradation. Overall, the experi-
ments of DPMAC under different privacy budgets also show
that DPMAC could automatically adjust the variance of the
stochastic message sender so that it learns a noise-robust mes-
sage representation. As shown in Figure 2d, DPMAC gains
very close performance when ϵ = 0.1 and ϵ = 1.0, though
the privacy requirements of ϵ = 0.1 and ϵ = 1.0 differ by one
order of magnitude. However, one can see large performance
gaps for the same baseline algorithms under different ϵ from
Figure 2b and 2c. For clarity, we also present these perfor-
mance gaps of TarMAC and I2C algorithms in Figure 3 and
4. Please see Appendix H.3 for more detailed analyses of the
performance of DPMAC under different privacy budgets.

8 Conclusion
In this paper, we study the privacy-preserving communication
in MARL. Motivated by a simple yet effective example of
the binary sums game, we propose DPMAC, a new efficient
communicating MARL algorithm that preserves agents’ pri-
vacy through DP. Our algorithm is justified both theoretically
and empirically. Besides, to show that the privacy-preserving
communication problem is learnable, we analyze the single-
step game and the multi-step game via the notion of MPG and
show the existence of the Nash equilibrium. This existence
further implies the learnability of several instances of MPG
under privacy constraints. Extensive experiments conducted
on 3 MPE tasks with varying privacy constraints demonstrate
the effectiveness of DPMAC against the baseline methods.
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