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Abstract

Split learning is a simple solution for Vertical Feder-
ated Learning (VFL), which has drawn substantial
attention in both research and application due to its
simplicity and efficiency. However, communication
efficiency is still a crucial issue for split learning. In
this paper, we investigate multiple communication
reduction methods for split learning, including cut
layer size reduction, top-k sparsification, quantiza-
tion, and L1 regularization. Through analysis of
the cut layer size reduction and top-k sparsification,
we further propose randomized top-k sparsification,
to make the model generalize and converge better.
This is done by selecting top-k elements with a large
probability while also having a small probability to
select non-top-k elements. Empirical results show
that compared with other communication-reduction
methods, our proposed randomized top-k sparsifica-
tion achieves a better model performance under the
same compression level.

1 Introduction
In recent years, the protection of data privacy has become an
important issue in machine learning. To date, many kinds
of solutions have been proposed to solve the data privacy
issue. Aside from cryptographic methods [Mohassel and
Rindal, 2018; Wagh et al., 2019; Chen et al., 2021a], Fed-
erated Learning (FL) [Li et al., 2020] and Split Learning
(SL) [Vepakomma et al., 2018] are two promising methods for
privacy-preserving machine learning. While typical federated
learning (also known as Horizontal Federated Learning, HFL)
mainly focuses on horizontally distributed data, split learning
is a simple and effective solution for vertically distributed data.
However, although split learning achieves better efficiency
than cryptographic methods [Chen et al., 2022], the communi-
cation efficiency is still an important issue. In this paper, we
focus on reducing the communication of split learning.

The basic idea of split learning is to divide the model into
several parts, and each part is computed by a different partic-
ipant (party). Since split learning only requires sharing the

∗Corresponding author.

Figure 1: Overview of split learning.

intermediate outputs or gradients, instead of the original in-
put and label, it is considered somewhat privacy-preserving.
We present the overview of a typical split learning model in
Figure 1, where we consider a two-party case — input feature
and label are held by two parties, i.e., feature owner and label
owner. To train a model without directly revealing partici-
pants’ data, the model is split into a bottom model and a top
model, held by the feature owner and the label owner, respec-
tively. The last layer (output) of the bottom model is called
the cut layer. We simply describe the training procedure of
split learning below:

• Forward pass: the feature owner first feeds the sample
features X to the bottom model Mb, then gets the inter-
mediate output Ob = Mb(X, θb), where θb is the bot-
tom model’s weight. The label owner fetches Ob, feeds
it to the top model Mt, and then gets the final output
Ŷ = Mt(Ob; θt).

• Backward pass: the label owner calculates the
loss function L(Ŷ , Y ), then computes the gradients
∂L(Ŷ , Y )/∂θt and Gb = ∂L(Ŷ , Y )/∂Ob. The former
gradient is used to update the top model, and the latter is
sent to the feature owner. The feature owner computes
the Jacobian matrix ∂Ob/∂θb. Then the gradient with re-
spect to the bottom model’s parameters can be computed
as (∂Ob/∂θb)

T
Gb.

However, despite its simplicity, the communication effi-
ciency of split learning is still an important issue. During
each iteration, the participants have to exchange intermediate
results of the data batch, and the number of iterations and the
size of intermediate results are usually large. For example,
consider training ResNet-20 [He et al., 2016] with the cut
layer size equal to 32× 32× 32 and batch size equal to 32. It
takes 2 (forward & backward) × 4 (bytes for float value) ×
32 (batch size) ×323 (size of a single sample’s intermediate
result) bytes = 8 Mib traffic to finish a single iteration of in-
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ference, which is a huge communication cost, especially for
mobile devices.

For federated learning, existing work has investigated dif-
ferent methods to reduce communication, including increas-
ing local epochs [McMahan et al., 2017], accelerating con-
vergence [Karimireddy et al., 2020; Wang et al., 2020a;
Wang et al., 2020b], and compressing local model updates
in various ways [Aji and Heafield, 2017; Stich et al., 2018;
Sattler et al., 2019b; Sattler et al., 2019a; Wang et al., 2018].
For split learning, however, studies on communication reduc-
tion are relatively few. Castiglia et al. [2022] proved the
convergence of compressing split learning by top-k sparsifi-
cation or quantization. Other methods such as asynchronous
training, quantization, and using an autoencoder as a compres-
sor are also investigated for specific tasks [Chen et al., 2021b;
Ayad et al., 2021].

In our work, we focus on reducing the communication for
the classification problems with a large number of classes,
and propose a modification of top-k sparsification, namely,
randomized top-k sparsification (RandTopk). To perform ran-
domized top-k sparsification on a d-dimensional vector, we
first determine its top-k elements. Then we randomly select k
distinct elements such that: with probability 1−α, the element
is chosen from top-k elements with equal chance, and with
probability α, the element is chosen from non-top-k elements
with equal chance. Here, α ∈ [0, 1] is a hyperparameter to
control the randomness. The core idea behind randomized top-
k sparsification comes from the analysis of size reduction and
top-k sparsification. We find that when the number of classes
is small (e.g. ≤ 10), simply reducing the size of the cut layer
can preserve model performance well. However, this does not
hold when the number of classes is large (e.g. ≥ 100), since
hidden features of different classes will be crowded within
a low-dimensional manifold, making the model less smooth
and generalize poorly. Top-k sparsification overcomes this
problem by expanding the volume of the low-dimensional
manifold. However, it still faces local minimum problems,
and usually fails to exploit the entire volume of the manifold
due to unevenly selected neurons, i.e., some neurons are se-
lected frequently while some are rarely selected. RandTopk
tackles both problems by adding randomness to top-k spar-
sification. First, the local minimum can be avoided by noisy
gradients; Second, since non-top-k neurons also have chances
to be selected during forward propagation, after training, the
distribution of selected neurons is more balanced.

We conduct extensive experiments on different tasks, and
compare RandTopk with top-k sparsification, cut layer size re-
duction, quantization, and L1 regularization. Empirical results
show that RandTopk significantly outperforms top-k sparsifi-
cation and other compression methods when their compression
ratios are on the same level. We summarize our main contri-
butions as follows:

• We investigate different compression methods for split
learning to improve its communication efficiency, includ-
ing cut layer size reduction, top-k sparsification, quanti-
zation, and L1 regularization.

• Through the analysis of the cut layer size reduction and
top-k sparsification, we propose randomized top-k sparsi-

fication, to overcome the convergence and generalization
problems of top-k sparsification.

• We conduct extensive experiments and show that ran-
domized top-k sparsification achieves the best model
performance compared to other compression methods
when their compression ratios are on the same level.

2 Related Work
2.1 Reducing Communication for HFL
A classic communication reduction method for HFL is the fa-
mous FedAvg scheme [McMahan et al., 2017], which reduces
communication rounds for HFL by letting client train more
rounds locally, and has now become the standard HFL scheme.
Based on this, studies aiming to reduce communication in
HFL can be mainly divided into two classes, i.e., making con-
vergence faster and compressing the model updates. Methods
of the former class usually accelerate convergence by mak-
ing model updates of different clients more consistent [Wang
et al., 2020a; Wang et al., 2020b; Karimireddy et al., 2020;
Jin et al., 2022]. The latter class includes quantization, sparsi-
fication, and other compression methods. The basic top-k spar-
sification is well-studied both empirically and theoretically
and is proven to be very effective [Aji and Heafield, 2017;
Stich et al., 2018]. Combining sparsification and quantiza-
tion can further reduce communication [Wen et al., 2017;
Sattler et al., 2019b; Sattler et al., 2019a]. Other methods,
such as using SVD to compress the model updates [Wang
et al., 2018; Vogels et al., 2019] and using autoencoder as
compressor [Chandar et al., 2021], are also investigated.

2.2 Reducing Communication for VFL
As for VFL, the studies on communication reduction are
relatively few. Castiglia et al. [2022] studied the conver-
gence using top-k sparsification and quantization. Other
techniques like asynchronous training and autoencoder com-
pressor are also used in specific tasks [Chen et al., 2021b;
Ayad et al., 2021]. Chen et al. [2021b] use asynchronous train-
ing and quantization to reduce the communication for split
learning. Using asynchronous training, the bottom model is
not updated every iteration, hence the top model no longer
needs to send the gradient to the bottom model in every itera-
tion. The authors also show that this method neither enhances
nor harms the privacy of split learning. Ayad et al. [2021] use
an autoencoder to compress the intermediate results, which
requires injecting an autoencoder specifically designed for
different tasks.

3 Basic Compression for Split Learning
In split learning, intermediate results are sent during each for-
ward pass and backward pass. Hence, the compression is per-
formed on the intermediate results. Specifically, in this paper,
we only consider the compression on the instance level, i.e., if
there is a batch of instances, the compression method is applied
to the instances’ bottom model outputs inside the batch individ-
ually. Let Comp(·) : Rd → B∗ and Decomp(·) : B∗ → Rd be
the compression and corresponding decompression operator,
where B∗ is the bytes array of arbitrary length. For simplicity,
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Notation Definition

Mb,Mt The bottom model and the top model
X Input instance
O Output of the bottom model

Ŷ , Y Model prediction and label
L(Ŷ , Y ) Loss function
Go or G Gradient of the loss (∂L/∂Ob)

Encode,Decode Encode/Decode between values and bytes
d Dimension of the bottom model output
k #Non-zero elements after sparsification
n Number of classes

Table 1: Notations & Definitions

we denote C[·] ≡ Decomp[Comp(·)]. Note that the compres-
sion methods discussed in this paper usually are not lossless,
hence C[X] and X are usually not equal. Let X be an input
instance, and we assume that the output of Mb is flattened
to a d-dimensional vector, i.e., ∀X,Ob = Mb(X) ∈ Rd.
Then we can define the compression for split learning dur-
ing the forward pass as follows: The feature owner sends
Comp(Ob) to the label owner. The label owner recovers
C[Ob] = Decomp[Comp(Ob)]. Notice that the backward
pass or the loss function should also be modified according to
different forward compression methods. The notations we use
are described in Table 1.

3.1 Basic Compression Methods

We now describe some basic compression methods for SL:
(Cut layer) size reduction is to reduce the size of the bot-

tom model’s output. For example, consider a fully-connected
network whose architecture is 1,000 (input)-100 (first hidden
layer)-100 (second hidden layer)-10 (output). Assuming that
we split the model by its second hidden layer, the cut layer size
is 100. If we ‘slim’ the network by changing its architecture
to 1,000-100-10-10, then we achieve a 90% compression ratio.
In case the network architecture is complicated and hard to
modify, we can just keep the first k elements of Ob. Hence,
we define the compression and decompression functions as

Comp(O) = Encode(o1, ..., ok),

Decomp(O′) = (Decode(O′), 0, ..., 0).
(1)

During the backward pass, we also apply the same compres-
sion and decompression function. The reason is that the last
d−k entries of the bottom output are masked and the gradient
w.r.t. them is meaningless to the bottom model.

Quantization is to convert float values (usually 32-bit) to
low-bit representations, which are widely used to improve the
efficiency of neural networks [Jacob et al., 2018; Gholami et
al., 2021]. While there are many quantization methods, in this
paper, we consider trivial uniform quantization. Suppose the
bottom output’s range is [omin, omax], and we want to quantize
it into b-bit. We generate 2b bins, and the n-th bin has the
range [omin+(omax−omin)/2

b ·(n−1), omin+(omax−omin)/2
b ·

n]. Hence, the compression and decompression functions are

defined as

Comp(O) = Encode

(
...,

⌊
oi − omin

(omax − omin)/2b

⌋
, ...

)
,

Decomp(O′) =

(
..., omin + (ci +

1

2
) · [omax − omin

2b
], ...

)
,

(2)

where (c1, ..., cd) = Decode(O′). Quantization can be ap-
plied on both the forward pass and the backward pass. How-
ever, since the quantization of backward gradients significantly
hurts the model performance and we mostly focus on the in-
ference efficiency, we only quantize the forward pass.

Top-k sparsification is to preserve top-k elements in the
vector, in terms of magnitude, while setting all other elements
to zero. We can define the compression and decompression
functions as

Comp(O) = Encode(oj1 , ..., ojk , j1, ..., jk),

Decomp(O′) = (..., Ii∈J · oi, ...),
(3)

where J = (j1, ..., jk) are the indices of largest-k elements in
O. During the backward pass, the feature owner only needs
the gradients on non-zero entries to update the bottom model.
Hence, we also apply the compression to the backward pass.
Moreover, during the backward pass, the top-k indices are
already maintained by the feature owner and hence need not
be transferred.

L1 regularization is widely used in different fields of ma-
chine learning to induce sparsity [Tibshirani, 1996; Wright
et al., 2008; Yin et al., 2012]. To make the bottom output
sparse, we add the L1-norm of the bottom output to the loss,
i.e., L′ = L+ λ

∑d
i=1 |oi|, where L is the original loss, and λ

is a coefficient to control the sparsity. Larger λ tends to induce
higher sparsity, but may also hurt the model performance more.
The compression and decompression function when using L1
regularization is the same as the top-k sparsification case, the
only difference is that the retrieved indices J are non-zero
indices rather than top-k indices. Note that in the backward
propagation, no sparsification shall be applied.

3.2 Compressed Size
Different compression methods have different compressed
sizes. For simplicity, here we use (relative) compressed size
to denote the ratio between compressed data and original data,
which is the inverse of compression ratio. For size reduction,
the compressed size is simply k/d. Similarly, quantization
has the compressed size 2b/N , where N is the original values’
bit-length, which is usually 32. As for the top-k sparsification
and L1 regularization, although only k values are preserved,
we also have to send their indices during the forward pass.
Suppose that a single index needs r bits to encode, then the
compressed size of top-k sparsification or L1 regularization
is k/d · (1 + r/N). In this paper, we consider the offset
encoding that r = ⌈log2 d⌉. We conclude the compressed size
of different methods in Table 2.

3.3 Summary
From the above discussion, we can see that for size reduction
and top-k sparsification, we can explicitly set the compression
ratio by deciding the portion of preserved elements. Quan-
tization methods can only achieve a maximum compression
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Method Compressed size

Forward Backward

Cut layer size reduction k/d k/d
Quantization to b-bits 2b/N 1
Top-k sparsification k/d · (1 + ⌈log2 d⌉/N) k/d

L1 regularization k/d · (1 + ⌈log2 d⌉/N) 1

Table 2: Compressed size of different methods, where N is the
original values’ bit-length, which is usually 32, and k, d, n is defined
on Table 1.

ratio of 32 if the original value is 32-bit. As for L1 regular-
ization, the compression ratio is hard to control. It is hard to
estimate the compression ratio until the training is finished,
and the compression ratio even varies on different inputs. By
our experiments in Section 5, we can see that quantization and
L1 regularization fail to converge or are infeasible under many
compression levels.

4 Randomized Top-k Sparsification for SL
In this section, we propose our method: randomized top-k
sparsification (RandTopk). The idea of RandTopk comes from
the analysis of size reduction and top-k sparsification, as they
are all implemented by dropping some elements in the bottom
model output. In this section, we first demonstrate that top-k
is (theoretically) better than size reduction since it provides a
larger feature space under the same compression ratio, which
leads to better generalization. Based on this, we introduce
RandTopk and demonstrate its advantage over top-k from two
aspects: convergence and generalization.

4.1 Analysis of Top-k and Size Reduction
We first demonstrate that if the cut layer’s size is small and
there are a large number of classes, the model will suffer from
a huge generalization error because it becomes less smooth.
Then we illustrate that using top-k sparsification, we can make
the model much smoother than size reduction.

Larger Margin, Better Generalization
Studies have shown that the generalization ability of neural
networks is closely related to its smoothness [Neyshabur et
al., 2015; Neyshabur et al., 2017; Gouk et al., 2021]. Gener-
ally speaking, more smoothness leads to better generalization.
Here we consider the case that the cut layer is the last hid-
den layer, while the top model is a linear layer with softmax
activation. The model prediction is

y = Softmax(o ·w1, ...,o ·wn), (4)

where o is the bottom model output, wi is the weight (embed-
ding, hidden feature) in last layer corresponding to i-th output
neuron, and n is the total number of classes (ignoring the
bias). When the model is trained well enough, if the input be-
longs to the i-th class, then o shall be close to wi and far from
wj ̸=i. Let the minimum margin (between two different classes’
weights) dW be dW = mini̸=j ∥wi −wj∥2, the smoothness
of the top model can be approximated as ∥∇θt∥2 ≈ c/dW ,
where c is some constant.

Hence, we can use dW as an indicator for generalization
ability. Larger dW means embeddings of different classes are
away from each other, leading to lower generalization error,
and vice versa.

Top-k Has a Larger Margin
The minimum margin between different classes’ weights is
proportional to the volume of the feature space, i.e., the space
that wi lies in. Obviously, if we do not put any restriction
on wi, the feature space always has an infinite measure. To
avoid this, notice that the Softmax result will not change if the
weight/input is multiplied by a constant. In other words, what
matters is the direction of o and w, instead of the magnitude.
Then we can assume ∥wi∥2 = 1. Hence, each wi can have a
ball Bi of radius dW /2, hence there are totally n balls corre-
sponding to n classes. Those balls are disjoint, thus the sum
of those balls’ volume is less than the volume of the entire
feature space. While those balls are k-dimensional, we further
consider their intersection with the hypersphere ∥w∥2 = 1.
This yields a (k − 1)-dimensional manifold. While we con-
sider any Bi is small, the manifold is close to a (k − 1)-ball,
whose volume is π(k−1)/2/Γ((k + 1)/2)(dW /2)k−1.

For the cut layer of size k, wi’s are k-dimensional. Since
the hypersphere ∥w∥2 = 1 has a volume of 2πk/2/Γ(k/2),
we have

n·π(k−1)/2/Γ((k+1)/2)(dW /2)k−1 ≲ 2πk/2/Γ(k/2). (5)

Approximation is used here because the volume is computed
on a hypersphere rather than a flat Euclidean space. Then we
can estimate that, if all wi’s are almost uniformly distributed
on the hypersphere, dW ≈ 2 · (2/n

√
kπ/2)1/(k−1).

While size reduction only selects the first k dimensions of
the bottom model output, top-k sparsification has

(
d
k

)
different

selections, making the minimum distance
(
d
k

)
times larger.

However, due to the extra communication of top-k sparsifica-
tion for sending the indices, we can only have k′ = αk < k
non-zero elements, where α is considered to be larger than 1/2
since we do not need 32 bits to encode the indices (otherwise
the cut layer size will be up to 232). Comparing the minimum
distance of size reduction and top-k sparsification, and assume
that n2 ≥ 2αkπ (which is obvious in our scenario), we have

d(top-k)
W /d(size reduction)

W ≳

(
d

αk

)
·
√
2α3kπ/n. (6)

It is obvious that if n ≤
√
k/2

(
d
αk

)
, Equation (6) is much

larger than 1. This condition holds in most scenarios since(
d
αk

)
is a high-order polynomial of d. Refer to Appendix D

for details.
In conclusion, under the same compression level, using top-

k sparsification makes the feature space larger, and results in a
smoother top model, finally leading to a smaller generalization
error.

4.2 Adding Randomness to Top-k
We show that by adding randomness to top-k sparsification,
the model converges better, and even generalizes better than
top-k. We add randomness to top-k sparsification by selecting
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Figure 2: The loss surface, gradient field, and learning trajectory of
the toy example.

the neurons as follows:

P (select i-th neuron) =

{
(1− α)/N1 if it is top-k,
α/N2 otherwise.

(7)

The selection is performed k times without replacement, and
N1, N2 denote the numbers of remaining top-k/non-top-k neu-
rons. We can see that α is a hyperparameter to control the
degree of randomness. Larger α makes non-top-k neurons
more likely to be selected. With α = 0, our method behaves
exactly the same as top-k, and with α = 1, it becomes the
Dropout. Empirical analysis on α can be found in Appendix
C. Notice that randomness is only added during the training
procedure. For model inference, our method adopts the same
behavior as top-k. We will mention the proposed randomized
top-k sparsification as RandTopk for short. We further argue
the advantages of RandTopk as follows.
Better convergence. One concern about top-k sparsifica-
tion is that the model may be stuck at local minimums since
those small neurons are not trained. RandTopk overcomes this
problem naturally since its randomness, which makes small
neurons get opportunities to be trained. Hence, the model will
converge faster and to a better minimum. To better illustrate
this, we give the following toy example: Assume that we are
learning the concept

f : (x1, x2) → Sign(x1 − x2), (8)
with a simple split logistic model

Mh : (x1, x2) → (o1, o2) = (w1x1, w2x2),

Mt : (o1, o2) → Tanh(o1 + o2).
(9)

The initial weights of the model are w1 = 1, w2 = −0.1,
and two samples are provided: x1 = (1, 0), y1 = 1 and
x2 = (0.5, 1), y2 = −1. It is obvious that if using top-k,
w1 = +∞, w2 = −∞ are the optimal weights. However,
the optimal weights can never be achieved since o2 is always
masked by top-k sparsification, and w2 is never trained. To
make it clearer, we plot the loss surface and the gradient field
of this example in Figure 2, and we fill the area where w2

cannot be trained with blue. We can see that because of the
non-continuity of gradient introduced by top-k, there is a bad
local minimum in the blue area, and our training (red arrow)
ends up there. Adding randomness to top-k, i.e., give non-top-
k neurons a chance to be selected, the problem can be solved
instantly since w2 will also be trained.

Better generalization. As discussed above in Section 4.1,
top-k sparsification generalizes better since it has a larger fea-
ture space (under the same compression ratio) brought by total(
d
k

)
hyperspheres. However, training with top-k sparsification

cannot fully exploit the larger feature space, since the neurons
are unevenly selected. Some neurons are constantly being
selected with different input samples, while some are rarely
selected. Those rarely selected neurons usually remain small
for most input samples and are also rarely selected and trained
throughout the training process. Consequently, the model can-
not fully exploit the

(
d
k

)
hyperspheres brought by top-k. For

example, if there are d′ neurons that never become top-k, then
the feature space is reduced to

(
d−d′

k

)
<

(
d
k

)
hyperspheres.

The margins between different classes are also smaller. Rand-
Topk overcomes this problem since the small neurons are also
selected. If some small neurons have the potential to become
top-k (w.r.t. certain input examples), RandTopk can provide
them a chance to be large. Thus, the model can explore a
larger space in those hyperspheres, and the margin will be
larger, finally leading to a better generalization.

4.3 Discussion on Privacy
RandTopk has better input privacy than vanilla split learning
since sparsification is performed on the bottom model out-
put. This is because a large portion of the elements in the
bottom model output are zeroed out, it contains less informa-
tion than the original non-sparsified output, which has also
been demonstrated by previous studies [Zhu and Han, 2020;
Fu et al., 2022]. We also provide the results on input recon-
struction result in Appendix B. However, as split learning is
vulnerable to label inference attacks [Fu et al., 2022], Rand-
Topk cannot preserve more label privacy. Hence, it is suitable
for scenarios where the number of classes is large such that it
is impossible for label inference attacks. For example, a face
recognition model with thousands of different faces on user
devices, or a recommendation model running on the user’s
browser.

5 Experiments
5.1 Settings
We perform the experiments of different compression methods
on four datasets, i.e., CIFAR-100 [Krizhevsky et al., 2009],
YooChoose [Ben-Shimon et al., 2015], DBPedia [Auer et
al., 2007], and Tiny-Imagenet [Le and Yang, 2015], using
Resnet-20 [He et al., 2016], GRU4Rec [Hidasi et al., 2016],
TextCNN [Kim, 2014], and EfficientNet-b0 [Tan and Le,
2019], respectively. For CIFAR-100 and Tiny-Imagenet, data
augmentation including random cropping and flipping is used.
For YooChoose, we only use the latest 1/64 subset and apply
the same data preprocessing as in [Hidasi et al., 2016] while
the loss function is changed to cross-entropy. The size of GRU
layer is set to 300. For TextCNN, we set kernel sizes to [3,4,5]
and use the Glove word embeddings [Pennington et al., 2014]
as initialization. For Tiny-Imagenet, we train the model either
from scratch (no suffix) or starting with pre-trained weights
(marked by the suffix “-p”). The details of the datasets are
provided in Table 4.
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Task Comp. RandTopk Topk Size reduction Quantization L1 regularization

CIFAR-100
67.20 (0.71)

High 65.25 (0.54) / 2.86 62.23 (0.55) / 2.86 55.52 (0.69) / 3.13 - -

Medium 65.83 (0.56) / 5.71 61.56 (1.26) / 5.71 60.43 (0.33) / 6.25 53.56 (0.52) / 6.25 62.11 (0.56) / 8.41 (0.49)

Low 65.98 (0.21) / 12.38 62.11 (0.71) / 12.38 62.93 (0.57) / 12.5 66.01 (0.23) / 12.5 63.87 (0.36) / 19.5 (2.25)

YooChoose
63.57 (0.57)

High 60.29 (0.05) / 0.85 60.28 (0.41) / 0.85 50.71 (1.51) / 1.00 - -

Medium 64.55 (0.16) / 1.71 63.81 (0.36) / 1.71 62.20 (0.50) / 2.00 - -

Low 66.88 (0.13) / 3.84 66.12 (0.44) / 3.84 66.12 (0.09) / 4.00 64.69 (0.21) / 3.13 61.48 (5.28) / 3.01 (1.12)

DBPedia
93.11 (0.13)

High+ 84.88 (0.47) / 0.44 83.04 (0.45) / 0.44 64.80 (1.09) / 0.50 - -

High 88.01 (0.23) / 0.88 85.49 (0.35) / 0.88 78.57 (0.53) / 1.00 - 81.35 (0.68) / 1.08 (0.02)

Medium 90.50 (0.11) / 1.97 87.74 (0.35) / 1.97 86.42 (0.26) / 2.00 - 87.88 (0.17) / 0.93 (0.01)

Low 91.59 (0.50) / 3.06 90.05 (0.14) / 3.06 88.38 (0.10) / 3.00 91.20 (0.20) / 6.25 93.11 (0.05) / 5.31 (0.24)

TinyImagenet
53.11 (0.18)

High 50.83 (0.81) / 0.21 48.36 (0.09) / 0.21 35.46 (0.98) / 0.23 - -

Medium 51.75 (0.04) / 0.42 47.24 (0.09) / 0.42 45.66 (0.29) / 0.47 - -

Low 51.16 (0.14) / 0.94 45.50 (0.19) / 0.94 48.87 (0.14) / 0.14 - -

TinyImagenet-p
75.18 (0.29)

High 71.09 (0.14) / 0.21 70.86 (0.07) / 0.21 59.23 (0.83) / 0.23 - -

Medium 72.15 (0.15) / 0.42 71.19 (0.54) / 0.42 66.52 (0.25) / 0.47 - -

Low 73.83 (0.20) / 0.94 72.52 (0.69) / 0.94 68.67 (0.16) / 0.94 - 67.82 (1.15) / 1.24 (0.04)

Table 3: Accuracy and Compressed size, in “Accuracy (standard deviation)/Compressed size (standard deviation, if not zero)” format. We
assume the original communication size (non-compression case) to be 100. The accuracy of vanilla split training is under the dataset name.
The best result is marked in bold, and the second-best result is underlined. The methods that fail to converge or are infeasible under the given
compression level are omitted.

Dataset #Classes Dim. of last layer

CIFAR-100 100 128
YooChoose 18,153 300

DBPedia 219 600
Tiny-Imagenet 200 1,280

Table 4: Dataset details.

We split all the models by their last layer, and apply differ-
ent compression methods with different compression ratios.
All experiments are repeated 5 times, and the standard de-
viation is reported on the results. We report the results on
accuracy vs. compression at the inference phase, convergence
speed during training, in terms of epochs and communication
size, and further analysis on the RandTopk corresponding to
our theoretic claims in Section 4.2. Full experiment results,
input reconstruction attacks, and analysis on the randomness
coefficient α are placed in Appendix A, B, C, respectively.

5.2 Compressed Size vs. Performance
We report the test accuracy (hit ratio@20 for YooChoose) and
corresponding compressed size for inference on different tasks
and compression levels in Table 3. Each experiment has been
repeated 3 times for TinyImagenet and 5 times for other tasks
for more precise results. We set α to 0.1 for all tasks except
for YooChoose, where α = 0.05.

We can see that RandTopk achieves the best performance
in almost all tasks and all compression levels, and are usually
significantly better than the second-best method. Moreover,

RandTopk’s performance is often very near to the non-sparse
case (vanilla SL) even with a high compression ratio. Rand-
Topk surpasses the non-compression case in the YooChoose
task, which we think is caused by its regularization effect.

We also notice that quantization and L1 regularization are
not applicable under many compression levels. For quantiza-
tion, it can only achieve a maximum compression ratio of 32,
and 1-bit quantization usually fails to converge. L1 regular-
ization, on the other side, makes training difficult and usually
fails to converge.

5.3 Convergence Speed
Although our main purpose is to reduce communication at the
inference phase, we also report the convergence speed during
training in Figure 3. The convergence speed is measured in
two terms: the number of epochs and the communication size.

We can see that non-sparse (vanilla SL) training takes the
least epochs to converge, while RandTopk and other compres-
sion methods converge slower, but the difference is not large
to the magnitude level. As for the overall communication to
converge or reach a certain accuracy level, almost all compres-
sion methods outperforms the non-sparse training. RandTopk
performs best in terms of convergence speed and performance
among all other methods.

5.4 Further Analysis on RandTopk
To verify our theoretical analysis in Section 4.2, we provide
the results on convergence speed, generalization error, and the
distribution of top-k neurons during training using CIFAR-100,
to demonstrate the advantage of RandTopk.
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Figure 4: Training loss and generalization error on CIFAR-100. The
compressed size is 2.86%.

Faster convergence. We plot the loss curve of top-k and
RandTopk with different α in Figure 4(a). We can see that
at first top-k sparsification converges faster, then gradually
slows. With a small α, RandTopk converges faster and reaches
a smaller loss value. When α becomes larger, the convergence
at the beginning is slower, however, later it will exceed top-k.
The result verifies our argument that RandTopk can help avoid
local minimums that top-k may get stuck at.

Better generalization. We report the generalization error in
Figure 4(b). We notice that for all methods, the generalization
error can be approximated by 0.5×train acc.−0.2. Hence, the
y-axis is set to be the difference between generalization error
and this value for better illustration. We can see that when the
train set accuracy is the same, RandTopk has a significantly
lower generalization error than top-k, and larger α further
decreases the generalization error. This supports our argument
that RandTopk generalizes better.

Distribution of top-k neurons. We report the histogram
of the times a neuron become top-k. More specifically, after
model training is finished, we iterate through the train set and
record the top-k neurons for each input example. Notice that
we perform this experiment on the inference phase, hence
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Figure 5: Distribution of top-k neurons during inference.

RandTopk also behaves deterministically like top-k. As we
can see in Figure 5, if trained with top-k sparsification, some
neurons will become top-k neurons very often, while some
rarely become top-k. More specifically, some neurons become
top-k for less than 500 times, while some neurons become
top-k for more than 3,500 times. Using RandTopk, the distri-
bution is more balanced. Larger α makes the distribution more
balanced. The results verify our argument that RandTopk can
make use of the expanded feature space better.

6 Conclusion

In this paper, we investigate the use of different compression
methods in split learning. By the analysis of the size reduction
method and top-k sparsification, we further propose random-
ized top-k sparsification, which strengthens top-k’s advantage
on generalization ability while avoiding its disadvantage on
convergence. Experiments on multiple datasets and different
kinds of models show that randomized top-k is superior to
other sparsification methods in terms of model performance
and compression ratio. However, there are still some issues
worth studying in the future. On the one hand, the label privacy
remains to be a problem. Moreover, further research on com-
pression for split learning is needed, for example, combining
quantization and sparsification can be promising.
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