
Hierarchical Transformer for Scalable Graph Learning
Wenhao Zhu1 , Tianyu Wen2 , Guojie Song1 , Xiaojun Ma3 and Liang Wang4

1National Key Laboratory of General Artificial Intelligence, School of Intelligence Science and
Technology, Peking University

2Yuanpei College, Peking University
3Microsoft

4Alibaba Group
{wenhaozhu, tianyuwen, gjsong}@pku.edu.cn, xiaojunma@microsoft.com, liangbo.wl@alibaba-inc.com

Abstract
Graph Transformer is gaining increasing attention
in the field of machine learning and has demon-
strated state-of-the-art performance on benchmarks
for graph representation learning. However, as cur-
rent implementations of Graph Transformer pri-
marily focus on learning representations of small-
scale graphs, the quadratic complexity of the global
self-attention mechanism presents a challenge for
full-batch training when applied to larger graphs.
Additionally, conventional sampling-based meth-
ods fail to capture necessary high-level contextual
information, resulting in a significant loss of per-
formance. In this paper, we introduce the Hier-
archical Scalable Graph Transformer (HSGT) as
a solution to these challenges. HSGT success-
fully scales the Transformer architecture to node
representation learning tasks on large-scale graphs,
while maintaining high performance. By utilizing
graph hierarchies constructed through coarsening
techniques, HSGT efficiently updates and stores
multi-scale information in node embeddings at dif-
ferent levels. Together with sampling-based train-
ing methods, HSGT effectively captures and ag-
gregates multi-level information on the hierarchical
graph using only Transformer blocks. Empirical
evaluations demonstrate that HSGT achieves state-
of-the-art performance on large-scale benchmarks
with graphs containing millions of nodes with high
efficiency.

1 Introduction
Transformer [Vaswani et al., 2017] is now the prevalent uni-
versal neural architecture in natural language processing and
computer vision with its powerful, lowly inductive-biased
self-attention mechanism. The great success of Transformer
has encouraged researchers to explore its adaptation to graph
machine learning on node-level and graph-level tasks [Ying
et al., 2021; Kreuzer et al., 2021; Chen et al., 2022]. While
GNNs are known to suffer from inherent limitations in the

Please refer to https://arxiv.org/abs/2305.02866 for an extended
version of this paper.

message-passing paradigm like over-smoothing and neighbor
explosion, the promising performance of these graph Trans-
former methods has encouraged researchers to expand the
Transformer architecture to more scenarios.

Still, challenges arise when scaling Transformer to large
graphs. In previous methods, self-attention calculates all pair-
wise interactions in a graph, indicating that it has quadratic
complexity to the total number of nodes. Thus, to per-
form training on graphs of millions of nodes without sub-
stantial modification to the Transformer architecture, one
must sample a properly sized subgraph at every batch so
that the computational graph can be fit into GPU memory.
Using sampling strategies like neighbor sampling in Graph-
SAGE [Hamilton et al., 2017], we can build a simple scal-
able graph Transformer model by directly applying existing
models like Graphormer on the sampled subgraph. How-
ever, there is an intrinsic weakness in this straightforward
combination of Transformer architecture and sampling-based
training methods. It has been widely observed that high-
level context information characterized by global receptive
field of self-attention module greatly contributes to Trans-
former’s outstanding performance [Vaswani et al., 2017;
Ying et al., 2021]. Considering that the entire input graph
is usually far larger than every sampled subgraph, when the
receptive field of each node is restricted to the sampled local
context, the model may ignore high-level context informa-
tion, leading to possible performance loss. Meanwhile, if we
add globally sampled nodes to the sampled set to reduce con-
text locality, it is likely to introduce much redundant noise
because most long-distance neighbors are irrelevant in large
graphs, which is further confirmed by our experiments.

In this paper, to alleviate the problem above and find
the real potentials of Transformer architecture on large-scale
graph learning tasks, we propose HSGT, a hierarchical scal-
able graph Transformer framework. Our key insight is that,
by building graph hierarchies with topological coarsening
methods, high-level context information can be efficiently
stored and updated with a fused representation of high-level
node embeddings. As illustrated in Figure 1, through atten-
tion interaction with nodes at higher hierarchical layers, the
receptive field of each node is expanded to a much higher
scale, making it possible for HSGT to effectively capture
high-level structural knowledge in the graph during sampling-
based training. Since the number of high-level nodes is

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4702

https://arxiv.org/abs/2305.02866

(a) (b)

Figure 1: (a) During straightforward sampling-based training, recep-
tive field of each node is restricted to the sampled context, leading
to the loss of global context information. (b) In our method, through
attention interaction with nodes at higher hierarchies, the receptive
field of each node is expanded to a higher scale (red shadows), mak-
ing it possible for the model to capture high-level knowledge.

marginal compared to the size of original graph, our approach
is efficient and brings low extra computational cost. Be-
sides, using adaptively aggregated representation to charac-
terize high-level context information, our method is robust to
random noise from long-range irrelevant neighbors.

More concretely, our proposed HSGT architecture utilizes
three types of Transformer blocks to support context trans-
formations at different scales. At every hierarchical layer, the
horizontal blocks are first performed to exchange and trans-
form information in the local context, then we use vertical
blocks to aggregate representation in every substructure and
create embeddings for nodes at the higher level. Eventu-
ally, readout blocks obtain final node representation by fusing
multi-level node embeddings. To achieve scalable training,
we have developed a hierarchical sampling method to sample
multi-level batches for training and inference, and utilized the
historical embedding technique [Fey et al., 2021] to remove
inter-batch dependencies and prune the computational graph.
Being completely Transformer-based, the resulting HSGT
architecture is highly scalable and generalizable, achieving
state-of-the-art results on a wide range of datasets from the
standard Cora [Sen et al., 2008] to ogbn-products [Chiang et
al., 2019] with millions of nodes, outperforming the standard
scalable GNN and Transformer baselines. We summarize our
main contributions as follows:

• We propose HSGT, a new graph Transformer architec-
ture that efficiently generates high-quality representa-
tions for graphs of varying sizes via effective usage of
hierarchical structure and multi-level network design.

• We develop the novel hierarchical sampling strategies
and apply the historical embedding method, which al-
low HSGT to be trained efficiently large-scale graphs
and gain high performance.

• Extensive experiments show that HSGT achieves state-
of-the-art performance against baseline methods on
large-scale graph benchmarks with computational costs
similar to the standard GraphSAGE method.

2 Related Work
2.1 Graph Transformers
Along with the recent surge of Transformer, many prior
works have attempted to bring Transformer architecture to the
graph domain, including GT [Dwivedi and Bresson, 2020],
GROVER [Rong et al., 2020], Graphormer [Ying et al.,
2021], SAN [Kreuzer et al., 2021], SAT [Chen et al., 2022],
ANS-GT [Zhang et al., 2022], GraphGPS [Rampášek et al.,
2022] and NodeFormer [Wu et al., 2022]. Graphormer [Ying
et al., 2021] proposes an enhanced Transformer with central-
ity, spatial and edge encodings, and achieves state-of-the-art
performance on many molecular graph representation learn-
ing benchmarks. SAN [Kreuzer et al., 2021] presents a
learned positional encoding that cooperates with full Lapla-
cian spectrum to learn the position of each node in the graph.
Gophormer [Zhao et al., 2021] applies structural-enhanced
Transformer to sampled ego-graphs to improve node clas-
sification performance and scalability. SAT [Chen et al.,
2022] studies the question of how to encode structural in-
formation to Transformers and proposes the Structure-Aware-
Transformer to generate position-aware information for graph
data. ANS-GT [Zhang et al., 2022] proposes an adaptive
sampling strategy to effectively scale up graph Transformer
to large graphs.

2.2 Scalable Graph Learning
Modeling complex, real-world graphs with large scale require
scalable graph neural models. On large graphs, message-
passing GNNs mainly suffer from the neighbor explosion
phenomenon, since the neighborhood dependency of nodes
grows exponentially as the model depth increases, which re-
sults in the excessive expansion of computational graphs.
Sampling-based methods [Hamilton et al., 2017; Chen et
al., 2018; Chen et al., 2017; Chiang et al., 2019; Zeng et
al., 2019; Huang et al., 2018] generally solve this issue by
running model on the sampled subgraph batches, and offline
propagation methods [Wu et al., 2019; Klicpera et al., 2018;
Frasca et al., 2020; Zhang et al., 2021] achieve fast training
and inference by decoupling feature propagation from predic-
tion as a pre-processing step. Notably, historical embedding
methods [Chen et al., 2017; Fey et al., 2021] store interme-
diate node embeddings from previous training iterations and
use them as approximations for accurate embeddings.

3 Preliminaries
In this section we present some model backgrounds and ba-
sic notations. Let G = (V, E) denote a graph, where V =
{v1, v2, . . . , vn} is the node set that consists of n vertices
and E ⊂ V × V is the edge set. For node v ∈ V , let
N (v) = {v′ : v′ ∈ V , (v, v′) ∈ E} denote the set of its
neighbors. Let each node vi be associated with a feature
vector xi ∈ RF where F is the hidden dimension, and let
X = [x1,x2, . . . ,xn]

⊤ ∈ Rn×F denote the feature matrix.

3.1 Transformer
Standard Transformer Layers. Transformer [Vaswani et
al., 2017] is first proposed to model sequential text data
with consecutive Transformer layers, each of which mainly

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4703

consists of a multi-head self-attention (MHA) module and a
position-wise feed-forward network (FFN) with residual con-
nections. For queries Q ∈ Rnq×d, keys K ∈ Rnk×d and
values V ∈ Rnk×d, the scaled dot-product attention module
can be defined as

Attention(Q,K,V) = softmax(A)V ,A =
QK⊤
√
d

, (1)

where nq, nk are number of elements in queries and keys, and
d is the hidden dimension. After multi-head attention, the
position-wise feed-forward network and layer normalization
are performed on the output.
Biased Transformer Layers. A bias term can be added to
the attention weights A to represent pair-wise knowledge like
relative positional encodings in [Shaw et al., 2018]. Suppose
we have a bias matrix B ∈ Rnq×nk , the biased-MHA can be
formulated by replacing the standard attention module with
the attention weight matrix computed by A = QK⊤

√
d

+B.

3.2 Graph Hierarchies
For graph G0 = (V 0, E0), graph coarsening aims to find
G1 = (V 1, E1) that captures the essential substructures of
G0 and is significantly smaller (|V 1| ≪ |V 0|,|E1| ≪ |E0|).
We assume graph coarsening is performed by coalescing
nodes with a surjective mapping function ϕ : V 0 → V 1. Ev-
ery node v1i ∈ V 1 corresponds to a node cluster ϕ−1(v1i) =
{v0j ∈ V 0 : ϕ(v0j) = v1i } in G0, and the edge set of
G1 is defined as E1 = {(v1i , v1j) : ∃v0r ∈ ϕ−1(v1i), v

0
s ∈

ϕ−1(v1j), such that (v0r , v
0
s) ∈ E0}. We also initialize node

embeddings of G1 by x1
i = Mean({x0

j : v0j ∈ ϕ−1(v1i)})
for every node v1i in V 1. The coarsening ratio α at this step
is defined as α = |V 1|

|V 0| . By running the coarsening algorithm
recursively, a graph hierarchy {G0, G1, . . . , GH} can be con-
structed to summarize multi-level structures.

4 Proposed Approach
In the following section, we will describe the motivation and
approach behind the creation of our HSGT model, and sub-
sequently provide a detailed description of the architecture of
the entire model. Figure 2 gives a high-level illustration of
model architecture, and Algorithm 1 describes HSGT.

4.1 Motivation for Utilizing Graph Hierarchies
The key difference between HSGT and previous graph Trans-
formers is the utilization of graph hierarchical structure. Pre-
vious methods for leveraging high-level context information
can only expand the receptive field and increase sample size,
which leads to significant computational overhead and per-
formance loss on node-level tasks. In contrast, HSGT utilizes
graph hierarchies to communicate high-level information via
the embedding of virtual nodes, resulting in several key ben-
efits: (1) low computational cost: the number of high-level
virtual nodes is minimal and the updating process is com-
pleted via efficient sampling strategies and historical embed-
ding; (2) broad receptive field: the receptive field of a single
node includes any node related to its corresponding high-level

Algorithm 1 Overview of HSGT
Input: Input graph G = (V,E), with corresponding
hierarchy {G0, G1, . . . , GH}, initial feature matrices
X0,X1, . . . ,XH and hierarchical mappings ϕ1, . . . , ϕH ,
batch size B.
Output: embedding hv for every node v.

1: V H
left ← V H , where GH = (V H , EH).

2: while V H
left is not empty do

3: Sample V H
B from V H

left with |V H
B | = B.

4: V H
left ← V H \ V H

B .
5: for j in 1, 2, . . . ,H do
6: ˜

V j−1
B ← ϕ−1

j (V j
B).

7: V j−1
B ← NeighborSample(˜

V j−1
B). (Section 4.3)

8: Hj−1 ←Xj−1[V
j−1
B].

9: end for
10: for j in 0, 1, 2, . . . ,H do
11: Hj ← HorizontalBlock(Hj).
12: if j < H then
13: Hj+1 ← VerticalBlock(Hj ,Hj+1).
14: end if
15: end for
16: H0 ← ReadoutBlock(H0,H1, . . . ,HH).
17: hv ←H0[v], ∀v ∈ V H

B .
18: end while
19: return hv, ∀v ∈ V .

nodes; (3) high flexibility: one can build the graph hierarchy
using any graph coarsening algorithm, and arbitrarily choose
the sampling strategy to control the structural information in-
volved in the learning process. In the following paragraphs,
we will elaborate on the design of the model and demonstrate
its effectiveness through experiments.

4.2 Model Architecture
Graph Hierarchy Construction and Input
Transformation
For input graph G0 = (V 0, E0) with feature matrix X ,
we first use the chosen coarsening algorithm to produce the
graph hierarchy {G0, G1, . . . , GH} with initial feature ma-
trices X0,X1, . . . ,XH and corresponding hierarchical map-
pings ϕ1, . . . , ϕH . The number of hierarchical layers H
and the coarsening ratios for each step α1, . . . , αH are pre-
defined as hyperparameters. The model imposes no limita-
tions on the specific graph coarsening algorithm. In our im-
plementation, we choose METIS [Karypis and Kumar, 1998]
which is designed to partition a graph into mutually exclusive
groups and minimize the frequency of inter-links between
different groups. The chosen modern METIS algorithm is
fast and highly scalable with time complexity approximately
bounded by O(|E|), and only needs to compute once at the
pre-processing stage. In experiments, even partitioning of
the largest ogbn-products graph is finished within 5 minutes,
bringing almost no overhead to the entire training process.

We also apply linear transformations and degree encod-
ings for initial features before they are fed into Transformer

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4704

Input Graph

...

OutputHorizontal
 Block

Horizontal
 Block

...

Readout
Block

...

...

...

...

Layer

Layer

Layer

Node Embedding

...

Vertical
 Block

Figure 2: A high-level illustration of the proposed HSGT model architecture. At every hierarchical layer, a horizontal block first exchanges
and transforms information in each node’s local context, then a vertical block is performed to adaptively coalesce every substructure if a
higher layer exists. Finally, a readout block aggregates multi-level representations to calculate the final output.

blocks. All feature vectors in X0,X1, . . . ,XH are projected
into Rd using a linear layer, where d is the hidden size. Addi-
tionally, inspired by centrality encoding in [Ying et al., 2021],
we add learnable embedding vectors indexed by node degree
to the transformed node feature at layer 0 to represent struc-
tural information.

Horizontal Block
In every horizontal block, we aim to horizontally aggregate
and transform node representations in every node’s local con-
text using structural-enhanced Transformer layers. Suppose
the input graph is G = (V,E) with n nodes, the feature ma-
trix is H , and every node v has an individual local receptive
fieldR(v) ⊂ V which we will discuss later. Following [Ying
et al., 2021], to leverage graph structure into self-attention,
we choose to quantify the connectivity between nodes with
the distance of the shortest path (SPD), and use an attention
bias term to represent the structural information. To reduce
the computational cost, we set a maximum SPD length D
such that SPDs longer than D will not be computed. We also
mask nodes not inR(v) out of the receptive field of v by set-
ting the corresponding bias term to −∞. Formally, the bias
matrix B ∈ Rn×n is defined as

Bi,j =

bSPD(vi,vj), if vj ∈ R(vi), SPD(vi, vj) ≤ D,

−∞, if vj /∈ R(vi),
0, else.

where Bi,j is the (i, j)-element of B, b0, b1, . . . , bD ∈ R are
a series of learnable scalars. Then the horizontal block is built
by stacking the following Transfomer layers:

H = Biased-Transformer(H,H,H,B). (2)
Compared with GNNs, our method promotes a high-order

knowledge aggregation in a broader context while leveraging
the complete structural information. In the case of full-batch
training on small graphs, every node can have a global recep-
tive field, i.e. R(v) = V, ∀v ∈ V . But during sampling-based
training on huge graphs, the receptive field of each node is re-
stricted to the current batch VB ⊂ V , and we empirically dis-
cover that due to the unbalance and irregularity of sampling

methods, computing every pair-wise attention in VB will lead
to significant performance drop on node-level tasks. In the
mean time, intra-batch communication will be limited if we
set the receptive field of each node to its local neighbors.
To balance the two aspects, we choose to form the recep-
tive field R(v) of node v with its D-hop neighbors ND(v)
and nodes individually randomly sampled from VB by prob-
ability p. Besides, during experiments we discover that by
sharing parameters among horizontal blocks at different hier-
archical layers, we can greatly reduce the number of model
parameters while the model performance is not affected. This
is probably due to the structural similarity between graphs at
different hierarchical levels and the strong expressive capac-
ity of Transformer layers. We will test the effectiveness of the
two strategies in ablation studies.

Vertical Block
The vertical block focuses on aggregating node representa-
tions produced by the previous horizontal block and gener-
ating embeddings for nodes at next hierarchical level. In
contrast to simple pooling functions like mean and sum, to
overcome their incapability of capturing important nodes and
substructures, we reuse the attention mechanism to adaptively
merge vector embeddings. Suppose the vertical block aims to
calculate embeddings for nodes in Gi+1. For node v ∈ V i+1

with transformed initial feature xv , its representation hv after
the vertical aggregation is computed as

Nv = Stack({hs : s ∈ ϕ−1
i+1(v)}), (3)

hv = Transformer(xv,Nv,Nv), (4)

where xv,hv are viewed as matrices in R1×d, and the vertical
block computes representation for every node in the input.
This aggregation scheme allows every fused representation
hv to contain meaningful information on its corresponding
low-level substructure, helping the next horizontal block to
achieve better high-level knowledge exchange.

Readout Block
After the horizontal blocks are performed on every hierar-
chical level, we use the readout block to fuse representations

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4705

Target Node
Neighborhood Node
Node out of the
Sampled Context

Graph Partition

Figure 3: An illustration of the proposed sampling method.

and produce final node embeddings. This operation brings
well aggregated multi-level information to nodes in the orig-
inal graph, expanding their receptive field to a much higher
scale. Formally, let hr denote the embedding of node r at
level l generated by the l-th horizontal block, then for a node
v ∈ V 0, its final output embedding hv is calculated through
attention with its corresponding high-level nodes:

Zv = [ht0 ,ht1 , . . . ,htH]⊤, (5)

hv = Transformer(hv,Zv,Zv), (6)

where t0 = v, tj = ϕj(tj−1), for j = 1, . . . ,H .

4.3 Training Strategy
Hierarchical Sampling
When training on large-scale graphs, at every step, our model
can only be operated on a sampled batch {G0

B , G
1
B , . . . , G

H
B }

of the entire graph hierarchy {G0, G1, . . . , GH}, that Gi
B is

a subgraph of Gi for every i = 0, 1, . . . ,H . To keep ev-
ery substructure in low-level hierarchical layers complete,
we follow a top-to-bottom sampling approach. For batch
size b, we first randomly sample b nodes at V H as Ṽ H

B ,
then recursively sample nodes from layer H − 1 to 0 in
Ṽ i−1
B =

⋃
v∈Ṽ i

B
ϕ−1
i (v), i = H,H − 1, . . . , 1. Here we call

nodes in {Ṽ 0
B , Ṽ

1
B , . . . , Ṽ

H
B } target nodes, because only rep-

resentations of nodes in Ṽ 0
B will be used for supervised learn-

ing and {Ṽ 1
B , . . . , Ṽ

H
B } contains all high-level nodes they re-

late to. Meanwhile, to promote local context interaction in
horizontal blocks, we additionally sample a neighborhood
set for every target node at all levels using neighbor sam-
pling. An illustration of this process is presented in Figure 3.
We construct the final sampled nodes set {V 0

B , V
1
B , . . . , V

H
B }

by adding the neighborhood sets to the target nodes set,
and {G0

B , G
1
B , . . . , G

H
B } are the corresponding induced sub-

graphs. The resulting sampling strategy allows the model to
operate on complete hierarchical structures with local con-
text preserved, which is critical for the horizontal and vertical
modules to work well.

Historical Embeddings for High-level Nodes
The sampling scheme above could cause issues. For exam-
ple, for neighborhood node v ∈ V 1

B \ Ṽ 1
B , it is very likely that

most of its corresponding nodes at layer 0 will not appear in
the sampled nodes set V 0

B , since we do not deliberately add
ϕ−1
1 (v) to the sampled set as the target nodes do. Thus, it

is not possible to directly get the representation of v by ag-
gregating embeddings of nodes in ϕ−1

1 (v) via vertical blocks
when some of ϕ−1

1 (v) do not exist in the sampled context.
And manually adding those nodes to the data batch will lead
to a massive expansion of the computational graph (almost
10×). Nevertheless, if we skip the neighborhood sampling
step for high-level nodes, the inter-batch communication of
structural knowledge could be baffled, which contradicts with
our initial goal.

To disentangle such multi-level dependencies, we utilize
the historical embedding method proposed in [Chen et al.,
2017; Fey et al., 2021] to alleviate the neighbor explosion
in GNNs. In our model, the historical embeddings act as an
offline storage S of high-level nodes (above level 0), which
is accessed and updated at every batch using push and pull
operations. At every batch, the vertical blocks are only per-
formed on the target nodes, and we push the newly aggregated
embeddings for high-level target nodes to S . For horizontal
blocks on high-level nodes, we approximate the embeddings
of neighborhood nodes via pulling historical embeddings in
S acquired in previous batches. Specifically, for horizontal
block i, its input H will be computed as

H = Stack({hs : s ∈ V i
B}), (7)

≈ Stack({hs : s ∈ Ṽ i
B} ∪ {h̃s : s ∈ V i

B \ Ṽ i
B}), (8)

where hs denotes accurate embedding of s calculated by the
previous horizontal block, and h̃s denotes the historical em-
bedding of s from previous batches. With historical embed-
dings, we enable the inter-batch communication of high-level
contexts with low extra computational cost and high accu-
racy bounded by theoretical results in [Chen et al., 2017;
Fey et al., 2021]. Our approach is the first implementation
of the historical embedding method on graph Transformer
models, and its effectiveness is further demonstrated by the
ablation studies.

5 Experiments
In this section we first evaluate HSGT on different benchmark
tasks, and then perform ablation studies, scalability tests, and
parameter analysis.

5.1 Node Classification Tasks
Datasets. We conduct experiments on nine benchmark
datasets including four small-scale datasets (Cora, CiteSeer,
PubMed [Sen et al., 2008; Yang et al., 2016], Amazon-Photo
[Shchur et al., 2018]) and six large-scale datasets (ogbn-
arxiv, ogbn-proteins, ogbn-products [Hu et al., 2020], Reddit
[Hamilton et al., 2017], Flickr, Yelp [Zeng et al., 2019]). We
use the predefined dataset split if possible, or we set a random
1:1:8 train/valid/test split.

Baselines and Settings. We compare HSGT against a wide
range of baseline scalable graph learning methods includ-
ing GCN [Kipf and Welling, 2016], GAT [Veličković et
al., 2017], GIN [Xu et al., 2018], GraphSAGE [Hamilton
et al., 2017], Cluster-GCN [Chiang et al., 2019], Graph-
SAINT [Zeng et al., 2019], GAS-GCN [Fey et al., 2021],
SIGN [Frasca et al., 2020], GraphZoom [Deng et al., 2019]

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4706

#nodes 2.7K 3.3K 19.7K 7.6K 169K 233K 89.2K 716K 133K 2.4M
#edges 5.2K 4.5K 44.3K 119K 1.1M 11.6M 450K 7.0M 40M 61.8M
Dataset CORA CITESEER PUBMED AMAZON-PHOTO ogbn-arxiv REDDIT FLICKR YELP ogbn-proteins ogbn-products

GCN 77.20±1.51 69.49±0.58 77.60±0.96 92.44±0.22 71.74±0.29* 91.01±0.29 51.86±0.10 32.14±0.66 72.51±0.35* 75.64±0.21*
GAT 82.80±0.47 69.20±0.45 76.90±0.85 92.88±0.37 57.88±0.18 96.50±0.14 52.39±0.05 61.58±1.37 72.02±0.44* 79.45±0.59
GIN 75.93±0.99 63.83±0.49 77.03±0.42 80.14±1.46 52.23±0.34 86.37±0.62 48.28±0.85 29.75±0.86 70.76±0.08 74.79±0.81
GraphSAGE - - - - 71.49±0.27* 96.53±0.11 51.86±0.35 53.89±0.85 77.68±0.20* 78.50±0.14*
Cluster-GCN - - - - 69.76±0.49* 95.12±0.08 50.25±0.83 52.50±0.19 74.89±0.12 78.97±0.33*
GraphSAINT - - - - 58.63±0.33 90.92±0.61 51.91±0.06 56.22±1.14 70.22±0.84 79.08±0.24*
GAS-GCN 82.29±0.76* 71.18±0.97* 79.23±0.62* 90.53±1.40* 71.68* 95.45* 54.00* 62.94* - 76.66*
SIGN - - - - - 96.8±0.0* 51.4±0.1* 63.1±0.3* - 77.60±0.13*
GraphZoom - - - - 71.18±0.18* 92.5* - - - 74.06±0.26*

Graphormer 66.35±2.44 56.22±3.27 OOM OOM OOM OOM OOM OOM OOM OOM
Graphormer-SAMPLE 75.14±1.31 61.46±1.90 75.45±0.98 92.76±0.59 70.43±0.20 93.05±0.22 51.93±0.21 60.01±0.45 72.34±0.51 79.10±0.12
SAN 36.61±3.49 44.35±1.08 OOM OOM OOM OOM OOM OOM OOM OOM
SAT 72.40±0.31 60.93±1.25 OOM OOM OOM OOM OOM OOM OOM OOM
SAT-SAMPLE 74.55±1.24 61.58±0.87 76.70±0.74 91.35±0.42 68.20±0.46 93.37±0.32 50.48±0.34 60.32±0.65 70.62±0.85 77.64±0.20
ANS-GT 79.35±0.90 64.52±0.71 77.80±0.65 80.41±0.78 72.34±0.50 95.30±0.81 - - 74.67±0.65 80.64±0.29

HSGT 83.56±1.77 67.41±0.92 79.65±0.52 95.01±0.34 72.58±0.31 97.30±0.24 54.12±0.51 63.47±0.45 78.13±0.25 81.15±0.13

Table 1: Results on node classification datasets. OOM stands for out of memory. * indicates results cited from the original papers and the
OGB leaderboard.

and graph Transformers including Graphormer [Ying et al.,
2021], SAN [Kreuzer et al., 2021], SAT [Chen et al., 2022]
and ANS-GT [Zhang et al., 2022]. For GCN, GAT and GIN,
we perform full-batch training on small-scale datasets and
sampling-based training on large-scale datasets. By default,
Graphormer, SAN and SAT require full-batch training, which
is prohibited by GPU memory bound in most cases. We also
add the Graphormer-SAMPLE and SAT-SAMPLE baselines
that perform the model on subgraphs generated from neigh-
borhood sampling, as mentioned in the introduction. For all
experiments, the overhead of preprocessing steps (including
METIS partition) does not exceed 5 minutes. The detailed
settings for baselines and HSGT are listed in the appendix.
We report the means and standard deviations of performances
on test set initialized by three different random seeds.

Results. We present the node classification performances in
Table 1, where the metric for OGBN-PROTEINS is roc-auc
while the metric for other datasets is acc. On small-scale
datasets where graph Transformer baselines are mostly out-
performed by GNN methods, HSGT delivers competitive per-
formance against the GNN baselines. While on large-scale
datasets, HSGT performs consistently better than all GNN
baselines, achieving state-of-the-art and showing that the
Transformer architecture is well capable of handling large-
scale node-level tasks. Overall, the results have also demon-
strated the outstanding generalizability of the HSGT method
on multi-scale graph data.

It can also be observed that Transformers generally per-
form bad at node-level tasks on small graphs probably be-
cause the global attention introduces much irrelevant noise.
And the Graphormer-SAMPLE and SAT-SAMPLE baseline
fail to produce satisfactory results on multi-level benchmarks
since a naive sampling-based approach can not capture the
necessary high-level contextual information. On the contrary,
on all datasets HSGT performs significantly better than the
Graphormer-SAMPLE and SAT-SAMPLE baseline, showing
the effectiveness of our proposed graph hierarchical struc-
ture and training strategies. Notably, the performance gains
of HSGT are greater on large-scale datasets than small-scale
ones, indicating that a large amount of data is crucial in opti-
mizing the performance potentials of Transformer.

5.2 Ablation Studies
Settings. We design four HSGT variants to demonstrate
the benefits of vertical blocks, structural encodings, histori-
cal embeddings and readout blocks, respectively, while other
model settings stay unchanged. In Table 2, w/o vertical
blocks: the vertical feature aggregation is performed with the
simple mean function, instead of a Transformer block. w/o
structural encodings: all SPD attention biases are removed.
w/o historical embeddings: neighborhood nodes of high-level
nodes are no longer sampled, then historical embeddings are
no longer needed. w/o readout blocks: the multi-level read-
out is performed by concatenating feature vectors at different
levels. w/o parameter sharing: all horizontal blocks and ver-
tical blocks have an individual set of parameters. random
partition: the coarsening process is performed via random
partition, instead of METIS algorithm.

FLICKR YELP ogbn-products

w/o vertical blocks 52.85 62.46 78.01
w/o structural encodings 49.11 59.78 77.05
w/o historical embeddings 52.04 61.79 80.72
w/o readout blocks 52.58 62.01 80.34
w/o parameter sharing 53.01 63.44 81.13
random partition 43.21 60.77 75.23

HSGT 53.02 63.47 81.15

Table 2: Results of ablation studies.

Results. Table 2 summarizes the results of ablation stud-
ies. Most variants suffer from performance loss, showing that
all tested modules are necessary to raise the performance of
HSGT to its best level. If we replace Transformer layer in
vertical and readout blocks with simple operations like mean,
then multi-scale information can not be adaptively fused. And
the model will not be able to recognize graph structure when
we remove the necessary structural encodings, which ex-
plains the severe performance drop we witness. It can also
be observed that if we take out the neighborhood sampling
of high-level nodes to avoid historical embeddings, the high-
level context information exchange can be blocked, resulting
in performance drop on large-scale datasets. When individual
learnable parameters are assigned to horizontal blocks at dif-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4707

Model Settings Peak GPU Memory Usage #Parameters Inference Time Performance

GraphSAGE

l = 2, d = 64 1064MB 16.4K 48.6s 75.60
l = 2, d = 128 1150MB 65.5K 53.7s 77.38
l = 2, d = 256 1316MB 262.1K 70.2s 77.58
l = 3, d = 128 1928MB 98.3K 103.3s 78.25

Graphormer-SAMPLE
l = 2, d = 128 1874MB 223.6K 90.6s 63.44
l = 2, d = 256 2032MB 840.2K 93.5s 64.76

HSGT
l = 2, d = 64 1903MB 112.7K 97.4s 80.99
l = 2, d = 128 2208MB 421.1K 99.8s 81.10
l = 3, d = 64 3374MB 137.7K 108.2s 81.15

Table 3: Results of scalability tests on ogbn-products dataset.

ferent levels, the model performance is almost not affected
while the number of parameters could increase by at least
1.5×. A random coarsening approach also causes the model
performance to drop dramatically because HSGT requires
high-quality structural partitions calculated by the METIS al-
gorithm to capture and aggregate high-level information.

5.3 HSGT Efficiently Scales to Large Graphs
Settings. To comprehensively examine HSGT’s scalabil-
ity to large-scale graphs, we perform tests on the largest
ogbn-products dataset that contains over 2.4 mil-
lion nodes against the standard GraphSAGE method and
Graphormer-SAMPLE above. To give a fair comparison, for
GraphSAGE and Graphormer-SAMPLE we set the batch size
to 400, and for HSGT we keep layer 0 nodes per batch to
around 400. In Table 3, l stands for the number of layers
for GraphSAGE and Graphormer-SAMPLE, while number of
Transformer layers at horizontal blocks for HSGT. d stands
for the hidden dimension for all models. Other model pa-
rameters stay the same with experiments in Table 1. We use
built-in PyTorch CUDA tools to measure peak GPU memory
usage during experiments. For the number of parameters, we
calculate the number of all learnable model parameters except
input and output projections.
Results. In Table 3 we list the results. Traditionally, it is
believed that the Transformer architecture tends to achieve
high performance with high computational complexity and
lots of parameters. However, experimental results show that
the proposed HSGT model can achieve outstanding perfor-
mance with reasonable costs that are similar to the widely-
used GraphSAGE method, showing that HSGT can be ef-
ficiently scaled to large graphs with normal computational
resources. Even under the lightest setting l = 2, d = 64,
HSGT is capable of delivering results higher than all GNN
baselines while keeping moderate GPU memory usage and
parameter size, which can be attributed to the small hidden
size (64) and the parameter sharing among horizontal blocks.
The Graphormer-SAMPLE may cost fewer resources at light-
weight configurations since HSGT has the additional horizon-
tal and vertical blocks, but it is significantly outperformed by
both GraphSAGE and HSGT.

5.4 Parameter Analysis
Coarsening Ratios
The coarsening ratios α1, . . . , αH are used as parameters
for the METIS algorithm to generate initial graph hierarchy

{G0, G1, . . . , GH}. Normally we set the number of addi-
tional hierarchical layers H to 1 or 2, and coarsening ratios
are picked from {0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Other set-
tings stay the same with models in Table 1. Here we per-
form experiments on dataset Flickr, Yelp and ogbn-products
to study the influence of coarsening ratios, and we list the
results in Table 4. It can be observed that the best setting
for coarsening ratios and batch size could vary for different
datasets.

Coarsening Ratios FLICKR YELP ogbn-products

{0.005} 52.71 61.98 81.15
{0.002} 51.32 61.44 80.55
{0.1, 0.1} 47.59 62.95 OOM
{0.1, 0.2} 47.03 63.47 OOM

Table 4: Results of coarsening ratio tests.

Intra-batch Connectivity
At previous sections we have mentioned that in horizontal
blocks, we construct the receptive field of each node with
its D-hop neighbors and nodes randomly sampled from the
sampled batch by probability p. Here we study the impact
of p value with experiments and summarize the results in Ta-
ble 5, where other settings stay the same with those in Table
1. From the results we can see that as p varies from 0 to 1,
the model performance generally increases until it reaches a
peak and then decreases, which corresponds to our previous
analysis.

Intra-batch Connectivity FLICKR YELP ogbn-products

p = 0.0 51.04 62.83 80.45
p = 0.1 50.80 63.47 81.15
p = 0.3 53.02 62.92 80.67
p = 0.5 48.47 60.41 80.14
p = 1.0 45.83 60.74 78.65

Table 5: Results of intra-batch connectivity tests.

6 Conclusion
In this paper we propose HSGT, a Transformer-based neural
architecture for scalable graph learning, and our model has
shown strong performance and generalizability on multi-scale
graph benchmarks with reasonable computational costs.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4708

Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Grant No. 62276006).

References
[Chen et al., 2017] Jianfei Chen, Jun Zhu, and Le Song.

Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568,
2017.

[Chen et al., 2018] Jie Chen, Tengfei Ma, and Cao Xiao.
Fastgcn: fast learning with graph convolutional net-
works via importance sampling. arXiv preprint
arXiv:1801.10247, 2018.

[Chen et al., 2022] Dexiong Chen, Leslie O’Bray, and
Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on
Machine Learning, pages 3469–3489. PMLR, 2022.

[Chiang et al., 2019] Wei-Lin Chiang, Xuanqing Liu, Si Si,
Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 257–266, 2019.

[Deng et al., 2019] Chenhui Deng, Zhiqiang Zhao, Yongyu
Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A
multi-level spectral approach for accurate and scalable
graph embedding. arXiv preprint arXiv:1910.02370,
2019.

[Dwivedi and Bresson, 2020] Vijay Prakash Dwivedi and
Xavier Bresson. A generalization of transformer networks
to graphs. arXiv preprint arXiv:2012.09699, 2020.

[Fey et al., 2021] Matthias Fey, Jan E Lenssen, Frank We-
ichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings.
arXiv preprint arXiv:2106.05609, 2021.

[Frasca et al., 2020] Fabrizio Frasca, Emanuele Rossi, Da-
vide Eynard, Ben Chamberlain, Michael Bronstein, and
Federico Monti. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198, 2020.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing sys-
tems, 30, 2017.

[Hu et al., 2020] Weihua Hu, Matthias Fey, Marinka Zit-
nik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

[Huang et al., 2018] Wenbing Huang, Tong Zhang,
Yu Rong, and Junzhou Huang. Adaptive sampling
towards fast graph representation learning. arXiv preprint
arXiv:1809.05343, 2018.

[Karypis and Kumar, 1998] George Karypis and Vipin Ku-
mar. A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. University of Minnesota,
Department of Computer Science and Engineering, Army
HPC Research Center, Minneapolis, MN, 38:7–1, 1998.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Klicpera et al., 2018] Johannes Klicpera, Aleksandar Bo-
jchevski, and Stephan Günnemann. Predict then propa-
gate: Graph neural networks meet personalized pagerank.
arXiv preprint arXiv:1810.05997, 2018.

[Kreuzer et al., 2021] Devin Kreuzer, Dominique Beaini,
William L Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral at-
tention. arXiv preprint arXiv:2106.03893, 2021.

[Rampášek et al., 2022] Ladislav Rampášek, Mikhail
Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy
Wolf, and Dominique Beaini. Recipe for a general,
powerful, scalable graph transformer. arXiv preprint
arXiv:2205.12454, 2022.

[Rong et al., 2020] Yu Rong, Yatao Bian, Tingyang Xu,
Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale
molecular data. arXiv preprint arXiv:2007.02835, 2020.

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine,
29(3):93–93, 2008.

[Shaw et al., 2018] Peter Shaw, Jakob Uszkoreit, and Ashish
Vaswani. Self-attention with relative position representa-
tions. arXiv preprint arXiv:1803.02155, 2018.

[Shchur et al., 2018] Oleksandr Shchur, Maximil-
ian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation.
arXiv preprint arXiv:1811.05868, 2018.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing sys-
tems, pages 5998–6008, 2017.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Wu et al., 2019] Felix Wu, Amauri Souza, Tianyi Zhang,
Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International con-
ference on machine learning, pages 6861–6871. PMLR,
2019.

[Wu et al., 2022] Qitian Wu, Wentao Zhao, Zenan Li, David
Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification.
In Advances in Neural Information Processing Systems,
2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4709

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826, 2018.

[Yang et al., 2016] Zhilin Yang, William Cohen, and Ruslan
Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on ma-
chine learning, pages 40–48. PMLR, 2016.

[Ying et al., 2021] Chengxuan Ying, Tianle Cai, Shengjie
Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for
graph representation? arXiv preprint arXiv:2106.05234,
2021.

[Zeng et al., 2019] Hanqing Zeng, Hongkuan Zhou, Ajitesh
Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931, 2019.

[Zhang et al., 2021] Wentao Zhang, Ziqi Yin, Zeang Sheng,
Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and
Bin Cui. Graph attention multi-layer perceptron. arXiv
preprint arXiv:2108.10097, 2021.

[Zhang et al., 2022] Zaixi Zhang, Qi Liu, Qingyong Hu, and
Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. arXiv preprint arXiv:2210.03930,
2022.

[Zhao et al., 2021] Jianan Zhao, Chaozhuo Li, Qianlong
Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. Gophormer: Ego-graph transformer for node
classification. arXiv preprint arXiv:2110.13094, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4710

	Introduction
	Related Work
	Graph Transformers
	Scalable Graph Learning

	Preliminaries
	Transformer
	Graph Hierarchies

	Proposed Approach
	Motivation for Utilizing Graph Hierarchies
	Model Architecture
	Graph Hierarchy Construction and Input Transformation
	Horizontal Block
	Vertical Block
	Readout Block

	Training Strategy
	Hierarchical Sampling
	Historical Embeddings for High-level Nodes

	Experiments
	Node Classification Tasks
	Ablation Studies
	HSGT Efficiently Scales to Large Graphs
	Parameter Analysis
	Coarsening Ratios
	Intra-batch Connectivity

	Conclusion

