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Abstract
Various probabilistic time series forecasting mod-
els have sprung up and shown remarkably good per-
formance. However, the choice of model highly re-
lies on the characteristics of the input time series
and the fixed distribution that the model is based
on. Due to the fact that the probability distributions
cannot be averaged over different models straight-
forwardly, the current time series model ensemble
methods cannot be directly applied to improve the
robustness and accuracy of forecasting. To address
this issue, we propose pTSE, a multi-model dis-
tribution ensemble method for probabilistic fore-
casting based on Hidden Markov Model (HMM).
pTSE only takes off-the-shelf outputs from member
models without requiring further information about
each model. Besides, we provide a complete the-
oretical analysis of pTSE to prove that the empir-
ical distribution of time series subject to an HMM
will converge to the stationary distribution almost
surely. Experiments on benchmarks show the supe-
riority of pTSE over all member models and com-
petitive ensemble methods.

1 Introduction
The common requirements of time series forecasting are not
only predicting the expected value of a future target, namely
point estimation but also further measuring the uncertainty of
the output by predicting its probability distributions, namely
probabilistic forecasting. Probabilistic forecasting methods
have been extensively studied in the literature, such as de-
terministic methods that predict the quantiles of the pre-
dictive distribution [Lim et al., 2021], probabilistic meth-
ods that sample future values from a learned approximate
distribution [Salinas et al., 2020; Rangapuram et al., 2018;
Salinas et al., 2019a]), and latent generative models [Yuan
and Kitani, 2019; Koochali et al., 2021; Rasul et al., 2020].
These methods are usually motivated by a particular model-
ing focus, characterizing certain aspects of the input time se-
ries [Januschowski et al., 2020]. For instance, Prophet [Tay-
lor and Letham, 2017] shows advantages in explicitly charac-
terizing the fundamental time-domain components, i.e., trend
and seasonality of time series, while the method in [Shih et

al., 2019; Chu and Li, 2023; Chu et al., 2023] digests the fre-
quency domain information for time series to overcome the
nonstationary problem. On the other hand, the training objec-
tive of such probabilistic forecasting methods is usually max-
imizing a likelihood function that is conventionally assumed
to be a fixed distribution, e.g., Gaussian. However, this is not
always true for time series. According to [Ravagli, 2021],
real world time series data is more likely to be asymmetric
and multi-modal with a mixture of distributions. Both afore-
mentioned facts bring challenges for single models. There-
fore, this calls for a new way to integrate the advantages and
specificity of diverse models.

To combine the advantages of different models, a pop-
ular and competitive solution is model ensemble [Oliveira
and Torgo, 2015]. Generally, there are two main cate-
gories of ensemble techniques for time series. The first one
learns an optimal linear combination of the predicted val-
ues returned by each member model [Akyuz et al., 2017;
Adhikari, 2015] by searching for the optimal weight of each
model output. The second one trains the member models
as weak predictors and then combines them via a boosting-
like ensemble step, where member model information, in-
cluding input features, is typically required for loss reduction
[Qiu et al., 2017; Liu et al., 2019; Godahewa et al., 2021;
Qiu et al., 2014]. However, to the best of our knowledge,
all of the aforementioned studies need to treat all member
models as point estimation models, where the ensemble step
handles target values not distributions, and thus cannot be di-
rectly applied to fulfill probabilistic forecasting model ensem-
ble. In addition to such practical shortcomings, an adapted
theoretical foundation aimed at a probabilistic forecasting en-
semble is also highly desired.

This paper intends to fill these gaps by designing pTSE
(“probabilistic time series ensemble”), a semi-parametric
method, to perform distribution ensemble for probabilistic
forecasting of time series. We adopt the idea from the Hid-
den Markov Model (HMM) to treat the collection of member
models as a hidden state space, where the distribution of each
observation is determined by its hidden state. Then, we incor-
porate “mixture quantile estimation” (MQE) into the classic
Baum-Welch algorithm to estimate the distribution of model
residuals, which is subsequently used to compute a distri-
bution quantile at the prediction stage. In order to guaran-
tee the generality, we use weighted kernel density estimation
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(WKDE), a non-parametric method, to approximate the resid-
ual distributions, where the sample weight of each residual
for a member model is the probability of the corresponding
model in the hidden state. A bootstrap method is specifi-
cally designed to calculate the optimal bandwidth parameter
for each model, which is crucial to the WKDE performance.
The whole ensemble step is achieved by inferring the station-
ary distribution of the HMM, of which the quantile is used
for forecasting. We provide a complete theoretical analysis
of pTSE to prove that the empirical distribution of time series
subject to an HMM will converge to the stationary distribu-
tion almost surely, and such a result is non-trivial to guess.
That is to say, the whole time series approximately subjects
to the stationary distribution (ensemble distribution) inferred
by pTSE within any period of time. It is worth noting that
pTSE takes off-the-shelf model outputs without further re-
quiring implementation details of the member model. This
makes pTSE plug-and-play and easily integrated into existing
models. We evaluate pTSE on synthetic datasets to confirm
the theoretical results and then on public data sets to show its
superiority over single-model methods as well as ensemble
methods designed for point estimation models.

The main contributions of this paper are three folds: (1)
We propose pTSE, a multi-model ensemble method for prob-
abilistic forecasting, which only takes off-the-shelf outputs
from member models without requiring further information
about each model; (2) We theoretically verify the ensemble
distribution discovered by our method, which the time series
approximately subject to within any period of time; (3) We
demonstrate on real-world data sets that our ensemble method
produces better performance than all member models as well
as competitive point estimation model ensemble methods.

2 The pTSE Framework
In this section, we begin with giving a brief overview of
HMM as a preliminary in Section 2.1. Then the core idea
of pTSE is introduced in Section 2.2. The distribution eval-
uation procedure with a mixture quantile estimation method
and its parameter selection procedure are described in Sec-
tion 2.3 and Section 2.4, respectively. Section 2.5 presents
the complete procedure of pTSE, including the parameter es-
timation stage and the prediction stage, where forecasting is
made based on the ensemble distribution.

2.1 Preliminaries
We first give a brief review of HMM and then introduce its
fitting process.

HMM: An HMM is a probabilistic model describing
the joint probability of a collection of random variables
{O1, . . . , OT , S1, . . . , ST }[Bilmes and others, 1998]. The
Ot variables, either continuous or discrete, represent the ob-
servations that we can acquire in the real world, while the St

variables are hidden states corresponding to each Ot. Under
an HMM, the random process {St : t ∈ N} is a Markov
process satisfying

p(St+1|S1, . . . , St) = p(St+1|St).

Given the state St, Ot satisfies
p(Ot|S1, . . . , ST , O1, . . . , OT ) = p(Ot|St), (1)

which demonstrates that the distribution of Ot is only deter-
mined by the hidden state.

In other words, for continuous variables, Equation (1) de-
fines the Probability Density Function (PDF) of Ot given St,
and the PDF denoted as fk(o) := p(Ot = o|St = k), is
conventionally termed the “emission function”.

Fitting an HMM: Fitting an HMM with a total number
of K states to a dataset {Ot : t ∈ N, 1 ≤ t ≤ T} requires
determining the following parameters: (1) transition matrix
A = (ai,j)1≤i,j≤K of the underlying Markov process {St},
where aij = p(St+1 = j|St = i), (2) a parameter set Θ =
{θk}Kk=1 of the emission function fk(o; θk), and (3) initial
distribution π = (π1, . . . , πK), where πk = p(S0 = k).

The fitting is done by maximum likelihood estimation
(MLE) or equivalently

argmax
A,π,Θ

p({Ot}Tt=1|A, π, fk(Ot; θk ∈ Θ)). (2)

However, for a dataset governed by an HMM, the undergo-
ing state process {St : St ∈ N, 1 ≤ St ≤ K} is un-
known in most cases. Therefore, the parameter estimation
problem of an HMM is generally solved via an Expectation-
Maximization (EM) fashion, which particularly deals with
MLE problems with missing data, such as the hidden states.
This EM method for fitting HMM is known as the Baum-
Welch algorithm [Bilmes and others, 1998].

2.2 Framework Basics
We now introduce the pTSE framework for probabilistic fore-
casting. A probabilistic forecasting problem usually requires
to estimate the conditional distribution of yt, given a trained
model M and a feature vector Xt, where Xt may contain the
history of the time series along with known future informa-
tion without randomness. In other words, probabilistic fore-
casting aims to estimate p(yt|M(Xt)).

Suppose a total number of K probabilistic forecasting
models, {Mk}Kk=1, are independently fitted to the same data
set {yt}Tt=1(T ∈ N). We first assume that at each time t,
there exists an optimal model Mkt

∈ {Mk}Kk=1 such that the
distribution of yt is determined by the optimal model given
the feature Xt. Or equivalently, yt ∼ p(yt|Mkt(Xt)).

Next, for yt+1, we assume that Mkt will randomly transfer
to a new optimal model Mkt+1 with a probability of pkt,kt+1

(bold arrow in Figure 1), and this transition process is a
Markov process. We illustrate this idea in Figure 1. In or-
der to derive an executable methodology, we denote the PDF
p(yt|Mkt(Xt)) as fXt

Mk
(yt), for convenience.

Recall that we intend to use HMM for the model ensem-
ble, we clarify the concepts as follows: the optimal model
Mkt corresponds to the hidden state St, the time series yt
corresponds to the observation Ot, and the PDF fXt

Mk
(yt) cor-

responds to the emission function fk(o), as introduced in Sec-
tion 2.1. Hence by now, we have established a framework us-
ing HMM to capture the relation between probabilistic fore-
casting models and the target time series.

We now introduce the method for evaluating the ensemble
weights for each member model Mk. As illustrated by the
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Figure 1: Markov Property of the Optimal Model Transition Process. At each time t, we assume there exists an optimal model Mkt ∈
{Mk}Kk=1 such that the distribution of yt is determined by Mkt(Xt), where {Mk}Kk=1 is the set of all K models fitted to the time series
{yt}Tt=1 and Xt is the feature obtained at t for predicting yt. The optimal model at time t will transfer to a new optimal model Mkt+1 at time
t+ 1 with a probability of pkt,kt+1 (black bold arrow), and we assume this random transition process to be Markov.

law of total probability that

p(yt) =

K∑
k=1

p(yt|Mk(Xt))p(Mk(Xt)),

the time series subjects to an ensemble distribution of the
component PDF defined by each Mk(Xt) with the weights
defined as the probability of each Mk being the optimal
model, i.e., p(Mk(Xt)), where Xt is a known vector with-
out randomness. For simplicity, we estimate p(Mk(Xt)) as
the average chance of Mk being the optimal model within any
period of time, denoted as π∗

k, and the ensemble distribution
is estimated as

f̂(yt) =
K∑

k=1

π∗
kf

Xt

Mk
(yt). (3)

We illustrate this idea in Figure 2.
Surprisingly, (π∗

1 , . . . , π
∗
K) is nothing but the stationary

distribution of the hidden Markov process, which determines
the expected frequency of reaching each state. For a Markov
process with transition matrix A, the stationary distribution
is a row vector, π∗ = (π∗

1 , . . . , π
∗
K), satisfying π∗A = π∗,

whose elements are non-negative and sum up to 1. In other
words, a key step of our ensemble method is to acquire the
stationary distribution of the hidden Markov process, which
requires fitting an HMM to the time series {yt}Tt=1 given
{Mk}Kk=1 and {Xt}Tt=1. By substituting the variables of our
interest into Equation (2), the ultimate problem we need to
solve is defined as

argmax
A,π,f

Xt
Mk

p

(
{yt}Tt=1

∣∣∣∣A, π, fXt

Mk

)
. (4)

Although it may seem to be slightly arbitrary to use the sta-
tionary distribution to evaluate the ensemble distribution, we
have theoretically proved that the time series {yt : t ∈ N} ap-
proximately subject to this ensemble distribution within any
period of time in Section 3.

2.3 Mixture Quantile Estimation
Generally, for a probabilistic forecasting method, the PDF
fXt

Mk
(yt) is not directly evaluated in the prediction stage; in-

stead, it tends to estimate a quantile of yt, where the q−th
quantile of yt is a constant τ satisfying p(yt ≤ τ) = q. There-
fore, we exploit an MQE framework [Wu and Yao, 2016] to
estimate Equation (3).

The MQE framework first formalizes a q-th quantile fore-
casting model M as y = M(X) + ϵq, where X is the vec-
tor of model inputs, and the error term ϵq is a random vari-
able whose q−th quantile is equal to zero. Let fϵq (·) be
the PDF of ϵq and the PDF of y given M(X) is fM (y) =
fϵq (y − M(X)). For multiple models, the MQE framework
is used to estimate the error term PDF for each model and
ensure the q−th quantile of ϵq is zero for each model.

Each yt is then a random variable whose PDF is defined as
fXt

Mk
(yt) = fk

ϵq (yt −Mk(Xt)). The function fk
ϵq (·) is the er-

ror term PDF of the member model Mk and can be estimated
by the MQE framework.

2.4 Kernel Density Estimation
To perform MQE, we incorporate WKDE, a non-parametric
method for PDF estimation. The WKDE is used specifically
to estimate the PDF of error term fk

ϵq (·). A WKDE implies
the importance of each sample is unequal, which in our case,
is due to the diverse probabilities of different member models
being the optimal model for a certain yt. The relation between
sample weights and member models will be further discussed
in Section 2.5.

A WKDE obtained from a dataset {yt}Tt=1 is defined
as f̂(y) = 1

σ
∑T

t=1 wt

∑T
t=1 wtK

(
y−yt

σ

)
, wt > 0, where

the bandwidth parameter σ essentially influences the perfor-
mance. We select the optimal σ by a bootstrap method [Far-
away and Jhun, 1990]. For a set of candidate bandwidth pa-
rameters Σ = {σi}, the bootstrap method first chooses an
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Figure 2: Ensemble Distribution. The ensemble PDF is defined as the weighted average of the PDF defined by each member model, where
the weights correspond to the average chance of each member model being the optimal model.

initial value σ0. Next, it constructs a total number of B sam-
ple sets by resampling from the distribution determined by a
WKDE with σ0. For each σi ∈ Σ, a WKDE is performed on
each resampled sample set, resulting in a PDF f̂ b

σi
(·) (corre-

sponding to the bth sample set). The selected σ∗ is the one
that minimizes the bootstrap integrated mean squared error
(BIMSE), or technically

σ∗ = argminσi∈Σ

1

B

B∑
b=1

∫ (
f̂ b
σi
(o)− f̂σ0

(o)
)2

do. (5)

In this work, we adopt the Gaussian kernel for performing
WKDE. An estimated PDF fk

ϵq (·) with a selected σk is de-
noted as fk

ϵq (·;σk) for explicitness.

2.5 The MQE Baum-Welch Algorithm
We now derive the MQE Baum-Welch Algorithm for infer-
ring both π∗ and fXt

Mk
(yt) in equation 3.

Recall the problem defined in Equation 4 in Section 2.1, by
MQE which refines fXt

Mk
(yt) as fk

ϵq (yt −Mk(Xt);σk), the
objective function for the MQE Baum-Welch Algorithm is

argmax
A,π,{σk}K

k=1

p

(
{yt}Tt=1

∣∣∣∣A, π, fk
ϵq (·;σk)

)
. (6)

The MQE Baum-Welch Algorithm is still an EM method
for resolving Equation 6.

During the E step, four quantities αk(t), βk(t), γk(t) and
ξi,j(t), need to be prepared, whose definition will be given
in the following content. The E step uses the same update
equations in the general Baum-Welch Algorithm introduced
in [Bilmes and others, 1998]. Based on the E step, the M step
is designed to update the transition matrix A, the initial distri-
bution π, and the PDF fk

ϵq (ϵ) for each member model, where

the MQE method and the bootstrap procedure are performed.
The EM steps are repeated until all parameters converge.

The stationary distribution π∗ in Equation (3) is obtained
by setting π∗ = π and repeating π∗ = π∗A until π∗ con-
verges, where π is the estimated initial distribution. Once π∗

and fk
ϵq (ϵ) are determined, the ensemble PDF of yT+h pro-

vided with the output of each member model Mk(XT+h),
i.e. f̂(yT+h;π

∗, fk
ϵq ,Mk(XT+h)), is defined as

f̂(yT+h;π
∗, fk

ϵq ,Mk(XT+h)) =

K∑
k=1

π∗
kf

k
ϵq (yT+h −Mk(XT+h)).

(7)

MQE Baum-Welch Algorithm
E step

Updating αk(t), βk(t), γk(t) and ξi,j(t): For 1 ≤ i, j ≤ K,
define αk(t) and βk(t) as

αk(1) = πkf
k
ϵq (y1 −Mk(X1)), k = 1, . . . ,K, (8)

αj(t+ 1) =

(
K∑
i=1

αi(t)aij

)
f j
ϵq (yt+1 −Mj(Xt+1);σk), (9)

and

βk(T ) = 1, k = 1, . . . ,K, (10)

βj(t) =

(
K∑
i=1

aijf
j
ϵq (yt+1 −Mj(Xt+1);σk)

)
βj(t+ 1), (11)

where αk(t), βk(t) are termed forward probability and back-
ward probability respectively.

Based on αk(t) and βk(t), γk(t) and ξi,j(t) are defined as:
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γk(t) =
αk(t)βk(t)∑
j αj(t)βj(t)

), (12)

which is the probability of being in state k at time t, and

ξi,j(t) =
γi(t)ai,jf

j
ϵq (yt+1 −Mj(Xt+1);σk)βj(t+ 1)

βi(t)
,

(13)

which is the probability of being in state i at time t and in
state j at time t+ 1.
M step

Updating A and π: Each element aij of the transition
matrix A is estimated as the expected number of transitions
from state i to state j relative to the expected total number of
transitions away from i [Bilmes and others, 1998], which is

ai,j =

∑T1

t=1 ξi,j(t)∑T1

t=1 γi(t)
. (14)

For the initial distribution π = (π1, . . . , πK), the k-th ele-
ment is estimated as the expected relative frequency in the
k-th state at time 1, or

πk = γk(1). (15)

In summary, Equations (8)-(15) aim at updating the transition
matrix A and the initial distribution π, with fk

ϵq (ϵ) fixed.
Selecting σk for fkϵq(ϵ): Our MQE method subsequently

updates the emission function or the PDF fk
ϵq (ϵ). It first se-

lects a bandwidth parameter σk for each fk
ϵq (ϵ) via the boot-

strap method. In the bootstrap procedure, γk(t) is used as
the sample weight of each ϵtk, where ϵtk = yt −Mk(Xt). We
use γk(t) as sample weight because it is the probability of Mk

being the hidden state of yt [Bilmes and others, 1998]. There-
fore, for each member model, samples with larger probability
should be paid more attention to.

Updating fkϵq(ϵ) by MQE: Based on σk, a simple
weighted-KDE-like update equation for fk

ϵq (ϵ) would be∑T
t=1

γk(t)
σk

∑
t γk(t)

K
(

ϵ−ϵtk
σk

)
. However, this update equation

ignores which quantile is being estimated by the member
models. To make the method focus on the q-th quantile,
fk
eq (ϵ) is updated as

fk
ϵq (ϵ) =

T∑
t=1

2∑
l=1

Ikt,lW
k
l γk(t)

1

σk
K

(
ϵ− ϵtk
σk

)
,

where Ikt,1 = I{ϵtk≤0}
1 and Ikt,2 = I{ϵtk>0} [Wu and Yao,

2016]. The constants W k
1 and W k

2 constrain fk
ϵq (ϵ) to have 0

as the q−th quantile, while normalizing the integral of fk
ϵq (ϵ)

equal to 1. By defining vk,t =
∫ 0

−∞
1
σk

K
(

ϵ−ϵtk
σk

)
dϵ, W k

1

1The indicator function I{·} is a 0/1 valued function, which is
defined as I{c} = 1 if c is true, and 0 otherwise.

and W k
2 are acquired by solving the following linear equation

systems, 

T∑
t=1

2∑
l=1

Ikt,lW
k
l γk(t) = 1,

T∑
t=1

2∑
l=1

Ikt,lvk,tW
k
l γk(t) = q.

Prediction Step
Once the learning procedure stops, the q−th quantile τ at time
T + h is obtained by solving Equation (16)∫ τ

−∞

∑
k

π∗
kf

k
ϵq (y −Mk(XT+h)) dy = q (16)

Therefore, the future q-th quantile for a time series is es-
timated from ensemble PDF with Equation (16) and can be
directly used at the prediction stage.

3 Theoretical Analysis
In this section, we present the theoretical results of our work.
The core idea is to evaluate the limit of the empirical dis-
tribution of a sample set originated by an HMM. The re-
sults are non-trivial because a random process {Ot}+∞

t=0 gen-
erated from an HMM is not necessarily a Markov process.
Strictly speaking, Equation (17) is not always equal to Equa-
tion (18) for a given initial distribution π, where F(o) =

(f1(o), . . . , fK(o))
T and fk(o) is the emission function as

introduced in 2.1.
p(Ot+1 ≤ τt+1|O0 ≤ τ0, . . . , Ot ≤ τt) (17)

=
πA

∫ τ0
−∞ diag (F(o)) do · · ·A

∫ τt+1

−∞ diag (F(o)) do1

πA
∫ τ0
−∞ diag (F(o)) do · · ·A

∫ τt
−∞ diag (F(o)) doA1

.

p(Ot+1 ≤ τt+1|Ot ≤ τt) (18)

=
πAt−1

∫ τt
−∞ diag (F(o)) doA

∫ τt+1

−∞ diag (F(o)) do1

πAt−1
∫ τt
−∞ diag (F(o)) doA1

.

We summarize our theoretical work in four lemmas and
one theorem. Lemma 3.1 is a straightforward statement of the
property of a transition matrix. Both Lemma 3.2 and Lemma
3.3 illustrate convergence. Lemma 3.2 computes the final
limit with the help of Lemma 3.1. Lemma 3.3 assures the ex-
istence of the limit of the sum of a random variable sequence,
providing fast dependence decay. Lemma 3.4, indicating the
exponential convergence rate of a Markov Process, turns out
to be a guarantee for the condition in Lemma 3.3. Remark-
ably, based on Lemma 3.1-3.4, Theorem 3.1 indicates that
the empirical distribution of a dataset sampled from an HMM
converges to

∑K
k=1 π

∗
kfk(o) almost surely. In other words,

these HMM samples are approximately subject to an ensem-
ble distribution of the emission functions, fk(o), with the
weights determined by the stationary distribution regardless
of the time window. In the case of pTSE, each emission func-
tion fk(yt) is defined as fk

ϵq (yt−Mk(Xt)). Hence as a corol-
lary, within any period of time, the time series {yt : t ∈ N}
approximately subjects to the ensemble distribution in Equa-
tion (7), estimated by the MQE Baum-Welch Algorithm.
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Figure 3: Average empirical probability (blue line) across 100 simulations vs. theoretical limit (red line) when τ = 0.5. The blue shadow
represents the 95% confidence interval. Three batches of a 100-time-simulation dataset are presented for each K.

Lemma 3.1. Let A be the transition probability matrix of an
HMM, and let

1 = (1, 1, . . . , 1)
T
,

then 1 is a right eigenvector of eigenvalue 1 of A, i.e.

A1 = 1

The proof is straightforward.

Lemma 3.2. Let A be the transition probability matrix of an
HMM, π∗ be the stationary distribution, and π be any initial
distribution, let F(o) be the vector-valued emission function
of all states, then

lim
T→+∞

1

T

T−1∑
t=0

πAt

∫ τ

−∞
diag (F(o)) doAT−1−t1 = π∗

∫ τ

−∞
F(o)do

(19)

Lemma 3.3. Let {En : n ≥ 1} be a sequence of events
and Sn =

∑n
k=1 IEk

, if there exists {ρn}∞n=1 satisfying∑
n |ρn| ≤ +∞, such that, for any i ̸= j,

p(Ei ∩ Ej)− p(Ei)p(Ej) ≤ ρ|i−j|

√
p(Ei)p(Ej),

and if limn→+∞ E(Sn) = +∞,then,

lim
n→+∞

Sn

E(Sn)
= 1, a.s.

Lemma 3.4. Let A be the transition probability matrix of a
Markov Process with non-zero elements and π∗ be the sta-
tionary distribution. Then, there exists a constant C, such
that the following inequality holds,

||At − 1π∗||F ≤ CtJ−1λt−J+1
∗ ,
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(A) Traffic Electric Solar Energy
Model 0.5-risk 0.9-risk AVG 0.5-risk 0.9-risk AVG 0.5-risk 0.9-risk AVG
DeepAR 0.151 0.302 0.227 0.083 0.070 0.076 0.435 0.253 0.344
SFF 0.235 0.471 0.353 0.084 0.047 0.066 0.509 0.278 0.393
TFT 0.184 0.367 0.275 0.118 0.062 0.090 0.487 0.184 0.336
Transformer 0.163 0.326 0.244 0.087 0.058 0.072 0.499 0.270 0.385
pTSE (Ours) 0.150 0.106 0.128 0.079 0.042 0.061 0.451 0.210 0.331
(B) Traffic Electric Solar Energy
Model 0.5-risk 0.9-risk AVG 0.5-risk 0.9-risk AVG 0.5-risk 0.9-risk AVG
ModelRank 0.150 0.108 0.129 0.073 0.049 0.061 0.457 0.210 0.334
FFORMA 0.165 0.112 0.139 0.081 0.070 0.076 0.459 0.284 0.372
pTSE (Ours) 0.150 0.106 0.128 0.079 0.042 0.061 0.451 0.210 0.331

Table 1: The experimental results of our model (pTSE), member models, and another two ensemble models on three real datasets. The best
results are marked in bold (lower is better).

where J is the size of the largest Jordan block of A, and
λt−J+1
∗ is the largest absolute value of the eigenvalues

smaller than 1 of A. || · ||F is the Frobenius Norm.

Theorem 3.1. Let {Ot}Tt=1 be the observations generated
from an HMM whose transition matrix has non-zero elements,
π∗ be the stationary distribution, and F(o) be the vector-
valued emission function of all states. Define F̂T (τ), the em-
pirical distribution of {Ot}Tt=1, as

F̂T (τ) =
1

T

T∑
t=1

I{Ot<=τ}

then,

lim
T→+∞

F̂T (τ) = π∗
∫ τ

−∞
F(o)do, a.s.

4 Numerical Experiments
In this section, we first present a few synthetic data experi-
ments to verify our theoretical results. Next, we apply the
pTSE to publicly available datasets to test the performance.

4.1 Synthetic Data Analysis
We simulated random sequences governed by HMM struc-
tures. We set K = 3, 5, 10 and T = 1000. The transition
matrix A is chosen by first generating a matrix of uniformly
distributed random numbers and then normalizing the matrix
to ensure the sum of elements of each row equals 1. The emis-
sion function fk(o) for each state k is simply set to a Gaussian
distribution as N (0.2k,

√
k + 1), (k = 1, . . . ,K). For each

set of {K,T,A,F(o)}, we run the simulation procedure for
100 times, where during each time, an initial distribution π0

is randomly chosen. The results are presented in Figure 3.
The empirical probability, F̂ (τ), shows fast convergence to
π∗ ∫ τ

−∞ F(o)do, after T = 50 for all simulated datasets, re-
gardless of the state number K or the transition matrix A.

4.2 Real World Data Analysis
We evaluate the performance of pTSE on three challenging
real-world benchmark datasets, i.e., solar energy 2, electricity,

2https://www.nrel.gov/grid/solar-power-data.html

traffic [Yu et al., 2016].The solar energy, electricity, and traf-
fic datasets contain hourly measurements from 137, 370, and
963 time series, respectively. For these three datasets, each
model would perform an iterative prediction task of forecast-
ing the future values for a 24-hour horizon after being trained
on the past 168-hour (past week) data. The model perfor-
mance would be evaluated on a 7-day-horizon test set.

Four of the most popular probabilistic forecasting models
are selected as the member models: SimpleFeedForwardEs-
timator (SFF), Transformer, DeepAR, and TemporalFusion-
Transformer (TFT). As in [Salinas et al., 2019b], we use q-
risk metrics (quantile loss) to quantify the accuracy of a q-th
quantile of the predictive distribution. Table 1 presents 0.5-
risk, 0.9-risk, and the average risk of the output correspond-
ing to each method. We also present a comparison of pTSE
with existing time series model ensemble methods, FFORMA
[Montero-Manso et al., 2020], a meta-learning approach, and
a model ranking-based ensemble method [Adhikari et al.,
2015]. Hyperparameters of the two ensemble methods are set
up as recommended in the original papers. Results in Table 1
show that pTSE outperforms all member models on average
across all datasets. The performance of pTSE is relatively
more stable in the electricity and traffic datasets, as it ranked
highest in all three competitions in each case. On the solar
energy dataset, pTSE maintained the best performance in the
average loss. Compared with the other two ensemble meth-
ods, pTSE shows a significant advantage on three datasets.

5 Conclusion
We present pTSE, a semi-parametric multi-model ensemble
methodology for probabilistic forecasting. Our method takes
off-the-shelf model outputs without requiring further infor-
mation. We theoretically prove the empirical distribution of
time series subject to an HMM will converge to the stationary
distribution almost surely. We use the synthetic data to verify
the validity of our theory and conduct extensive experiments
on three benchmark datasets to demonstrate the superiority
of pTSE over each member model and other model ensem-
ble methods. Nevertheless, it should be pointed out that the
improvement by pTSE or any other ensemble methods is es-
sentially limited by the performance of member models.
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