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Abstract
Recently, Decision Transformer (DT) pioneered the
offline RL into a contextual conditional sequence
modeling paradigm, which leverages self-attended
autoregression to learn from global target rewards,
states, and actions. However, many applications
have a severe delay of the above signals, such as the
agent can only obtain a reward signal at the end of
each trajectory. This delay causes an unwanted bias
cumulating in autoregressive learning global sig-
nals. In this paper, we focused its virtual example
on episodic reinforcement learning with trajectory
feedback. We propose a new reward redistribution
algorithm for learning parameterized reward func-
tions, and it decomposes the long-delayed reward
onto each timestep. To improve the redistributing’s
adaptation ability, we formulate the previous de-
composition as a bi-level optimization problem for
global optimal. We extensively evaluate the pro-
posed method on various benchmarks and demon-
strate an overwhelming performance improvement
under long-delayed settings.

1 Introduction
The large-scale generative models of sequence modeling
have achieved great success with widespread application in
NLP [Devlin et al., 2019], CV [Dosovitskiy et al., 2021;
Yang et al., 2023], time-series forecasting [Zhou et al., 2021].
They have evolved into a common paradigm and dominant
approach in many machine learning domains.

Recently, Decision Transformer (DT) [Chen et al., 2021]
pioneered modeling reinforcement learning (RL) as a se-
quence generation problem, intending to generate a sequence
of actions that, when implemented in an environment, will
yield a series of high returns. In contrast to traditional online
RL approaches, this new offline RL paradigm, which learns
from a fixed-size dataset by modeling conditional sequences,
can effectively overcome the difficulty of collecting data sam-
ples in many real-world scenarios. DT proposes to model RL
trajectories using Transformer [Vaswani et al., 2017], and it

The corresponding author is Jianxin Li. The source code is
available at https://github.com/catezi/DTRD.

attempts to leverage self-attended autoregression to learn how
to make optimal actions by modeling and to extract six types
of heterogeneous dependencies between states, actions, and
target rewards in unstructured trajectory sequences (as shown
in Figure 1(a)). DT can effectively mitigate the instability of
the bootstrap process and short-sightedness of reward prop-
agation during training traditional RL algorithms (e.g., TD
learning [Sutton and Barto, 1998]), and are exceptionally su-
perior in capturing long-term dependencies.

The DT model generally outperforms traditional offline
RL methods such as Behavioral Cloning (BC) [Torabi et al.,
2018] due to its ability to capture multiple heterogeneous de-
pendencies among target rewards, states, and actions. DT
has been successfully utilized in environments with dense
or slightly sparse rewards, benefiting from its modeling of
global dependencies for target reward signals, which is simi-
lar to Q-value learning in online RL. However, a more chal-
lenging issue arises in applications where reward signals are
severely delayed, and the agent can only receive a reward sig-
nal at the end of each trajectory. This is the case in scenar-
ios like mazes and machine control, where rewards are only
available in the final state. Unlike the aforementioned sparse
rewards, the problem of long-delayed rewards involves not
only the scarcity of reward signals but also the temporal struc-
ture. Directly applying the DT model to such long-delayed
reward environments would lead to significant challenges.

The problem can be explicitly expressed as the accumu-
lation of unwanted biases in autoregressive learning global
signals due to reward delays. This bias can be specified as
a bias in the attention distribution and is transmitted layer
by layer in the neural network, thus triggering the defect of
model performance degradation and reducing the effective-
ness of the decision model. More specifically, in scenarios
with long-delayed rewards, the semantic dependencies be-
tween reward signals and timesteps become significantly in-
consistent in the collected offline trajectories. Since the re-
ward is only obtained at the last timestep, all target rewards
within the trajectory, except for the last timestep, are identi-
cal. Consequently, the majority of reward signals in this setup
become redundant and may even weaken or mislead the clas-
sical self-attention model in extracting complete heteroge-
neous dependencies and learning unbiased attention distribu-
tions. These unwanted biases tend to degrade the DT model
into a behavior cloning model, i.e., modeling only three types
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Figure 1: Heterogeneous dependencies captured by the DT model
among target rewards, states, and actions at the attention correlation
level. The left side represents the dense reward setting, while the
right side represents the sparse reward setting.

of heterogeneous dependencies between states and actions
while disregarding target rewards (as shown in Figure 1(b)).

Therefore, this paper focuses on providing a virtual exam-
ple of episodic reinforcement learning with trajectory feed-
back. To address the above problem, we aim to build a new
reward redistribution algorithm named DTRD for learning
parameterized reward functions, and it decomposes the long-
delayed reward onto each timestep. To enhance the adapt-
ability of the redistribution process, we formulate the previ-
ous decomposition as a bi-level optimization problem to au-
tomatically evaluate the effectiveness of modeling the reward
function. This evaluation involves assessing the impact of re-
distributed rewards on improving the performance of the pol-
icy model. At the lower level, we optimize a policy model to
extract expert policies embedded in the offline trajectories. At
the upper level, we optimize a parameterized reward shaping
function and aim to maximize the decision performance of the
lower-level policy model on specific tasks while learning an
appropriate way to redistribute rewards. Our algorithm also
contributes to improving the performance of DT in general
sparse reward problems. In conclusion, our proposed algo-
rithm automates the search for optimal and reasonable reward
decomposition functions by establishing a bi-level optimiza-
tion framework. This reward redistribution facilitates optimal
policy optimization. Our algorithm significantly enhances the
effectiveness of DT models in long-delayed reward environ-
ments and improves their generalization ability. The contri-
butions of this paper can be summarized as follows:

• Firstly, we reveal the problem of unwanted biases ac-
cumulation under long-delayed settings for models that
learn global signals autoregressively for the first time.

• Secondly, we propose an adaptive reward redistribution
method based on bi-level optimization. It redefines a
more direct reward redistribution optimization objective
in terms of the validation loss of the policy model.

• Thirdly, we provide formal results for computing the pa-
rameter gradient of the policy validation loss with re-
spect to the reward function. This enables the decou-
pling of policy optimization and reward redistribution,
leading to accelerated training.

• Finally, we extensively evaluate the proposed method
DTRD on various benchmarks, including Atari, Mini-
grid, D4RL, etc., and demonstrate an overwhelming per-
formance improvement in long-delayed settings.

2 Background

2.1 Setup and Notation

We are interested in decision transformer (DT) [Chen et al.,
2021] in episodic task settings, wherein an agent can only ob-
tain one reward feedback at the end of each trajectory. Let τ
denote a trajectory, and let |τ | denote its length. The return-
to-go (rtg) gt =

∑|τ |
t′=t

rt′ of a trajectory τ at timestep t
denotes the sum of future rewards from that timestep. Let
G = (g1, ..., g|τ |), S = (s1, ..., s|τ |) and A = (a1, ..., a|τ |)
denote the sequence of rtgs, states, actions of τ , respectively.

2.2 Decision Transformer
Decision Transformer (DT) processes a trajectory τ as a se-
quence of 3 types of input tokens: rtgs, states, and actions:
(g1, s1, a1, g2, s2, a2, ..., g|τ |, s|τ |, a|τ |), where the initial rtg
g1 is equal to the accumulated reward of the whole trajec-
tory (trajectory feedback). At timestep t, DT uses the to-
kens from the latest k timesteps to generate an action at,
where k is a hyperparameter and denotes the context length
for the Transformer model. It is worth noting that the con-
text length during the evaluation can be shorter than the con-
text length used for training. DT learns a deterministic pol-
icy π(at|g−k,t, s−k,t,a−k,t−1), where s−k,t denotes the se-
quence of k past states and similarly for g−k,t and a−k,t−1.
Therefore, DT is essentially a k-order autoregressive model.
DT parameterized the policy in particular using a GPT ar-
chitecture [Radford and Narasimhan, 2018], which employs
a causal mask to enforce such an autoregressive structure in
the predicted action sequence. The data distribution T is as-
sumed to generate length-K rtg g, action a and state s sub-
sequences from the same trajectory. This allows us to easily
present our approach’s training objective, and the policy is
trained to predict action tokens using the standard L2-loss.

Ltrain = E(g,s,a)∼T

[
1

k

∑k

t=1
(at − π(g−k,t, s−k,t))

2

]
.

(1)

2.3 Episodic RL with Trajectory Feedback
The environment model in typical RL scenarios is usually for-
mulated by a finite Markov decision process (MDP), which is
defined as a 5-tupleM = (S,A, P,R, γ), where S andA de-
note the spaces of environment states and agent actions [Bell-
man, 1966]. Moreover, R(s, a) denotes the environment
transition and reward function [Ren et al., 2022]. Further-
more, M has transition distribution P (s′|s, a) = p(St+1 =
s′, Rt+1 = r|St = s,At = a) and reward function R(s, a)
conditioned on state-actions and a discount factor γ ∈ [0, 1].
In this paper, we consider the episodic RL setting with tra-
jectory feedback, where the agent can only obtain one reward
feedback at the end of each trajectory. In other words, be-
fore reaching the final state sT , rewards R(st, at) = 0 for all
t < T , where T denotes the finite horizon length. In many
episodic tasks, the terminal states can be predefined, or the
length of the trajectories is limited. Let τ = {st, at}Tt=1 de-
note an agent trajectory that includes all experienced states
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and actions within an episode. Then the episode reward func-
tion Rep(τ) can be defined on the trajectory space, repre-
senting the overall performance of trajectory τ . In fact, the
episodic reward setting is a particular form of partially ob-
servable Markov decision process (POMDP), where the re-
ward function is non-Markovian. The worst-case may lead
the agent to traverse the entire exponential-scale trajectory
space to represent the episodic reward function. A com-
mon structural assumption is the existence of an underlying
Markovian reward function R̂step(s, a) that approximates the
episodic reward Rep(τ) by a sum-form decomposition

Rep(τ) = Rstep(sT , aT ) ≈ R̂ep(τ) =
∑T

t=1
R̂step(st, at).

(2)
This form is frequently employed in many studies [Ren et al.,
2022; Efroni et al., 2021; Liu et al., 2019] on episodic RL
with trajectory feedback.

2.4 Reward Redistribution
The goal of reward redistribution is to build a shaping re-
ward function R̂step(st, at) that helps convert the episodic-
reward problem to the standard dense-reward setting. A
reward redistribution procedure redistributes the trajectory
feedback variable Rep(τ) along the sequence for each
trajectory τ . Formally, the proxy rewards R̂step(st, at)

form a sum-decomposable reward function R̂ep(τ) =∑T
t=1 R̂step(st, at) that is expected to have a high correla-

tion to the environmental delayed reward R̂ep(τ).

3 Methodology
In this section, we present DTRD , an improved adaptive re-
ward redistribution method that leverages the optimization
performance of a policy model as an explicit objective to
guide the learning of the reward function. We formulate re-
ward redistribution and policy optimization as a bi-level opti-
mization problem. To accelerate model training, we decouple
interacting objective functions of upper and lower levels us-
ing a single-step gradient approximation.

3.1 Motivation
A common approach to address the issue of sparse or de-
layed rewards in traditional online scenarios is through shap-
ing reward signals. The main objective is to transform sparse
or delayed rewards into dense Markovian reward functions
that better represent the intended goals indicated by the en-
vironmental feedback. This approach typically involves re-
ward modeling and policy optimization, where an agent it-
eratively refines its reward function by interacting with the
online environment [Li et al., 2023; Fu et al., 2021]. For
instance, Sorg et al. treated reward function design as an on-
line problem, employing a trial-and-error loop in reinforce-
ment learning [Sorg et al., 2010; Arjona-Medina et al., 2019;
Rajeswaran et al., 2020]. This paradigm can also be applied
to offline scenarios like DT to mitigate model degradation in
long-delayed reward environments. The general idea is to de-
velop a two-stage pipeline comprising reward function esti-
mation and policy model optimization. Firstly, we determine

the “locally optimal” form of the reward function by utiliz-
ing the relationship between rewards and state-action pairs in
offline data, often employing methods like least-squares esti-
mation. Then, we adjust and align the reward signals in the
original data based on the approximated reward function to
improve the optimization of the policy model.

The existing two-stage optimization pipeline has two in-
herent issues. Firstly, its optimization objective of reward
function lacks directness, making it susceptible to local op-
tima. Secondly, the two-stage process amplifies the negative
impact of the locally optimal reward function, leading to er-
ror accumulation and significant deviations from expected re-
sults in policy optimization. To overcome these limitations
and achieve a “globally optimal” solution for the reward func-
tion, a more effective approach is to integrate reward model-
ing and policy optimization into a cohesive “adaptive” opti-
mization process. This adaptivity means automatically guid-
ing the modeling of the reward function by evaluating the im-
pact of policy optimization. To achieve this, we propose a
bi-level optimization framework that provides a more direct
and meaningful objective function for searching and optimiz-
ing the reward function.

3.2 Parameterized Shaping Reward Function
Given an offline behavior trajectory set S = {τ1, τ2, ..., τn},
our goal is to redistribute the trajectory reward onto each
timestep. We need to reshape the reward function and ensure
that the proxy rewards can help learn a better policy. In other
words, we need to find the suitable shaping reward function to
correct rtgs in the trajectories so that the policy learned from
these modified trajectories is globally optimal. So we first in-
troduce a proxy reward function fϕ, then the new form of the
reward r̂t at time step t can be written as

r̂t = R̂step(st, at) = fϕ(st, at), (3)

s.t. Rep(τ) =
∑|τ |

t=1
r̂t, (4)

where st, at ∈ τ , and fϕ : S × A → R is the shaping
reward function that assigns a modified reward value to each
state-action pair and is parameterized by ϕ. Since the DT
model takes return-to-go (rtg) gt instead of reward rt as input,
we need to further calculate shaping rtgs based on shaping
rewards. Specifically, the shaping rtg ĝt can be modeled as

ĝt = gt −
∑t−1

i=1
r̂i, (5)

s.t. Rep(τ) =
∑|τ |

t=1
r̂t. (6)

3.3 Bi-level Optimization
To learn the optimal shaping reward function, Efroni et al.
provided a basic idea to train a regression model that decom-
posed the trajectory reward into the sum of the agent rewards
at each step [Efroni et al., 2021; Ren et al., 2022]. However,
These methods have limitations as they are unidirectional and
rely solely on regressing the reward function for agent train-
ing, which can lead to overfitting and lacks automatic adjust-
ment for longer-delayed settings. To address these issues,
we propose an end-to-end bi-directional bi-level optimization
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Figure 2: An illustration of the DTRD architecture. We divided offline trajectories into training and validation sets. DTRD consists of the
following steps: (1) Shaping target rewards: sampling trajectories from training and validation sets, and redistributing long-delayed rewards
to each timestep by the reward model. (2) Policy model training for lower-level optimization: calculating shaping target rewards based on the
redistributed rewards and training the policy model on the training set. (3) Single-step gradient approximation for upper-level optimization:
computing the validation loss of the policy model with redistributed rewards on the validation set and computing the upper model’s gradient
by single-step gradient approximation. The redistribution loss represents the quadratic penalty term mentioned in Section 3.3.

framework that utilizes differentiable feedback to search the
reward function. This framework is better suited for long-
delayed settings and offers several advantages. Firstly, it
allows the trained reward function to guide agent training
while enabling the agent to adjust the reward function, form-
ing a closed loop of bi-directional feedback and joint opti-
mization. Secondly, it mitigates overfitting by optimizing the
reward function through a higher-level optimization process.
Inspired by [Liu et al., 2018], our core idea is to use a valida-
tion set to assess how the redistributed rewards enhance
the policy model, thereby guiding the optimization of the
reward function (as shown in Fig. 2). Based on this, we
divided all the trajectory data S into two categories: train-
ing set Strain and validation set Sval. Strain is used for op-
timizing the policy model, and Sval is used for optimizing
the reward function. The approach involved two tasks: the
lower-level task focused on optimizing the policy model πθ

to learn the best policy on the training set, with the reward
function corrected based on trajectory data. The upper-level
task aimed to optimize the shaping reward function fϕ to find
the reward function that maximizes the enhancement of the
policy model. The goal was to ensure that the lower-level op-
timized policy model performs best on the validation set. We
aimed to jointly learn the policy model πθ and the shaping re-
ward function fϕ. Unlike regression-based reward redistribu-
tion methods, where the optimization objective was the least-
squares loss for reward decomposition, we aimed to optimize
the shaping reward function by the task loss differentiably.
Let Ltrain and Lval denote the training and the validation
loss, respectively. Both losses are determined not by the pol-
icy model θ and the shaping reward function ϕ. The goal for
searching suitable shaping reward function is to find ϕ∗ that
minimizes the validation loss Lval(θ

∗, ϕ∗), where the policy
θ∗ associated with the proxy reward values are obtained by
minimizing the training loss θ∗ = argminθ Ltrain(θ, ϕ

∗).

Thus, the optimization of the policy model θ and the reward
model ϕ forms a bi-level optimization problem, which can be
formally defined as

min
ϕ
Lval(θ

∗(ϕ), ϕ), (7)

s. t. Rep(τ) =
∑|τ |

t=1
r̂t, ∀τ ∈ Sval, (8)

s. t. θ∗(ϕ) = argminθ Ltrain(θ, ϕ), (9)

where ϕ is the upper-level variable and θ is the lower-level
variable, and r̂t = fϕ(st, at) is the shaping reward func-
tion formed by parameterizing ϕ. Eq. 8 is a constraint on
reward redistribution that limits the sum of rewards to remain
constant on the trajectories before and after the reward de-
composition. We transformed this constrained bi-level opti-
mization problem into an unconstrained optimization prob-
lem with minimalized auxiliary functions by defining the
quadratic penalty function. Therefore, the objective function
of the bi-level optimization problem can be rewritten as

min
ϕ

Lval(θ
∗(ϕ), ϕ) + λ

∑
τ∈Sval

Rep(τ)−
|τ |∑
t=1

r̂t

2
 ,

(10)
s. t. θ∗(ϕ) = argminθ Ltrain(θ, ϕ), (11)

where λ is a hyper-parameter to control the numerical scale
balance between the penalty function and the original objec-
tive function when optimizing.

3.4 Gradient Approximation and Computation
We found that the upper-level optimization is tightly coupled
to the lower-level optimization. However, accurately calcu-
lating the gradient of the upper-level reward model necessi-
tates numerous iterations to determine the optimal policy at
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Algorithm 1: Bi-level Optimization of Reward Redistribution
Input: Learning rates αθ and αϕ for policy and reward op-
timization respectively, training dataset Strain and validation
dataset Sval.
Parameter: Parametrized θ for the policy model πθ and
parametrized ϕ for the reward model fϕ(st, at).

1: Initialize the policy parameter π and the shaping reward
function parameter ϕ;

2: while not converged do
3: ϕ←− ϕ− αϕ∇ϕ[Lval(θ

∗(ϕ), ϕ)

+λ
∑

τ∈Sval

(
Rep(τ)−

∑|τ |
t=1 r̂t

)2

];
4: θ ←− θ − αθ∇θLtrain(θ, ϕ);
5: return policy model πθ and reward model fϕ(st, at).

the lower level, which can be prohibitively time-consuming.
Inspired by [Liu et al., 2018] and [Hu et al., 2020], we de-
vised an alternating optimization technique to approximate
the gradient. This method efficiently separates the parame-
ters of the two levels, leading to accelerated optimization. We
proposed a simple approximation scheme as follows:

θ∗(ϕ) ≈ θ
′
(ϕ) = θ − αθ∇θLtrain(θ, ϕ). (12)

Thus the calculation of the upper-level gradient can be ap-
proximated as

∇ϕ

[
Lval(θ

∗(ϕ), ϕ) + λ
∑

τ∈Sval

(
Rep(τ)−

∑|τ |

t=1
r̂t

)2
]

≈∇ϕLval(θ
′
(ϕ), ϕ) + λ∇ϕ

∑
τ∈Sval

Rep(τ)−
|τ |∑
t=1

fϕ(st, at)

2

,

(13)

where θ denotes the current policy trained by the algorithm,
and αθ is the learning rate for a step of the lower-level policy
optimization. The basic idea behind this gradient approxima-
tion was derived from meta-learning [Finn et al., 2017]. It is
to adapt θ by using only a single training step, rather than
training until convergence completely solves the lower-level
optimization (Eq. 11). The first term of the approximated up-
per gradient in Eq. 13 can be expanded according to the chain
rule of derivation:

∇ϕLval(θ
′
(ϕ), ϕ)

=∇ϕθ
′
(ϕ) · ∇θ′Lval(θ

′
, ϕ) +∇ϕϕ · ∇ϕLval(θ

′
, ϕ)

=− αθ∇2
ϕ,θLtrain(θ, ϕ)∇θ′Lval(θ

′
, ϕ) +∇ϕLval(θ

′
, ϕ),

(14)

where θ
′
= θ − αθ∇θLtrain(θ, ϕ) denotes the parameters

for a one-step forward policy model. The matrix-vector prod-
uct is calculated inefficiently in the expression above. Fortu-
nately, we could reduce computational complexity by using
Taylor’s formula to approximate the product of the first-order

and second-order gradients. Let ϵ be a small scalar, we got:

∇2
ϕ,θLtrain(θ, ϕ)∇θ′Lval(θ

′
, ϕ)

≈ 1

2ϵ

(
∇ϕLtrain(θ + ϵ∇θ′Lval(θ

′
, ϕ), ϕ)

−∇ϕLtrain(θ − ϵ∇θ′Lval(θ
′
, ϕ), ϕ)

)
. (15)

In addition, the reward model details and training proce-
dure are given in Appendix B.

4 Experiments
This section assesses the effectiveness of our approach across
various offline RL benchmarks, highlighting the benefits of
utilizing redistributed rewards in long-delayed settings. We
aim to answer the following questions through our experi-
ments: (1) Does the learned shaping reward function improve
policy optimization in long-delayed reward environments?
(2) How does the shaping reward function influence the per-
formance of the DT model in the long-delayed setting? Addi-
tionally, we provide a case study that visualizes and interprets
the learned shaping reward function.

4.1 Experimental Settings
We evaluated our method on both discrete and continu-
ous control tasks. The discrete control tasks, including
Atari [Bellemare et al., 2015] and Minigrid [Chevalier-
Boisvert et al., 2018], involve high-dimensional observation
spaces and require long-term reward redistribution. On the
other hand, the continuous control tasks, such as OpenAI
Gym Mujoco [Brockman et al., 2016], Maze2d [Fu et al.,
2020], and FrankaKitchen [Fu et al., 2020], not only have ex-
tremely delayed rewards but also require fine-grained contin-
uous control. These benchmarks cover a wide range of tasks,
spanning from easy to complex with varying time horizons.
To adapt the offline data with dense rewards (e.g., Atari, Mu-
joco) to the episodic-reward setting, we made adjustments.
We set the reward to zero in non-terminal states, moving away
from per-step rewards. In the final step of the trajectory, we
assigned the reward as the trajectory reward Rep(τ), which
was calculated by summing the instant rewards per step in
the standard setting. For more detailed information on the
experimental settings, please refer to Appendix C.

4.2 Baselines
We migrated five reward decomposition baselines including
AVG, IRCR [Gangwani et al., 2020], GAIL [Ho and Ermon,
2016; Guo et al., 2018], RUDDER [Arjona-Medina et al.,
2019], and RRD [Efroni et al., 2021; Ren et al., 2022]. The
details of baseline algorithms are given in Appendix C.2.

4.3 Overall Performance Comparison
Table 1 presents the performance evaluation of the DT model
on various tasks, considering both dense and long-delayed
reward settings. The tasks can be broadly classified into
two categories. The first category comprises goal-oriented
tasks, such as Minigrid and Maze2d, where the primary ob-
jective is to achieve a specific goal, like reaching the end-
point of a maze. In these tasks, instant environmental re-
wards are absent, and a binary value of 0 or 1 is provided
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Benchmark Dataset DT with
Dense Reward

DT with
Sparse Reward +AVG +IRCR +GAIL +RUDDER +RRD +(Ours.)

Atari

Breakout 94.65 65.61 27.97 38.78 22.64 3.82 29.52 71.91
Seaquest 1129.30 99.60 526.00 398.80 578.60 357.20 438.80 688.3
Qbert 2215.80 224.00 513.50 830.00 770.75 2239.00 390.00 3250.5
Pong 19.10 -20.98 -16.60 -20.28 -20.28 -20.43 -9.96 11.27

Minigrid

DoorKey-6x6 - 0.82 0.70 0.23 0.63 0.90 0.21 0.91
DoorKey-8x8 - 0.79 0.84 0.11 0.56 0.82 0.87 0.87
RedBlueDoor-6x6 - 0.81 0.82 0.41 0.90 0.83 0.89 0.90
RedBlueDoor-8x8 - 0.50 0.49 0.33 0.53 0.52 0.34 0.55
FourRooms - 0.37 0.37 0.36 0.35 0.37 0.37 0.38
DynamicObstacles-6x6 - 0.90 0.00 -0.97 0.90 0.90 0.90 0.91

D4RL

Maze2D-large - 0.68 0.66 0.57 0.51 0.70 0.61 0.75
FrankaKitchen 1.78 1.58 0.35 1.64 1.95 1.63 1.58 2.07
Mujoco-halfcheetah 10131.42 10642.55 10437.06 9749.25 10349.96 10187.07 9914.28 10651.21
Mujoco-walker2d 4965.35 4964.44 4836.90 4906.37 4913.68 4856.62 4965.56 4970.34
Mujoco-hopper 3344.68 2896.20 2536.87 3032.79 3183.56 3327.37 3073.67 3336.45
Mujoco-ant 4475.76 4554.55 4592.66 4219.80 4629.40 3626.17 4644.63 4711.73

Count. 0 0 1 0 1 16

Table 1: Average accumulated rewards on tasks from three benchmarks are presented using dense and sparse reward settings. The results are
based on 100 runs, and the best mean scores are highlighted in bold, while the second-best mean scores are underlined. Tasks denoted by “-”
are goal-oriented, with only trajectory rewards of 0 or 1, making them unsuitable for training with dense environmental rewards.

at the last timestep, indicating the trajectory reward for the
entire trajectory and signifying failure or success. The sec-
ond category consists of score-oriented tasks like Atari and
Mujoco, where obtaining higher scores requires precise con-
tinuous controls. For instance, in Atari’s Pong game, the aim
is to win as many rounds as possible. We first evaluated the
DT model’s performance on score-oriented tasks under both
dense rewards (using instant rewards) and sparse rewards (us-
ing trajectory rewards). The absence of instant reward feed-
back significantly and visibly deteriorated the performance
of the DT model. This decline is evident from the notice-
able increase in the fitting error of the model curve, as shown
in Figure 5 in Appendix C, and the substantial decrease in
the accumulated reward, as reported in Table 1. These find-
ings substantiate our hypothesis that the DT model encoun-
ters difficulties in capturing complex dependencies related to
rewards in environments characterized by long delays. Addi-
tionally, we solely reported performance results with sparse
rewards on goal-oriented tasks, as these tasks inherently in-
volve episodic-reward settings without any dense rewards.

We assessed the performance of six offline reward redis-
tribution models, including ours, on three benchmarks that
utilize episodic-reward settings. The aim was to compare
the effectiveness of these approaches in enhancing the per-
formance of the DT model. By enabling the search for the
globally optimal solution of the reward function, our DTRD
facilitated the learning of improved policies from offline data
across nearly all episodic-reward setting tasks. As shown in
Table 1, DTRD demonstrated a significant performance im-
provement on the Atari benchmark, achieving an average im-
provement of over 5 times compared to the original DT in
long-delayed settings. Similarly, on the Minigrid and D4RL
benchmarks, DTRD achieved an average performance im-
provement of approximately 10% and 8% respectively. Fur-
thermore, although most of the evaluated methods effectively
improve the learning performance of the DT model in en-

vironments with long-delayed rewards by redistributing re-
wards to shape rtgs, DTRD consistently outperformed base-
line algorithms in all evaluated tasks. In contrast, baseline
methods such as IRCR, GASIL, RUDDER, and RRD were
policy-independent, relying on heuristic design or parameter-
ization approximation to learn a reward function from long-
delayed trajectories. However, the experimental results in Ta-
ble 1 reveal that these policy-independent reward modeling
methods often become trapped in local optima. This limita-
tion impedes the optimization of the policy model and am-
plifies the negative impact of suboptimal reward information
on policy learning. The fragmented nature of reward func-
tion learning in these methods contributes to this issue, as
their optimization objectives solely focus on aligning the cu-
mulative reward sum for redistribution with the trajectory re-
ward of each trajectory, without considering feedback on the
quality of policy learning. Thus, it is crucial for the op-
timization objective to directly assess whether redistributed
rewards can genuinely enhance the performance of the DT
model. This optimization objective is precisely what DTRD
considered, which contributes significantly to outperforming
baseline models.

In the series of tasks, such as Atari and Minigrid for dis-
crete actions and Maze and Kitchen for continuous actions,
DT models are more negatively affected by the long-delayed
setting. To tackle this issue, our approach introduced a joint
learning method combining the reward and policy models
through bi-level optimization. As shown in Table 1, DTRD
notably improved the learning and generalization ability of
DT models across these tasks by serving the validation per-
formance of the policy model as an explicit objective to guide
the learning of the reward function. Figure 5 in Appendix C
displays the convergence curves of DTRD on the Atari bench-
mark. DTRD exhibited substantially lower training and vali-
dation errors than the DT model in the long-delayed setting.
Furthermore, the convergence error of DTRD closely resem-
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Figure 3: The attention weights of DT models in the Pong envi-
ronment under dense, sparse, and redistributed reward settings. The
horizontal axis represents the input timestep, while the vertical axis
represents the output timestep. Brighter colors in the boxes indicate
higher attention weights to the corresponding positions.

bled that of the DT model in the dense-reward setting. These
results indicated that our approach’s redistributed rewards
significantly enhance the DT model’s training and conver-
gence. Notably, in the Mujoco benchmark where the original
rewards were already slightly delayed, DTRD also demon-
strated a slight performance improvement, it even worked
better than the dense reward setting with original rewards.
Additionally, DTRD outperformed all baseline methods in
both performance and stability. The baseline methods demon-
strated considerable variability in performance across dif-
ferent environments, whereas DTRD consistently performed
well across the majority of experimental environments. Fur-
ther analysis such as experiments on delayed length and
hyper-parameter sensitivity can be found in Appendix C.

4.4 Case Study
In Section 4.3, we conducted experiments to demonstrate
the significant performance degradation of DT models in the
sparse-reward setting, particularly in the Atari benchmark.
Conversely, we observed that rewards have a lesser impact
on DT model performance in the Mujoco benchmark. In this
section, we analyze the effect of rewards on the learning of
DT models by examining attention-weight matrix images in
several selected cases across different environments.

The Pong environment from Atari. We intercepted a
40-step trajectory as a context sequence in the Pong environ-
ment and inputted it into the DT model with different reward
settings to observe the attention matrix. Since the original
attention matrix is high-dimensional and challenging to visu-
alize, we applied average pooling to reduce its dimensional-
ity for presentation. Figure 3 shows that sparse rewards pose
difficulties in learning the DT model, resulting in biased at-
tention dependencies and varying dependencies. However,
the redistributed rewards effectively correct these biases. In
the dense-reward setting, the DT model’s attention weight at
timestep t is mainly influenced by elements like rtgs at the
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Figure 4: Attention weights of DT models in the halfcheetah en-
vironment under three reward settings. The horizontal and vertical
axes represent rtgs, states, and actions at different timesteps in the
input and output. Brighter colors indicate higher attention weights.
The distribution of attention matrices is similar across all cases,
showing a bright line tilted 45 degrees to the lower right.

previous timestep t − 1 and the first timestep of the con-
text sequence. When instant rewards are delayed until the
final state, the inputs on most layers of the DT model lack
dependencies on the first rtg of the entire context sequence.
Consequently, the dependencies from the first rtg are almost
entirely disregarded during action generation in several later
steps of the context sequence. Fortunately, DTRD success-
fully addressed this bias in the attention matrix. With the aid
of redistributed rewards, the DT model reinstated the depen-
dencies on the first rtg and closely approximated the attention
matrix of the dense-reward setting.

The Halfcheetah environment from Mujoco. We an-
alyzed the attention distribution of rtgs (R), states (S), and
actions (A) in the halfcheetah environment by intercepting a
10-step trajectory as the context sequence. In both two re-
ward settings, we observed that the DT model’s decision at
at timestep t heavily relied on dependencies with the states st
and st−1, while showing minimal dependencies on historical
actions, and rtgs, as shown in Figure 4.

5 Conclusion
In this paper, we proposed DTRD , an adaptive reward redis-
tribution algorithm that addressed the issue of model degra-
dation in DT models due to the accumulation of unwanted
biases in autoregressive learning global signals due to reward
delays. DTRD incorporated the validation error of the policy
model to guide the reward modeling optimization process, en-
abling simultaneous learning of the reward model and policy
model using a bi-level optimization algorithm. Experimental
results demonstrated that DTRD effectively mitigates perfor-
mance degradation in DT models in long-delayed settings,
surpassing other existing reward redistribution methods. Fur-
thermore, DTRD holds potential for generalization to other
transformer-based offline RL models, such as TT [Janner et
al., 2021]. We leave these investigations as our future work.
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