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Abstract
Data with missing values is ubiquitous in many ap-
plications. Recent years have witnessed increasing
attention on prediction with only incomplete data
consisting of observed features and a mask that in-
dicates the missing pattern. Existing methods as-
sume that the training and testing distributions are
the same, which may be violated in real-world sce-
narios. In this paper, we consider prediction with
incomplete data in the presence of distribution shift.
We focus on the case where the underlying joint
distribution of complete features and label is invari-
ant, but the missing pattern, i.e., mask distribution
may shift agnostically between training and testing.
To achieve generalization, we leverage the observa-
tion that for each mask, there is an invariant optimal
predictor. To avoid the exponential explosion when
learning them separately, we approximate the op-
timal predictors jointly using a double parameteri-
zation technique. This has the undesirable side ef-
fect of allowing the learned predictors to rely on
the intra-mask correlation and that between fea-
tures and mask. We perform decorrelation to mini-
mize this effect. Combining the techniques above,
we propose a novel prediction method called Sta-
bleMiss. Extensive experiments on both synthetic
and real-world datasets show that StableMiss is ro-
bust and outperforms state-of-the-art methods un-
der agnostic mask distribution shift.

1 Introduction
Data with missing values is ubiquitous in many applications
due to sensor malfunction, incomplete sensing coverage, etc.
Recent years have witnessed increasing attention on predic-
tion with only incomplete feature, which consists of ob-
served feature values and a mask that indicates which fea-
tures are observed. Existing methods [Morvan et al., 2020;
Morvan et al., 2021] assume that the training and testing dis-
tributions are the same. However, this assumption can be vio-
lated in real-world scenarios. In this paper, we study the prob-

∗Extended version: https://arxiv.org/abs/2305.11197.
†Corresponding author.

lem of prediction with incomplete data in the presence of dis-
tribution shift. We focus on the scenario where the underlying
joint distribution of complete features and label is invariant,
but the missing pattern, i.e., mask distribution may be differ-
ent between training and testing. Such mask distribution shift
may result from different sensor deployment, data manage-
ment, etc. For example, DiDi Traffic Speed [DiDiChuxing,
2018] is a naturally incomplete dataset throughout one year.
The traffic network is almost unchanged, so we may reason-
ably assume the speed distribution is relatively stable. The
average missing rate from Jan to Jun is 37% but drops to 23%
from Jul to Dec, possibly because more and higher-quality
sensors are deployed. Moreover, different from the transfer
learning formulation [Pan and Yang, 2010], we assume the
mask distribution shift is agnostic, since testing distribution
is usually unavailable during training in practice.

Many methods for missing data can be used to predict with
incomplete feature. Morvan et al. [2020] propose NeuMiss
for linear regression with incomplete Gaussian feature. Mor-
van et al. [2021] then extend NeuMiss to nonlinear case by
training it jointly with an MLP. Some missing data imputation
methods [Yoon et al., 2018; Li et al., 2019; Ma et al., 2019;
Mattei and Frellsen, 2019; Li and Marlin, 2020] can also be
used by treating the label as missing feature. However, none
of these methods consider distribution shift. Their models
learn the information of mask distribution and thus can hardly
generalize under mask distribution shift.

Several methods have been proposed for prediction un-
der agnostic feature distribution shift [Shen et al., 2018;
Kuang et al., 2018; Kuang et al., 2020; Shen et al., 2020;
Zhang et al., 2021; Xu et al., 2022]. It is assumed that the
conditional label distribution given complete feature is in-
variant. They learn this invariant conditional distribution to
achieve generalization. However, they are designed for com-
plete data. In our setting, the conditional label distribution
given trivially-imputed complete feature is not invariant, so
these methods cannot be applied to incomplete data.

We observe that the conditional label distribution given ob-
served feature values and mask is invariant between training
and testing. As a result, there is an invariant optimal predictor
for each mask respectively. Learning these optimal predictors
can generalize under agnostic mask distribution shift. Since
the number of optimal predictors increases exponentially with
feature dimension [Morvan et al., 2020], we approximate
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the optimal predictors jointly using a double parameteriza-
tion technique, i.e., we first parameterize the optimal predic-
tors and then further parameterize the mapping from mask to
the parameters of the optimal predictors. However, such pa-
rameterization has the undesirable side effect that the learned
model may depend on the intra-mask correlation and the cor-
relation between features and mask, since the training loss
depends on these correlations. This may defy the generaliz-
ability of the learned model, as such correlations will change
under mask distribution shift. Inspired by Xu et al. [2022],
we decorrelate features and mask to make the learned model
independent of their correlations and help it well approximate
the optimal predictors. Combining all the techniques above,
we have our StableMiss that can achieve generalization under
agnostic mask distribution shift.

The contributions of this paper are summarized as follows.
• This paper proposes StableMiss, a novel method for pre-

diction with incomplete data that is robust to agnostic mask
distribution shift. To the best of our knowledge, this is the
first method that considers agnostic mask distribution shift.

• Extensive experiments are conducted on both synthetic and
real-world datasets. The results show that StableMiss is
robust and outperforms the state-of-the-art methods under
agnostic mask distribution shift.

2 Related Work
Prediction with Incomplete Data. Prediction with incom-
plete feature has attracted increasing attention recently. Mor-
van et al. [2020] derive the analytical expression of the op-
timal predictor for linear regression with incomplete Gaus-
sian feature and proposes the NeuMiss network to approx-
imate the optimal predictor. Morvan et al. [2021] then ex-
tend NeuMiss to nonlinear case by training it jointly with a
Multi-Layer Perceptron (MLP). Besides these methods na-
tively proposed for prediction, some missing data imputa-
tion methods can also be used by treating the label as miss-
ing feature. GAIN [Yoon et al., 2018] is an adaptation of
GAN [Goodfellow et al., 2014], where the generator im-
putes missing entries, which the discriminator tries to distin-
guish from observed entries with partial information about
the mask. MisGAN [Li et al., 2019] learns the complete data
distribution from incomplete data and uses it to supervise im-
putation. Partial VAE [Ma et al., 2019], MIWAE [Mattei and
Frellsen, 2019] and P-BiGAN [Li and Marlin, 2020] extend
VAE [Kingma and Welling, 2014], IWAE [Burda et al., 2016]
and BiGAN [Donahue et al., 2017] respectively to learn the
prior and posterior distributions of incomplete feature given
its latent representation and mask. However, all these meth-
ods assume that the training and testing distributions are the
same. They can hardly generalize under distribution shift.
Prediction under Agnostic Feature Distribution Shift.
Several methods have been proposed for prediction under ag-
nostic feature distribution shift. They typically assume that
the conditional label distribution given complete feature is
invariant. Then they learn this invariant conditional distribu-
tion to achieve generalization by decorrelating the features.
CRLR [Shen et al., 2018] learns a weight for each sample re-
spectively by minimizing the so-called confounder balancing

loss, which is zero when the features are decorrelated. Then
weighted Logistic regression is carried out with the learned
weights. Based on CRLR, DGBR [Kuang et al., 2018] also
extracts nonlinear representations of features with deep auto-
encoder. DWR [Kuang et al., 2020] learns a set of sample
weights by minimizing the sum of covariance between pairs
of features and then carries out weighted linear regression.
SRDO [Shen et al., 2020] first constructs a new dataset by
sampling each feature independently from the training set to
decorrelate among features and then learns sample weights
by density ratio estimation [Sugiyama et al., 2012]. Weighted
linear regression is also used with the learned weights. Sta-
bleNet [Zhang et al., 2021] adopts Random Fourier Features
to measure nonlinear correlations among features. It itera-
tively optimizes a weighted regression model and a set of
sample weights by minimizing the prediction error and the
nonlinear correlations, respectively. Xu et al. [2022] propose
a general framework with DWR and SRDO as specific imple-
mentations and gives theoretical analysis on the framework.
However, all these methods are designed for complete data
and cannot be applied to incomplete data.

Compared to the existing methods, StableMiss can not only
predict with incomplete feature but also generalize under ag-
nostic mask distribution shift.

3 Problem Formulation
3.1 Preliminary
We use capital and lowercase letters, e.g., X and x, to denote
random variable and its realization, respectively. We use sub-
scripts to index the entries of a vector, e.g., xi is the i-th entry
of x. Let x ∈ Rn and y ∈ Rd denote the feature and label,
respectively. In the presence of missing data, we consider the
case where x is partially observed and y is fully observed dur-
ing training. A binary mask m ∈ {0, 1}n indicates which en-
tries of x are observed: mi = 1 if xi is observed, and mi = 0
if xi is missing. The complementary mask m is defined by
mi = 1 − mi, ∀i. With a slight abuse of notation, we re-
gard m and m as the index sets of the observed and missing
entries, so that the observed and missing feature values are
xm = {xi | i ∈ m} and xm = {xi | i ∈ m}, respectively.
We consider the case where the mask m is known, since it is
common to know which features are observed within incom-
plete feature. The incomplete feature is given by (xm,m).
We consider the case where label generation process depends
on the feature but not the mask, i.e., p(y | x,m) = p(y | x).
We do not make assumptions on p(x).

Following Little and Rubin [1986], we model the gener-
ative process of incomplete feature as follows. A complete
feature sample x is first drawn from the complete feature dis-
tribution p(x). Given x, a mask sample m is then drawn from
the conditional mask distribution p(m | x). The resulted in-
complete feature (xm,m) follows the distribution

p(xm,m) =

∫
p(x)p(m | x)dxm.

We focus on the Missing Completely At Random (MCAR)
case and Missing At Random (MAR) case [Little and Rubin,
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1986]. Under MCAR, the mask M is independent of the un-
derlying complete feature X, i.e., p(m | x) = p(m), ∀m,x;
under MAR, M only depends on the observed feature values
XM, i.e., p(m | x) = p(m | xm), ∀m,x.

3.2 Problem Statement
The problem is to predict with incomplete feature under ag-
nostic mask distribution shift. Given a training set D =

{(x(i)

m(i) ,m
(i),y(i))}Ni=1, consisting of N samples from the

training distribution ptr(x,m,y), the goal is to learn a pre-
diction function g(xm,m) for agnostic testing distribution
pte(x,m,y), where the input to g is only incomplete fea-
ture. We seek the prediction function g to minimize the mean
squared loss

ℓ(g) = E(X,M,Y)∼pte∥Y − g(XM,M)∥22.

Ideally, the optimal g is given by the conditional expectation:

g(xm,m) = EY∼pte
Y|xm,m

[Y | xm,m].

How we learn it approximately from training data will be in-
troduced in the next section.

Note that the testing error can be arbitrarily large without
any prior knowledge about the testing distribution. We con-
sider the case where only the mask distribution may change
between training and testing. More specifically, we make the
following assumption on the testing distribution.

Assumption 1. The joint distribution of complete feature and
label is invariant between training and testing:

pte(x,y) = ptr(x,y).

The mask distribution shift still remains agnostic under the
above assumption. Different from the transfer learning for-
mulation [Pan and Yang, 2010], the testing distribution is un-
available during the training process.

4 Methodology
4.1 Prediction Framework
Our method relies critically on the following simple result,
the proof of which is given in the extended version.

Theorem 1. Under Assumption 1, the conditional label dis-
tribution given observed feature values and mask is invariant
between training and testing in MCAR or MAR:

pte(y | xm,m) = ptr(y | xm,m).

As a consequence,

EY∼pte
Y|xm,m

[Y | xm,m] = EY∼ptr
Y|xm,m

[Y | xm,m].

Theorem 1 holds since MCAR and MAR guarantee that the
missing feature XM is independent of of mask M given the
observed feature XM. It shows that the ideal optimal predic-
tor is invariant between training and testing. If we can learn
it under the training distribution, it will automatically gener-
alize to the agnostic testing distribution. However, as noted
in Morvan et al. [2021], it is essentially an aggregation of
2n optimal predictors, one for each specific mask m. Since

x�m

m

g

φθ

ŷ

y

Loss w( , )

Figure 1: Prediction framework with sample reweighting.

the number of optimal predictors increases exponentially with
feature dimension, it is infeasible to learn them separately.

Note that the optimal predictor can be thought of as a func-
tion of the observed feature xm parameterized by ϕ, where
ϕ is a function of m, i.e., g(xm,m) = gϕ(m)(xm). Learn-
ing all the 2n optimal predictors then corresponds to learning
the 2n different values of ϕ(m). The function ϕ(m) cor-
responding to the optimal g is very complicated in general.
To address the exponential explosion problem, we adopt the
common technique of approximating it by a simpler function
ϕθ(m) parameterized by θ, which can be implemented by a
neural network with parameter θ. Since we will also imple-
ment g by a neural network, we use the zero-imputed feature
instead of xm to uniformize the input size. The final form of
our predictor is thus

g(xm,m) = gϕθ(m)(x⊙m),

where ⊙ is element-wise multiplication and θ is the parame-
ter we need to learn. The framework is shown in Figure 1.

We illustrate the above framework by a simple example.
Suppose Y =

∑n
i=1 αiXi, where Xi’s are mutually indepen-

dent except that X1 = X2. The optimal predictor is

E[Y | xm,m] = ϕ0 +

n∑
i=1

ϕi · (x⊙m)i,

where

ϕ0 = m̄1m̄2(α1EX1 + α2EX2) +
n∑

i=3

m̄iαiEXi,

ϕ1 = (α1 + α2m̄2)m1, ϕ2 = (α2 + α1m̄1)m2,

ϕi = αimi, for i = 3, . . . , n.

(1)

Note that, if xi is missing, the value of ϕi actually does
not matter, as it is multiplied by (x ⊙ m)i = ximi = 0.
Here the function g is linear in x ⊙ m with the parameter
ϕ(m) = (ϕ0(m), . . . , ϕn(m)) being quadratic in m. We
can easily parameterize ϕ(m) by θ ∈ R(n+1)×(n+1)×(n+1),
where ϕk(m) =

∑
i,j θijkmimj . The corresponding g is

then
gϕθ(m)(x⊙m) =

∑
i,j,k

θijkxkmimjmk, (2)

where x0 = m0 = 1. Here approximation is not necessary
as the optimal ϕ(m) is simple enough. In general, however,
ϕ(m) may be very complex and approximation is necessary.
For example, when the Xi’s are not independent, the ϕ(m)
for the linear model can be an n-th order polynomial in m
with 2n parameters.
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Note that the architecture of NeuMiss [Morvan et al., 2020]
fits into our framework, although it does not explicitly con-
sider mask distribution shift. NeuMiss uses a specific g and
ϕθ that are carefully designed to approximate the analytical
form of the optimal predictor for a linear label generation pro-
cess with Gaussian feature. Our framework is more flexible
and applies to more general settings, as shown in Section 5.

4.2 Decorrelation
The use of ϕθ(m) solves the exponential explosion problem,
but it introduces another. As noted in prior work [Shen et
al., 2018; Kuang et al., 2018; Kuang et al., 2020; Shen et al.,
2020; Zhang et al., 2021; Xu et al., 2022], the learned value
of θ can be affected by the correlation between the variables
that we condition on in the optimal predictor, i.e., X and M
in our case. This defies our original goal, as a learned value of
θ that performs well on the training distribution may not do
so on the testing distribution, where the correlation changes.
We explain this problem in details below.

We assume E[Y | xm,m] is realizable, i.e., there exists a
parameter θ∗ corresponding to the parameter of optimal pre-
dictor ϕ. In the above example, this assumption is satisfied
by the form of g in Equation (2), and θ∗ corresponds to the
function ϕ as given by Equation (1). In practice, we use neu-
ral networks for g to approximately satisfy this assumption,
which shows good empirical results in Section 5.

Consider the population loss. θ∗ minimizes training loss
ℓtr(θ) = E(X,M,Y)∼ptr∥Y − gϕθ(M)(XM,M)∥22.

Since parameter θ∗ corresponds to the parameter of optimal
predictor, it also minimizes the above loss under testing distri-
bution pte, i.e., θ∗ generalizes under mask distribution shift.

Suppose θ̂ is the parameter learned from training distribu-
tion, i.e. ℓtr(θ̂) = ℓtr(θ

∗). θ̂ can be different from θ∗, but
they perform equally well on the training distribution. In fact,

gϕθ̂(M)(XM,M) = gϕθ∗ (M)(XM,M), ptr-a.s.. (3)

However, θ̂ and θ∗ may not perform equally well on testing
distribution ptr, as formally stated in Theorem 2, the proof of
which is given in the extended version.
Theorem 2. In the realizable case, there exists a problem
instance, in which there exists a θ̂ other than θ∗ such that
Equation (3) holds ptr-a.s. but not pte-a.s..

Such θ̂ is undesirable, since it cannot generalize as well as
θ∗. To address this problem, decorrelation among X and M
may help. We explain the reason with an example below.

Consider the example in Section 4.1. If the entries of X
and the entries of M are mutually independent, the only solu-
tion for θ̂ is the θ∗ corresponding to Equation (1). The proof
is given in the extended version. Thus we can perform decor-
relation to help obtain the desired parameter θ∗.

Under MCAR, we decorrelate the entries of X and those of
M respectively; under MAR, we further decorrelate between
X and M. In this paper, we follow Zhang et al. [2021] to
decorrelate by sample reweighting. Specifically, we learn a
weighting function w(xm,m) by minimizing the correlation
under distribution p̃w, where

p̃w(x,m, y) = w(xm,m)ptr(x,m, y).

The learned weighting function will be normalized to make
p̃w well-defined. Under p̃w, the conditional label distribu-
tion p(y | xm,m) does not change. Inspired by Zhang et
al. [2021], we measure the correlation empirically by partial
cross-covariance matrix with Random Fourier Feature [Strobl
et al., 2019]. We adapt it to the case of incomplete data as fol-
lows.

The partial cross-covariance matrix of Xk and Xl, denoted
by Σ′

Xk,Xl;w
, is computed with only samples in which Xk

and Xl are both observed:

Σ′
Xk,Xl;w =

1

Nkl − 1

Nkl∑
i=1

[(
wiu(X

(i)
k )− 1

Nk

Nk∑
j=1

wju(X
(j)
k )

)⊤

(
wiv(X

(i)
l )− 1

N l

Nl∑
j=1

wjv(X
(j)
l )

)]
,

where Nkl is the number of samples in which Xk and Xl are
both observed, Nk and N l are the number of samples with
observed Xk and Xl, respectively, wi = w(x

(i)

m(i) ,m
(i)), and

u, v are function vectors with elements drawn from the space
of Random Fourier Feature [Strobl et al., 2019], the defini-
tion of which is given in the extended version. Similarly,
Σ′

Xk,Ml;w
is computed with only samples in which Xk is ob-

served, and Σ′
Mk,Ml;w

is computed with all the N samples.
See the extended version for their detailed forms.

When decorrelating the entries of X and those of M, we
optimize sample weight w ∈ RN

+ by minimizing the correla-
tion of all pairs of Xi and Xj and all pairs of Mi and Mj :

min
w∈R+

∑
1≤k<l≤n

∥Σ′
Xk,Xl;w

∥2F +
∑

1≤k<l≤n

∥Σ′
Mk,Ml;w

∥2F

+ γ
Std(w)

1/N
∑N

i=1 wi

,

where Std(w) is standard deviation of the wi’s. The last regu-
larization term is used to prevent assigning very large weights
to a small proportion of samples. Hyper-parameter γ is coef-
ficient for the regularization term. Under MAR, we further
add

∑
1≤k,l≤n ∥Σ′

Xk,Ml;w
∥2F into the objective to decorrelate

between X and M.
With the learned weighting function, we can conduct re-

gression under the weighted distribution p̃w:

min
θ

Ep̃w
[(Y − gϕθ(M)(XM,M))2].

In the ideal case, the entries of X and those of M are mu-
tually independent under p̃w. Then the learned θ will not
be affected by the correlation and can generalize under mask
distribution shift. In practice, we can equivalently conduct
weighted regression under the training distribution:

min
θ

Eptr [w(XM,M)(Y − gϕθ(M)(XM,M))2].

How decorrelation is combined with the prediction frame-
work is shown in Figure 1.

5 Experiment
5.1 Datasets
We evaluate StableMiss on synthetic and real-world datasets.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4723



Method
Testing Missing Level

10% 20% 30% 40% 50% 60% 70% 80% 90%

Gap to
Optimal

Partial VAE 1541.52 1244.90 1172.68 961.18 793.32∗ 898.04 1075.69 1087.19 1112.42
MIWAE 1331.95 1029.18 1047.14 910.77 743.63∗ 841.89 820.39 844.80 844.17
P-BiGAN 1382.71 1123.64 1041.63 923.53 713.85∗ 856.39 845.39 867.93 979.45
NeuMiss 714.19 520.26 523.10 432.99 293.14∗ 574.80 601.74 646.53 679.99

DWR 1485.42 1170.15 1142.32 1033.32 893.64∗ 962.61 969.56 966.85 963.52
SRDO 1385.00 1116.82 1080.93 988.86 843.85∗ 919.26 899.21 903.82 866.09
StableNet 1256.32 967.22 989.67 878.97 743.25∗ 818.16 807.50 750.89 788.56

StableMiss 431.16 342.70 309.09 278.97 282.75∗ 319.58 405.60 412.03 467.98
Optimal 904.87 1096.36 1108.73 1224.50 1324.00 1375.16 1518.59 1626.74 1705.54

Table 1: Performance on Gaussian-Mix feature with MAR mask when trained under 50% missing level. The values for Optimal are the
RMSE, while the other values are the gap between the RMSE of the corresponding method and that of Optimal with the same experimental
setup. Bold and underline represent the best and second best along each column, respectively. Superscript ∗ indicates when training and
testing missing levels are the same. These marks will also be used in the other tables.

Gaussian. Following Morvan et al. [2021], we generate
feature X from multivariate Gaussian distribution. The mean
values are drawn from standard Gaussian distribution, and the
covariance matrix is generated by Σ = BB⊤ +D, where the
entries of B ∈ Rn×0.7n are drawn from standard Gaussian
distribution and D ∈ Rn×n is diagonal with values uniformly
drawn from [10−2, 10−1]. The feature dimension n = 50.

Gaussian-Ind. The feature generation is the same as Gaus-
sian, except that we make the entries of X mutually indepen-
dent by using a diagonal covariance matrix.

Gaussian-Mix. We generate feature X from the more gen-
eral Gaussian mixture model with 3 components, each gener-
ated in the same way as Gaussian. The proportion of the i-th
component πi is uniformly drawn from [0, 1) and normalized
by πi/

∑3
i=1 πi.

For the above 3 synthetic features, the label generation pro-
cess is linear: Y = α0 +

∑n
i=1 αiXi + ϵ, where ϵ is a Gaus-

sian noise such that the signal-to-noise ratio is 10. Different
from Morvan et al. [2020; 2021] where all αi’s except α0 are
equal, we draw more general αi’s from Gaussian distribution.

House Sales. Following Shen et al. [2020], we use dataset
of house sales in King County, USA, which contains n = 16
features and a scalar house price as label.

MNIST [Lecun et al., 1998]. The MNIST dataset of hand-
written digit images. Given incomplete image, we aim to pre-
dict the complete image.

Traffic [DiDiChuxing, 2018]. Average traffic speed within
every hour from 1343 roads in the city of Chengdu, China, in
2018. We build a graph for the dataset, where nodes represent
the roads and edges indicate the adjacency of roads. Note that
this dataset is naturally incomplete. Given incomplete history,
we aim to predict the future traffic speed.

All the datasets except the Traffic dataset are complete. We
generate incomplete datasets by imposing mask on the com-
plete samples according to the missing patterns in Section 5.2.

5.2 Missing Patterns
We design the following 3 missing patterns. There are 9 miss-
ing levels, denoted by r, from 10% to 90% at a step of 10%.

Missing patterns examples are given in the extended version.
MCAR-Ind. We generate mask M that is independent of

feature X, and the entries of mask are mutually independent.
For each sample, its sample missing rate rs has 80% to be r
and 2.5% to be one of the other 8 levels respectively. Each
entry is independently missing with probability rs.

MCAR. We generate mask M that is independent of fea-
ture X, but the entries of mask can be dependent. The sample
missing rate rs is determined in the same way as MCAR-Ind.
In each sample, following Li and Marlin [2020], we generate
a window of length ⌊n · rs⌋ at a random position, where the
⌊n · rs⌋ consecutive features in the window are missing.

MAR. Following Morvan et al. [2020; 2021], we generate
feature-dependent mask, and the entries of mask can also be
dependent. First, randomly selected 10% features are set to
be observed in all the samples. The mask on the other features
are generated according to a model whose parameters depend
on the selected features. The sample missing rate rs means
the missing proportion of the other 90% features, which is
determined in the same way as MCAR-Ind.

5.3 Baselines
We compare StableMiss with two categories of baselines. (1)
state-of-the-art methods on prediction with incomplete data:
NeuMiss [Morvan et al., 2020; Morvan et al., 2021], Par-
tial VAE [Ma et al., 2019], MIWAE [Mattei and Frellsen,
2019] and P-BiGAN [Li and Marlin, 2020]; (2) state-of-the-
art methods on generalization under agnostic feature distri-
bution shift: DWR [Kuang et al., 2020], SRDO [Shen et al.,
2020] and StableNet [Zhang et al., 2021]. For Partial VAE,
MIWAE and P-BiGAN, we treat label as missing feature. For
DWR, SRDO and StableNet, we use mean-imputed feature as
input. See the extended version for implementation details.

We use the commonly adopted Root Mean Square Error
(RMSE) as evaluation metric throughout.

5.4 Performance on Synthetic Dataset
We compare StableMiss with baselines under different miss-
ing patterns and missing levels. The models are trained un-
der a specific missing level and tested under all the missing
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Method
Training Missing Level

10% 20% 30% 40% 50% 60% 70% 80% 90%

Gap to
Optimal

Partial VAE 1441.03 946.28 951.77 880.44 793.32∗ 1048.26 1581.51 1608.35 1897.15
MIWAE 1092.03 806.06 816.18 753.13 743.63∗ 883.19 1333.60 1235.24 1674.31
P-BiGAN 1136.98 840.27 849.73 771.86 713.85∗ 947.65 1215.25 1255.63 1709.70
NeuMiss 687.57 650.05 529.37 424.46 293.14∗ 692.26 744.01 850.52 1023.01

DWR 1111.11 957.66 962.37 904.77 893.64∗ 1054.67 1312.80 1434.32 1902.80
SRDO 991.91 939.84 890.83 884.84 843.85∗ 1029.93 1362.18 1359.29 1897.69
StableNet 856.08 847.25 866.97 823.89 743.25∗ 889.24 1336.49 1410.46 1697.40

StableMiss 337.14 326.49 296.93 297.95 282.75∗ 421.15 480.80 584.96 716.63
Optimal 1324.00

Table 2: Performance on Gaussian-Mix feature with MAR mask when tested under 50% missing level.

Method
Testing Missing Level

10% 20% 30% 40% 50% 60% 70% 80% 90%

Gap to
StableMiss-ID

Partial VAE 23.37 18.94 17.94 14.85 8.46∗ 19.70 21.87 46.05 52.53
MIWAE 27.14 23.92 22.90 21.16 13.73∗ 21.52 25.73 49.95 52.56
P-BiGAN 32.91 25.62 23.82 23.10 16.36∗ 26.29 27.44 56.17 62.87
NeuMiss 25.89 20.19 17.89 14.48 7.67∗ 17.67 21.26 46.55 53.06

DWR 38.36 26.80 25.22 23.70 11.09∗ 26.23 27.62 61.13 71.49
SRDO 29.46 22.49 18.89 15.16 6.88∗ 15.65 24.86 51.77 55.68
StableNet 21.41 15.18 14.78 14.53 8.46∗ 18.55 15.96 38.09 46.99

StableMiss 14.68 10.16 8.46 7.03 0.00∗ 9.51 10.31 21.90 34.90
StableMiss-ID 20.85 22.80 24.36 28.77 32.89 36.67 39.23 42.90 48.16

Table 3: Performance on House Sales dataset with MAR mask when trained under 50% missing level (unit: $10000).

levels. The difference in missing level represents the mask
distribution shift. Due to space limit, we only present the re-
sults of missing rate shift on Gaussian-Mix feature with MAR
mask; see the extended version for the missing rate shift on
other settings and missing pattern shift. We also present the
performance of optimal predictor E[Y | xm,m]. It can be
derived from known feature distribution and label generation
process, without which the performance of optimal predictor
is not reachable.

We will show the results from two views: results with
fixed training missing level that reflects the generalizability of
methods, and results with fixed testing missing level that re-
flects the robustness to the mask distribution of training data.

Fixing Training Missing Level. We show the results when
trained under 50% missing level and tested under all the miss-
ing levels in Table 1; the other settings are similar. Since the
amount of observed data is different between missing levels,
which influences the prediction error, we use the gap to opti-
mal to reflect the generalization performance.

As the missing level increases, the error of the optimal pre-
dictor also increases, as there are less observed data. When
the mask distribution shifts, StableMiss has the best general-
ization performance, reducing the gap to optimal of the sec-
ond best, NeuMiss in this case, by 31%-44%. When there
is no mask distribution shift, StableMiss still has the best per-
formance in this case, slightly outperforming NeuMiss by 4%

in terms of the gap to optimal. As shown in the extended ver-
sion, for Gaussian features with MCAR or MAR mask, Neu-
Miss can slightly outperform StableMiss, by at most 2%, in
the absence of mask distribution shift. This is not too surpris-
ing, as these are the cases that NeuMiss is tailored for.

Fixing Testing Missing Level. We show the results when
tested under 50% missing level and trained under all the miss-
ing levels in Table 2; the other settings are similar. When
the mask distribution shifts, StableMiss achieves the best per-
formance, reducing the gap to optimal of the second best
NeuMiss by 30%-50%. Reduction is especially large when
trained under 10% missing level, since the optimal predic-
tors are more learnable under lower missing level. The re-
sults show that StableMiss is robust to the quality, i.e., mask
distribution, of training data and can generalize from various
training mask distributions.

5.5 Performance on Real-World Dataset
House Sales. We show the results on House Sales dataset
when trained under 50% missing level in Table 3. Without
prior knowledge about label generation process, the optimal
predictor cannot be derived. StableMiss has the best perfor-
mance when trained in distribution, i.e., trained under testing
distribution. Instead of Optimal, we show our in-distribution
performance, which is denoted by ‘StableMiss-ID’.

Error of StableMiss-ID also increases with missing level.
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Method
Testing Missing Level

10% 20% 30% 40% 50% 60% 70% 80% 90%

Gap to
StableMiss-ID

Partial VAE 21.61 17.51 16.58 13.74 7.82∗ 18.22 20.22 42.58 48.57
MIWAE 25.09 22.12 21.18 19.57 12.69∗ 19.90 23.79 46.18 48.60
P-BiGAN 30.43 23.69 22.03 21.36 15.13∗ 24.31 25.38 51.94 58.13
NeuMiss 23.94 18.67 16.54 13.39 7.09∗ 16.34 19.66 43.04 49.06

DWR 35.47 24.78 23.32 21.92 10.26∗ 24.25 25.54 56.52 66.10
SRDO 27.24 20.79 17.47 14.01 6.36∗ 14.47 22.99 47.87 51.49
StableNet 19.79 14.03 13.67 13.43 7.82∗ 17.15 14.76 35.22 43.45

StableMiss 12.33 8.75 7.05 6.65 0.00∗ 8.25 9.99 18.73 27.47
StableMiss-ID 19.27 22.14 24.08 27.96 31.93 34.95 38.06 41.65 46.76

Table 4: Performance on MNIST dataset with MAR mask when trained under 50% missing level.

Partial VAE MIWAE P-BiGAN NeuMiss DWR SRDO StableNet StableMiss StableMiss-ID

16.08 14.82 15.79 15.10 15.93 15.72 13.97 11.84 8.39

Table 5: Performance on Traffic dataset. All the values are exact RMSE (unit: km/h).

When the mask distribution shifts, StableMiss achieves the
best performance, reducing the gap to StableMiss-ID of the
second best, usually StableNet, by 26%-50%, with an aver-
age of 38%, which demonstrates our generalizability on real-
world data.

MNIST. We show the results on MNIST dataset when
trained under 50% missing level in Table 4. When the mask
distribution shifts, StableMiss achieves the best performance,
reducing the gap to StableMiss-ID of the second best, usually
StableNet, by 28%-50%, with an average of 41%.

Traffic. Table 5 shows the results on Traffic dataset, which
is naturally incomplete. The training and testing missing
rates are 37% and 23%. Since ground truth of missing en-
tries is unavailable, RMSE is only computed on observed en-
tries. The value for StableMiss-ID is the training error, which
only serves as a reference for our comparison. Note that Sta-
bleMiss achieves the best performance, reducing the gap to
StableMiss-ID of the second best, StableNet, by 38%, which
shows that StableMiss can be applied to real-world datasets
with complex missingness.

5.6 Ablation Study
We study the efficacy of decorrelation by comparing with ab-
lated variants that only decorrelates the entries of X and M
respectively (only intra), only decorrelates between X and
M (only inter) and does not decorrelate (w/o). The result on
Gaussian-Mix feature with MAR mask when trained under
10% missing level is given in Figure 2. Our method with full
decorrelation achieves the best performance especially when
mask distribution shift becomes stronger. The gap of the sec-
ond best to optimal is reduced by 55% on average and by 83%
under 90% missing level.

We also study the influence of decorrelation when it is not
needed. The result on Gaussian-Ind feature with MCAR-Ind
mask when trained under 10% missing level is given in Figure
3. The performance with unneeded decorrelation is close to

10 20 30 40 50 60 70 80 90
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1000

1500
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M
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w/o Only Intra Only Inter Full Optimal

Figure 2: Comparison with ablated variants: only decorrelating the
entries of X and M respectively (only intra), only decorrelating be-
tween X and M (only inter), and no decorrelaion (w/o). The same
notations are used in Figure 3.
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Figure 3: Influence of unneeded decorrelation.

that without decorrelation. For real-world data with unknown
correlation, we can always conduct decorrelation.

6 Conclusion
In this paper, we propose a novel method StableMiss for the
problem of prediction with incomplete data under agnostic
mask distribution shift. We leverage the observation that for
each mask, there is an invariant optimal predictor. We ap-
proximate the optimal predictors jointly using a double pa-
rameterization technique. We also perform decorrelation to
minimize the side effect caused by the intra-mask correlation
and the correlation between features and mask. Extensive
experiments are conducted on both synthetic and real-world
datasets. The results show that StableMiss is robust and out-
performs state-of-the-art methods under agnostic mask distri-
bution shift.
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