
Specifying and Testing k-Safety Properties for Machine-Learning Models
Maria Christakis1 , Hasan Ferit Eniser2 , Jörg Hoffmann3,4 , Adish Singla2 and

Valentin Wüstholz5
1TU Wien, Austria

2MPI-SWS, Germany
3Saarland University, Saarland Informatics Campus, Germany

4German Research Center for Artificial Intelligence (DFKI), Germany
5ConsenSys, Austria

maria.christakis@tuwien.ac.at, {hfeniser, adishs}@mpi-sws.org, hoffmann@cs.uni-saarland.de,
valentin.wustholz@consensys.net

Abstract
Machine-learning models are becoming increas-
ingly prevalent in our lives, for instance assisting in
image-classification or decision-making tasks. Con-
sequently, the reliability of these models is of criti-
cal importance and has resulted in the development
of numerous approaches for validating and verify-
ing their robustness and fairness. However, beyond
such specific properties, it is challenging to spec-
ify, let alone check, general functional-correctness
expectations from models. In this paper, we take
inspiration from specifications used in formal meth-
ods, expressing functional-correctness properties by
reasoning about k different executions—so-called
k-safety properties. Considering a credit-screening
model of a bank, the expected property that "if a
person is denied a loan and their income decreases,
they should still be denied the loan" is a 2-safety
property. Here, we show the wide applicability of k-
safety properties for machine-learning models and
present the first specification language for express-
ing them. We also operationalize the language in a
framework for automatically validating such prop-
erties using metamorphic testing. Our experiments
show that our framework is effective in identifying
property violations, and that detected bugs could be
used to train better models.

1 Introduction
Due to the impressive advances in machine learning and the
unlimited availability of data, machine-learning (ML) mod-
els, e.g., neural networks, are rapidly becoming prevalent in
our lives, for instance by assisting in image-classification or
decision-making tasks. As a result, there is growing con-
cern about the reliability of these models in performing such
tasks. For example, it could be disastrous if an autonomous
vehicle misclassifies a street sign, or if a recidivism-risk algo-
rithm, which predicts whether a criminal is likely to re-offend,
is unfair with respect to race. The research community is,
of course, aware of these issues and has devised numerous

techniques to validate and verify robustness and fairness prop-
erties of machine-learning models (e.g., [Huang et al., 2017;
Gehr et al., 2018; Singh et al., 2019; Albarghouthi et al., 2017;
Bastani et al., 2019; Urban et al., 2020; Carlini and Wag-
ner, 2017; Goodfellow et al., 2015; Madry et al., 2018;
Galhotra et al., 2017; Udeshi et al., 2018; Tramèr et al., 2017]).

Beyond such specific properties however, it is challenging
to express general functional-correctness expectations from
such models, let alone check them, e.g., how can we specify
that an image classifier should label images correctly? We
take inspiration from specifications used in formal methods—
so-called hyperproperties [Clarkson and Schneider, 2008]—
capturing functional-correctness properties by simultaneously
reasoning about multiple system executions. For example,
consider a credit-screening model of a bank. The expected
property that "if a person is denied a loan and their income
decreases, they should still be denied the loan", or conversely
"if a person is granted a loan and their income increases, they
should still be granted the loan", is a 2-safety hyperproperty—
we need two model executions to validate its correctness. In
contrast, the property that "a person with no income should be
denied a loan" is a standard (1-)safety property since it can be
validated by individual model executions. Overall, k-safety
hyperproperties generalize standard safety properties in that
they require reasoning about k different executions.
Examples. Although we are not the first to observe that hy-
perproperties can be used to specify ML models (e.g., [Seshia
et al., 2018; Sharma and Wehrheim, 2020]), we go a step
further by demonstrating the wide applicability of general,
user-provided k-safety properties for such models. We use
examples from five distinct domains throughout this paper:
Tabular data. Consider the COMPAS dataset [Larson et al.,

2016], which determines how likely criminals are to re-
offend. An expected hyperproperty for models trained
on COMPAS could be that "if the number of commit-
ted felonies for a given criminal increases, then their
recidivism risk should not decrease". Note that this is
essentially monotonicity in an input feature, a special
case of the hyperproperties we consider here.

Images. Using the MNIST dataset [LeCun et al., 1999],
which classifies images of handwritten digits, an expected

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4748

hyperproperty could be that "if a blurred image is cor-
rectly classified, then its unblurred version should also be
correctly classified". Note that this is not monotonicity
in a feature as whether or not an image is blurred does
not constitute part of the model input (i.e., the image);
instead, blurring may affect most, if not all, pixels.

Speech. Similarly, for the SpeechCommand dataset [Warden,
2018], which classifies short spoken commands, an ex-
pected hyperproperty could be that "if a speech command
with white noise is correctly classified, then its non-noisy
version should also be correctly classified".

Natural language. The HotelReview dataset [Liu, 2017] is
used for sentiment analysis of hotel reviews. An expected
hyperproperty could be that "if a review becomes more
negative, the sentiment should not become more positive".
Note that, again, making a review more negative may
significantly affect the model input.

Action policies. LunarLander is a popular Gym [Brockman et
al., 2016] environment consisting of a 2D-world with an
uneven lunar surface and a reinforcement-learning (RL)
lander, which initially appears far above the surface and
moves downward. The goal is to navigate and land the
lander on its two legs; if the body ever touches the surface,
the lander crashes. An expected hyperproperty could be
that "if the lander lands successfully, then decreasing the
surface height (thus giving the lander more time to land)
should also result in landing successfully". Here, even
a seemingly simple change to the initial game state may
result in significant changes to subsequent states since
the policy is invoked repeatedly during the game.

In practice, such properties are defined by users, thus express-
ing model expectations that are deemed important in their
particular usage scenario.

Approach and contributions. In this paper, we show the
wide applicability of k-safety properties for ML models. We
design a declarative, domain-agnostic specification language,
NOMOS ("law" in Greek), for writing them. In contrast to
existing approaches, NOMOS can express general k-safety
properties capturing arbitrary relations between more than one
input-output pair; these subsume the more specific relations
of robustness, fairness, and monotonicity.

We further design a fully automated framework (see Fig. 3)
for validating NOMOS properties using metamorphic test-
ing [Chen et al., 1998; Segura et al., 2016]. On a high-level,
our framework takes as input the model under test and a set of
k-safety properties for the model. As output, it produces tests
for which the model violates the specified properties. Note
that a single test for a k-safety property consists of k concrete
inputs to the model under test. Under the hood, the translator
component of the framework compiles the provided NOMOS
properties into a test harness, i.e., software that tests the given
model against the properties. The harness employs a test gen-
erator for generating inputs to the model using metamorphic
testing and an oracle for detecting property violations.

In summary, this paper makes the following contributions:
• We present NOMOS, the first specification language for ex-

pressing general k-safety hyperproperties for ML models,

naturally opening up the possibility to apply various valida-
tion or verification techniques for checking such properties.

• We demonstrate the wide applicability of such properties
through case studies from several domains and the expres-
siveness of our language in capturing them.

• We design and implement a fully automated, publicly avail-
able framework1 for validating such properties using meta-
morphic testing.

• We evaluate the effectiveness of our testing framework in de-
tecting property violations across a broad range of different
domains. We also perform a feasibility study to showcase
how such violations can be used to improve model training.

2 NOMOS Specification Language
NOMOS allows a user to specify k-safety properties over
source code invoking an ML model under test. On a high level,
a NOMOS specification consists of three parts: (1) the precon-
dition, (2) the source code—Python in our implementation—
invoking the model, and (3) the postcondition. Pre- and post-
conditions are commonly used in formal methods, for instance,
in Hoare logic [Hoare, 1969] and design by contract [Meyer,
1992]. Here, we adapt pre- and postconditions for reasoning
about k-safety properties of ML models.

The precondition captures the conditions under which the
model should be invoked, allowing the user to express arbitrary
relations between more than one model input. It is expressed
using zero or more requires statements, each capturing a
condition over inputs; the logical conjunction of these condi-
tions constitutes the precondition. The source code may be
arbitrary code invoking the model one or more times to cap-
ture k input-output pairs. Finally, the postcondition captures
the safety property that the model is expected to satisfy. It
is expressed using zero or more ensures statements, each
taking a condition that, unlike for the precondition, may refer
to model outputs; the logical conjunction of these conditions
constitutes the postcondition.

Examples. Consider the NOMOS specification of Fig. 1a
expressing the COMPAS property described earlier. On line 1,
we specify that we need an input x1, i.e., a criminal. Lines 2–4
get the first feature of x1, which corresponds to the number
of felonies, and assign it to variable v1; in variable v2, we
increase this number, and create a new criminal x2 that differs
from x1 only with respect to this feature, i.e., x2 has commit-
ted more felonies than x1. Line 5 specifies a precondition that
the new criminal’s felonies should not exceed a sensible limit.
Lines 6–7 declare two outputs, d1 and d2, that are assigned
the model’s prediction when calling it with criminal x1 and x2,
respectively (see block of Python code on lines 8–11). Finally,
on line 13, we specify the postcondition that the recidivism
risk of criminal x2 should not be lower than that of x1.

Fig. 1b shows the MNIST specification. Given an image x1
(line 1), image x2 is its blurred version (line 2), and variable
v1 contains its correct label (line 3), e.g., retrieved from the
dataset. Note that functions such as blur and label extend
the core NOMOS language and may be easily added by the user.

1https://github.com/Rigorous-Software-Engineering/nomos

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4749

https://github.com/Rigorous-Software-Engineering/nomos

1 input x1;
2 var v1 := getFeat(x1, 1);
3 var v2 := v1 + randInt(1, 10);
4 var x2 := setFeat(x1, 1, v2);
5 requires v2 <= 20;
6 output d1;
7 output d2;
8 {
9 d1 = predict(x1)

10 d2 = predict(x2)
11 }
12 # 0-low, 1-medium, 2-high risk
13 ensures d1 <= d2;

(a) COMPAS 2-safety property.

1 input x1;
2 var x2 := blur(x1);
3 var v1 := label(x1);
4 output d1;
5 output d2;
6 {
7 d1 = predict(x1)
8 d2 = predict(x2)
9 }

10 ensures d2==v1 ==> d1==v1;

(b) MNIST 2-safety property.

1 input x1;
2 input x2;
3 var v1 := getFeat(x1, 1);
4 var v2 := getFeat(x2, 1);
5 var v3 := strConcat(v1, v2);
6 var x3 := setFeat(x1, 1, v3);
7 output d1;
8 output d3;
9 {

10 d1 = predict(x1)
11 d3 = predict(x3)
12 }
13 # 0-pos, 1-neg
14 ensures d1 <= d3;

(c) HotelReview 2-safety property.

1 input s1;
2 var s2 := relax(s1);
3 output o1;
4 output o2;
5 {
6 o1, o2 = 0, 0
7 for _ in range(10):
8 rs = randInt(0, MAX_INT)
9 o1 += play(s1, rs)

10 o2 += play(s2, rs)
11 }
12 # 0-lose, 1-win
13 ensures o1 <= o2;

(d) LunarLander 20-safety property.

Figure 1: Example k-safety specifications in NOMOS.

The postcondition on line 10 says that if the blurred image is
correctly classified, then so should the original image. Note
that we defined a very similar specification for the SpeechCom-
mand property—instead of blur, we used function wNoise
adding white noise to audio.

The HotelReview specification is shown in Fig. 1c. A hotel
review consists of a positive and a negative section, where a
guest describes what they liked and did not like, respectively.
On lines 1–2, we obtain two reviews, x1 and x2, and in vari-
ables v1 and v2 on lines 3–4, we store their negative sections
(feature 1 retrieved with function getFeat). We then create a
third review, x3, which is the same as x1 except that its nega-
tive section is the concatenation of v1 and v2 (lines 5–6). The
postcondition on line 14 checks that the detected sentiment is
not more positive for review x3 than for x1.

Finally, consider the LunarLander specification in Fig. 1d.
On line 1, we obtain an input s1, which is an initial state of
the game. Line 2 "relaxes" this state to obtain a new state
s2, which differs from s1 only in that the height of the lunar
surface is lower. In the block of Python code that follows
(lines 5–11), we initialize outputs o1 and o2 to zero and play
the game from each initial state, s1 and s2, in a loop; o1 and
o2 accumulate the number of wins. We use a loop because
the environment is stochastic—firing an engine of the lander
follows a probability distribution. Therefore, by changing the
environment random seed rs on line 8, we take stochasticity
into account. In each loop iteration however, we ensure that the
game starting from s2 is indeed easier, i.e., that stochasticity
cannot make it harder, by using the same seed on lines 9–10.
Note that function play invokes the policy multiple times
(i.e., after every step in the game simulator). Finally, line 13

ensures that, when playing the easier game (starting with s2),
the number of wins should not decrease. Since this property
depends on 20 model invocations, it is a 20-safety property!
Conversely, we can also make the game harder by "unrelaxing"
the original initial state, i.e., increasing the surface height.

Grammar. Fig. 2 provides a formal grammar for NOMOS
(in a variant of extended Backus-Naur form). The top-level
construct is <spec> on lines 1–4. It consists of zero or more
import statements—the curly braces denote repetition—to
import source-code files containing custom implementations
for domain-specific functions, e.g., blur or wNoise, one or
more input declarations, variable declarations, preconditions,
output declarations, the source-code block, and postconditions.
We define these sub-constructs in subsequent rules (lines 6–11).
For instance, a precondition (line 9 of Fig. 2) consists of the
token requires, a Boolean expression, and a semicolon. For
brevity, we omit a definition of <code>; it denotes arbitrary
Python code that is intended to invoke the model under test
and assign values to output variables. We additionally omit
the basic identifiers <model_name> and <var_name>.

The grammar also defines various types of expressions
needed in the above sub-constructs. In their definitions, we
use the | combinator to denote alternatives. In particular, we
define scalar (lines 12–18), Boolean (lines 19–25), and record
expressions (lines 26–33). The latter express complex object-
like values, e.g., images or game states. In the definitions, we
include extensions to the core language with domain-specific
functions supporting the application domains considered here—
e.g., getFeat and setFeat retrieve and modify record fields.
Integer and string expressions are defined as expected.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4750

1 <spec> ::= { <import> } <input> { <input> }
2 { <var_decl> } { <precond> }
3 { <output> } "{" <code> "}"
4 { <postcond> }
5 <import> ::= "import" <model_name> ";"
6 <input> ::= "input" <var_name> ";"
7 <var_decl> ::= "var" <var_name> ":=" <scalar_expr> ";"
8 | "var" <var_name> ":=" <record_expr> ";"
9 <precond> ::= "requires" <bool_expr> ";"

10 <output> ::= "output" <var_name> ";"
11 <postcond> ::= "ensures" <bool_expr> ";"
12 <scalar_expr> ::= <bool_expr>
13 | <int_expr>
14 | <string_expr>
15 | "getFeat(" <record_expr> "," <int_expr> ")"
16 | "label(" <record_expr> ")"
17 | "randInt(" <int_expr> "," <int_expr> ")"
18 | "strConcat(" <string_expr> "," <string_expr> ")"

19 <bool_expr> ::= <bool_literal>
20 | <var_name>
21 | "!"<bool_expr>
22 | <bool_expr> "&&" <bool_expr>
23 | <scalar_expr> "==" <scalar_expr>
24 | <scalar_expr> "<" <scalar_expr>
25 | <record_expr> "==" <record_expr>
26 <record_expr> ::= <var_name>
27 | "setFeat(" <record_expr> ","
28 <int_expr> ","
29 <scalar_expr> ")"
30 | "blur(" <record_expr> ")"
31 | "wNoise(" <record_expr> ")"
32 | "relax(" <record_expr> ")"
33 | "unrelax(" <record_expr> ")"

Figure 2: The NOMOS grammar.

3 Testing Framework for NOMOS

Metamorphic testing [Chen et al., 1998; Segura et al., 2016]
is a testing technique that addresses the lack of an existing
oracle defining correct system behavior. Specifically, given an
input, metamorphic testing transforms it such that the relation
between the outputs (i.e., the output of the system under test
when executed on the original input and the corresponding out-
put when executed on the transformed input) is known. If this
relation between outputs does not hold, then a bug is detected.
As a simple example, consider testing a database system; given
a query as the original input, assume that the transformed input
is the same query with weakened constraints. A bug is detected
if the transformed query returns fewer results than the original
one, which is more restrictive. So far, metamorphic testing
has been used to test ML models from specific application
domains, e.g., image classifiers [Dwarakanath et al., 2018;
Tian et al., 2020], translation systems [via Isotopic Re-
placement, 2022], NLP models [Ma et al., 2020], object-
detection systems [Wang and Su, 2020], action policies [Eniser
et al., 2022], and autonomous cars [Tian et al., 2018;
Zhang et al., 2018].

In our setting, we observe that metamorphic testing is a
natural choice for validating general k-safety properties as
these also prescribe input transformations and expected out-
put relations. For instance, in Fig. 1a, lines 2–5 describe the
transformation to input x1 in order to obtain x2, and line 13
specifies the relation between the corresponding outputs. We,
therefore, design the framework in Fig. 3 for validating a
model against a NOMOS specification using metamorphic test-
ing. The output of our framework is a set of (unique) bugs,
i.e., test cases revealing postcondition violations. For Fig. 1a,
a bug would comprise two concrete instances of a criminal, c1
and c2, such that (1) c2 differs from c1 only in having more
felonies, and (2) the recidivism risk of c2 is predicted to be
lower than that of c1.

Under the hood, the translator component of the framework
compiles the NOMOS specification into a test harness, i.e.,
a Python program that tests the model against the specified
properties. Our implementation parses NOMOS specifications
using an ANTLR4 [Parr, 2013] grammar. After semantically
checking the parsed abstract syntax tree (AST), our framework

Specification

Model
Test

Generator

OracleNOMOS Testing
Framework

Translator Violations

Test
Harness

Figure 3: An overview of our testing framework.

translates the AST into the Python program constituting the
test harness. A snippet of the generated harness for the specifi-
cation of Fig. 1a is shown in Fig. 4. The test harness employs
a test generator and an oracle component, for generating in-
puts to the model using metamorphic testing and for detecting
postcondition violations, respectively.

As shown in Fig. 4, the model is tested until a user-specified
budget is depleted (line 1). In each iteration of this loop, the
test generator creates k model inputs that satisfy the given
precondition, if any (lines 3-11). Specifically, for every input
declaration, the test generator randomly selects an input from
a source specified in the imported files (line 4)—note that
import statements are not shown here but are defined on
line 5 of Fig. 2. In our evaluation, we have used both the
test set and the output of an off-the-shelf fuzzer [Eniser et al.,
2022] as such input sources. The metamorphic transformation
of an input can be performed through var declarations, which
are compiled into temporary variables in the harness (lines 5–
7). Before the test generator returns the k generated model
inputs, the specified precondition is checked; if it is violated,
the process repeats until it holds (lines 9–11).

Next, the block of Python code in the specification is
executed (lines 12–14), and finally the oracle component
checks the postcondition (lines 16–21). On line 21, the oracle
records each detected bug and processes it for subsequent de-
duplication. In particular, for each bug, the oracle hashes any
source of randomness in generating the model inputs (i.e., for
the example of Fig. 4, there is randomness on lines 4 and 6).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4751

1 while budget > 0:
2
3 # test generator
4 x1 = compas.randInput()
5 v1 = compas.getFeat(x1,1)
6 v2 = v1 + compas.randInt(1,10)
7 x2 = compas.setFeat(x1,1,v2)
8
9 if not(v2 <= 20):

10 compas.prec_viol += 1
11 continue

12 # code
13 d1 = compas.predict(x1)
14 d2 = compas.predict(x2)
15
16 # oracle
17 if d1 <= d2 :
18 compas.passed += 1
19 else:
20 compas.postc_viol += 1
21 compas.process_bug()
22 budget -= 1

Figure 4: Snippet of generated harness for the specification of Fig. 1a.

Two bugs are considered duplicate if their hashes match, that
is, if the generated model inputs are equivalent. Note that we
avoid comparing model inputs directly due to their potential
complexity, e.g., in the case of game states.

Our framework allows users to express specifications much
more concisely than if they were writing the test harnesses
themselves; for instance, for our case studies in several do-
mains, the test harnesses are between 5.2x and 6.3x larger
(counting non-whitespace characters) than the corresponding
NOMOS specifications.

4 Experimental Evaluation
So far, we have demonstrated the expressiveness of NOMOS
by specifying hyperproperties for models in diverse domains.
This section focuses on evaluating the effectiveness of our test-
ing framework in finding bugs. We describe the benchmarks,
experimental setup, and results. We also present a feasibility
study on how detected bugs can improve model training.

Benchmarks. We trained models using seven datasets from
five application domains as follows:

Tabular data. We used the COMPAS [Larson et al., 2016]
and GermanCredit [Hofmann, 1994] datasets; the latter
classifies people based on their credit risk. For the COM-
PAS dataset, we trained a fully connected neural network
(NN) with 3 hidden layers of size 12, 9, and 9 and ca.
1100 parameters as well as a decision tree (DT) with
max_depth = 8. For GermanCredit, we trained an NN
with 1 hidden layer of size 10 and ca. 1400 parameters
as well as a DT with max_depth = 6. For COMPAS,
we achieved 74% (NN) and 72% (DT) accuracy, and for
GermanCredit, 78% (NN) and 70% (DT). Note that, even
though we report accuracy here, the achieved score does
not necessarily affect whether a specified property holds,
i.e., a perfectly accurate model could violate the property,
whereas a less accurate model might not.

Images. Using the MNIST dataset [LeCun et al., 1999],
we trained a convolutional NN with LeNet-5 architec-
ture [LeCun et al., 1998] achieving 98% accuracy.

Speech. We pre-processed the SpeechCommand dataset [War-
den, 2018] to convert waveforms to spectrograms, show-
ing frequency changes over time. As these are typically
represented as 2D-images, we trained a convolutional
NN classifying spectrogram images; it consists of 2 con-
volutional layers with kernels (32x32x3) and (64x64x3)

as well as a fully connected layer of size 128, and has ca.
1.6M parameters. The model achieves 84% test accuracy.

Natural language. For the HotelReview dataset [Liu, 2017],
we used a pre-trained Universal Sentence Encoder
(USE) [Cer et al., 2018] to encode natural-language text
into high dimensional vectors. USE compresses any tex-
tual data into a vector of size 512 while preserving the
similarity between sentences. We trained a fully con-
nected NN with 2 hidden layers (256 and 128 neurons,
respectively), ca. 160K parameters, and an accuracy of
82% on the encoded hotel reviews.

Action policies. In LunarLander [Brockman et al., 2016],
touching a leg of the lander to the surface yields reward
+100, whereas touching the body yields −100; the best-
case reward is over 200. We trained an RL policy that
achieves an average reward of ca. 200. We also used
BipedalWalker, another popular Gym [Brockman et al.,
2016] environment where the aim is to train a bipedal
robot to walk until the end of a rough terrain. Moving
forward yields positive reward, totaling over 300 at the
end of the terrain; falling yields −100. We trained an RL
policy that achieves an average reward of ca. 300.

Experimental setup. For each of these models, we wrote
one or more NOMOS specifications to capture potentially de-
sired properties, for a total of 32 properties (see Appx. A for a
complete list).

Each test harness used a budget of 5000 (see line 1 of Fig. 4),
that is, it generated 5000 test cases satisfying the precondition,
if any. We ran each harness with 10 different random seeds
to account for randomness in the testing procedure. Here, we
report arithmetic means (e.g., for the number of bugs) unless
stated otherwise. In all harnesses except for LunarLander and
BipedalWalker, the input source (e.g., line 4 of Fig. 4) is the
test set. For LunarLander and BipedalWalker, the input source
is a pool of game states that was generated by π-fuzz [Eniser
et al., 2022] after fuzzing our policy for 2 hours.

We used a machine with a Quadro RTX 8000 GPU and an
Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz for training
models and running tests. Running 5000 tests takes a few
seconds for DTs. It takes longer for NNs (excluding action
policies), ranging from 5 to 20 minutes, depending on the
specification and dataset; note, however, that most of this time
is spent on querying the models, i.e., between 93% and 99% of
the testing time. For action policies, testing takes significantly
longer as the NN is called multiple times during a single test.
Specifically, it takes up to 2.5 hours for LunarLander and up

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4752

Properties UniqueDataset Model Specified Violated Bugs
COMPAS NN 12 7 960.0

DT 12 6 294.8
GermanCredit NN 10 6 295.2

DT 10 6 286.9
MNIST NN 1 1 15.6

SpeechCommand NN 1 1 14.2
HotelReview NN 4 4 3288.0
LunarLander NN 2 2 3459.0

BipedalWalker NN 2 2 443.5

Table 1: Number of specified properties, violated properties, and
unique bugs per dataset and model.

Unique BugsDataset Specification NN DT

COMPAS Felony Inc 42.9 3.5
Felony Dec 0.0 0.0
Misdmnr Inc 619.7 0.0
Misdmnr Dec 4.0 0.0
Priors Inc 0.5 90.0
Priors Dec 0.0 97.2
Others Inc 289.0 91.1
Others Dec 3.0 8.0
IsRecid Set 0.0 0.0
IsRecid Unset 0.0 0.0
IsVRecid Set 0.9 5.0
IsVRecid Unset 0.0 0.0

GermanCredit Crdt Amount Inc 0.0 122.3
Crdt Amount Dec 0.0 75.4
Crdt Hist Inc 78.1 8.0
Crdt Hist Dec 122.8 31.2
Empl Since Inc 13.5 9.1
Empl Since Dec 30.9 40.9
Install Rate Inc 0.0 0.0
Install Rate Dec 0.0 0.0
Job Inc 47.9 0.0
Job Dec 2.0 0.0

MNIST Blur 15.6 n/a
SpeechCommand WNoise 14.2 n/a

HotelReview Pos-Del 861.1 n/a
Pos-Add 876.1 n/a
Neg-Del 756.2 n/a
Neg-Add 794.6 n/a

LunarLander Relax 124.5 n/a
Unrelax 3334.5 n/a

BipedalWalker Relax 290.5 n/a
Unrelax 153.0 n/a

Table 2: Average number of unique bugs for each specification.

to 13 hours for BipedalWalker. The total amount of compute
for all experiments is ca. 1.5 day on the above machine.

Results. Tab. 1 gives an overview of the number of specified
properties, violated properties, and unique bugs per dataset
and model. Our framework was able to find violations for
all datasets, and in particular, for 26 of these properties—see
Tab. 2. Most violations were exhibited through tens or hun-
dreds of unique tests. This demonstrates that our framework
is effective in detecting bugs even with as few as 5000 tests
per property; in contrast, fuzzers for software systems often
generate millions of tests before uncovering a bug.

The average number of bugs per property varies signifi-
cantly depending on the property, model, and dataset (see
Tab. 2). For instance, for COMPAS, the average number of

Minimum-Bug Policy Maximum-Reward Policy
Normal Guided Normal Guided

Bugs Rew. Bugs Rew. Bugs Rew. Bugs Rew.

19 230.8 19 242.0 27 232.0 23 261.5
12 155.5 7 160.1 16 157.2 8 197.0
20 257.0 12 254.4 32 277.3 16 279.0
19 170.2 19 170.2 29 175.0 27 184.5
28 83.7 16 62.9 29 137.2 34 167.7
8 237.4 6 208.9 11 243.6 13 256.2

21 224.8 12 254.7 29 240.8 21 264.1
17 15.0 7 220.2 24 181.7 12 221.6
14 263.5 9 209.0 14 263.5 23 242.4
9 128.1 2 144.4 16 158.7 7 217.0

Table 3: Minimum-bug and maximum-reward policies generated
with normal and guided training.

bugs ranges from 0.5 to 619.7 when testing the NN classifier
against each of the twelve different properties.

There are six properties that were not violated by any model
trained on COMPAS and GermanCredit. For four of these,
we observed that the involved features almost never affect
the outcome of our models, thereby trivially satisfying the
properties. In the other cases, the training data seems to be
sufficient in ensuring that the properties hold for the models.
Feasibility study. Our results show that our framework is
effective in detecting property violations. But are these vi-
olations actionable? A natural next step is to use them for
repairing the model under test or incorporate them when train-
ing the model from scratch—much like adversarial neural
network training for robustness issues [Madry et al., 2018].
While a comprehensive exploration of such options is beyond
the scope of this work, we performed a feasibility study to
investigate whether the reported violations are actionable.

For this study, we selected LunarLander due to its higher
complexity. On a high level, we incorporated buggy game
states, i.e., ones that resulted in property violations, during
policy training. In particular, we adjusted the existing training
algorithm (PPO [Schulman et al., 2017] implemented in the
SB3 library [Raffin et al., 2019]) to start episodes not only
from random initial states, but also from buggy states. As
training progresses, our guided-training algorithm gradually
increases the probability of starting from buggy states. The
intuition behind this choice is to focus more on "ironing out"
bugs toward the end of the training, when the policy is already
able to achieve decent rewards.

Under the hood, our guided-training algorithm tests the
current policy at regular intervals (every 5 rollouts in our ex-
periments), essentially alternating between training and testing
phases. Any bugs found during the latest testing phase are
added to a pool of buggy states from which the algorithm
selects initial states during subsequent training phases. We
prioritize most recently detected buggy states, but we also
include older bugs to ensure the policy does not "forget".

For our experiments, we trained 10 policies with each train-
ing algorithm, i.e., normal and guided. Tab. 3 summarizes the
policies that were generated during these training runs—each
row corresponds to a training run, and for each run, we save
and test the current policy every 10K time steps. In the four
leftmost columns, we focus on policies with the fewest number
of bugs. The first two columns show the number of bugs and

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4753

Figure 5: Increase in reward and decrease in number of bugs over
time for normal and guided training.

reward for the minimum-bug policy generated during each of
the normal-training runs. Note that, for policies with the same
number of bugs during a run, we show the one with higher
reward. Similarly, the third and fourth columns show the same
data for guided training. In the four rightmost columns, we
focus on policies with the highest reward. Again, for policies
with the same reward, we show the one with fewer bugs.

Looking at the first and third columns of the table, no
normal-training run achieves fewer bugs than the correspond-
ing guided-training run, and guided training results in fewer
bugs in 8 out of 10 runs. Looking at the second and fourth
columns, guided training does not result in significantly lower
rewards for the minimum-bug policies; in 5 out of 10 runs,
guided minimum-bug policies surpass, in terms of reward, the
corresponding normal policies. In addition, when looking at
the fourth and sixth columns, 4 out of 10 guided minimum-bug
policies even surpass the normal maximum-reward policies.
Similarly, when considering the maximum-reward policies,
guided training results in higher rewards in 9 out of 10 runs;
in 7 runs, guided policies have fewer bugs; and 4 guided
maximum-reward policies have fewer bugs than the corre-
sponding normal minimum-bug policies.

Fig. 5 shows the increase in reward and decrease in number
of bugs over time both for normal and guided training. The
dark lines represent the mean values, and the lighter shaded
areas denote the 90% confidence interval; the ascending lines
represent reward over time, while the descending ones number
of bugs over time. As expected, we observe that, for guided
training, the number of bugs is consistently lower without
compromising on the achieved reward.

Overall, our experiments show that property violations can
be useful not only for assessing the quality of a model, but
also for training better models.

5 Related Work
Sousa and Dillig introduce Cartesian Hoare Logic for verifying
k-safety hyperproperties of programs [Sousa and Dillig, 2016].
It was later observed that hyperproperties can also be used

to specify ML models (e.g., [Seshia et al., 2018; Sharma and
Wehrheim, 2020]). However, no prior work has explored how
to specify general, user-provided k-safety properties for ML
models and how to leverage these specifications for automated
testing. In the following, we give an overview of existing
verification and testing techniques for ML models.
Verification. Numerous techniques verify specific
functional-correctness properties of models, such as ro-
bustness (e.g., [Huang et al., 2017; Gehr et al., 2018;
Singh et al., 2019; Berrada et al., 2021; Wang et al., 2021;
Yang et al., 2021; Li et al., 2020]), fairness (e.g.,
[Albarghouthi et al., 2017; Bastani et al., 2019;
Urban et al., 2020]), and others (e.g., [Katz et al., 2017;
Wang et al., 2018]). Here, we do not target verification of k-
safety properties, however in principle, NOMOS specifications
could be used to capture proof obligations for verifiers.
Testing. Testing ML models is extensively studied, includ-
ing techniques for testing fairness (e.g., [Udeshi et al., 2018;
Ma et al., 2020; Zhang et al., 2020]) and robustness (e.g.,
[Wicker et al., 2018; Sun et al., 2018; Usman et al., 2021]).
There is also work using metamorphic testing to find robust-
ness issues in specific domains, such as autonomous driv-
ing [Tian et al., 2018; Zhang et al., 2018], object detec-
tion [Zhou and Sun, 2019], and translation [He et al., 2020].

Beyond robustness and fairness, Sharma and
Wehrheim [Sharma and Wehrheim, 2020], introduce
verification-based testing of monotonicity in ML models. A
model is said to be monotone with respect to an input feature
if an increase in the feature implies an increase in the model’s
prediction, e.g., the higher the income, the larger the loan.
Deng et. al. also focus on specifying and testing monotonicity
properties in autonomous driving [Deng et al., 2021;
Deng et al., 2022]. Although certain popular robustness,
fairness, and monotonicity properties do constitute 2-safety
properties (e.g., slightly perturbing the pixels of an image
should not change its classification, or changing the race
of a criminal should not make them more or less likely to
re-offend), none of this work targets general hyperproperties.

In this paper, we use metamorphic testing to effectively and
efficiently find bugs in ML models, but the specific testing
technique is not the main contribution of our work. We de-
signed our framework to be modular such that its test generator
component may be instantiated with other techniques.

6 Conclusion and Outlook
We have presented the NOMOS language for specifying k-
safety properties of ML models and an automated testing
framework for detecting violations of such properties. NOMOS
is the first high-level specification language for expressing gen-
eral hyperproperties of models, subsuming more specific ones
such as robustness and fairness. It, therefore, naturally opens
up the possibility to apply other validation or verification tech-
niques for checking such properties. We have demonstrated
the wide applicability of such properties through case studies
from several domains and evaluated the effectiveness of our
framework in detecting property violations. Although users
could manually write test cases or a test harness for each de-
sired property, this would be tedious, repetitive, and easy to

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4754

get wrong; it would also be difficult to update and extend
properties if needed. In contrast, our NOMOS specifications
are concise and enable users to think about properties on a
higher level of abstraction.

There are several promising directions for future work. For
the ML community, model repair and guided training might
be the most interesting direction for building on NOMOS and
our testing framework. One way to think about specifications
is as a, possibly infinite, source of training examples. Our fea-
sibility study has already provided some empirical evidence
for how such examples can be incorporated in the training pro-
cess. However, more work is needed, and adversarial-training
techniques could be adapted to improve the effectiveness.

For the testing community, an interesting direction could be
to explore more effective input-generation techniques, such as
coverage-guided testing. This may reduce the testing time or
increase the number of bugs that can be found within a given
time budget. Such advances can be crucial for reducing the
testing overhead when performing guided training.

For the formal-methods community, a natural next step is
to build verification tools for certifying that a property holds
for all inputs. This could be particularly promising for models
used in safety-critical domains, such as autonomous driving.

We believe that NOMOS can bring these communities to-
gether to facilitate developing functionally correct models.

A Specifications
COMPAS|Felony Inc. If the number of committed felonies
for a criminal increases, then their recidivism risk should not
decrease.
COMPAS|Felony Dec. If the number of committed felonies
for a criminal decreases, then their recidivism risk should not
increase.
COMPAS|Misdmnr Inc. If the number of committed misde-
meanors for a criminal increases, then their recidivism risk
should not decrease.
COMPAS|Misdmnr Dec. If the number of committed misde-
meanors for a criminal decreases, then their recidivism risk
should not increase.
COMPAS|Priors Inc. If the number of priors for a criminal
increases, then their recidivism risk should not decrease.
COMPAS|Priors Dec. If the number of priors for a criminal
decreases, then their recidivism risk should not increase.
COMPAS|Others Inc. If the number of other crimes commit-
ted by a criminal increases, then their recidivism risk should
not decrease.
COMPAS|Others Dec. If the number of other crimes commit-
ted by a criminal decreases, then their recidivism risk should
not increase.
COMPAS|IsRecid Set. If a criminal becomes a recidivist,
then their recidivism risk should not decrease.
COMPAS|IsRecid Unset. If a criminal ceases to be a recidi-
vist, then their recidivism risk should not increase.
COMPAS|IsVRecid Set. If a criminal becomes a violent
recidivist, then their recidivism risk should not decrease.
COMPAS|IsVRecid Unset. If a criminal ceases to be a violent
recidivist, then their recidivism risk should not increase.

GermanCredit|Crdt Amount Inc. If the credit amount re-
quested by a person increases, then they should not be more
likely to receive it.
GermanCredit|Crdt Amount Dec. If the credit amount re-
quested by a person decreases, then they should not be less
likely to receive it.
GermanCredit|Crdt Hist Inc. If a person’s credit history
worsens, then they should not be more likely to receive credit.
GermanCredit|Crdt Hist Dec. If a person’s credit history
improves, then they should not be less likely to receive credit.
GermanCredit|Empl Since Inc. If a person’s employment
years increase, they should not be less likely to receive credit.
GermanCredit|Empl Since Dec. If a person’s employment
years decrease, they should not be more likely to receive credit.
GermanCredit|Install Rate Inc. If a person’s installment rate
(as a percentage of their disposable income) increases, then
they should not be more likely to receive credit.
GermanCredit|Install Rate Dec. If a person’s installment
rate (as a percentage of their disposable income) decreases,
then they should not be less likely to receive credit.
GermanCredit|Job Inc. If a person is promoted, then they
should not be less likely to receive credit.
GermanCredit|Job Dec. If a person is demoted, then they
should not be more likely to receive credit.
MNIST|Blur. If a blurred image is correctly classified, then
its unblurred version should also be correctly classified.
SpeechCommand|WNoise. If a speech command with white
noise is correctly classified, then its non-noisy version should
also be correctly classified.
HotelReview|Pos-Del. Deleting the positive comments of a
hotel review should not make it more positive.
HotelReview|Pos-Add. If more positive comments are added
to a hotel review, it should not become more negative.
HotelReview|Neg-Del. Deleting the negative comments of a
hotel review should not make it more negative.
HotelReview|Neg-Add. If more negative comments are added
to a hotel review, it should not become more positive.
LunarLander|Relax. If the lander lands successfully, then
decreasing the surface height (thus giving the lander more
time to land) should also result in landing successfully.
LunarLander|Unrelax. If the lander fails to land, then in-
creasing the surface height (thus giving the lander less time to
land) should also result in failing to land.
BipedalWalker|Relax. If the walker successfully reaches the
end of the terrain, then making the terrain smoother should
also result in successfully reaching the end.
BipedalWalker|Unrelax. If the walker fails to reach the end
of the terrain, then making the terrain rougher should also
result in failing to reach the end.

Ethical Statement
There are no ethical issues.

Acknowledgments
This work was supported by DFG grant 389792660 as part
of TRR 248 (see https://perspicuous-computing.science) and
Maria Christakis’ Google Research Scholar Award 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4755

https://perspicuous-computing.science

References
[Albarghouthi et al., 2017] Aws Albarghouthi, Loris

D’Antoni, Samuel Drews, and Aditya V. Nori. FairSquare:
Probabilistic verification of program fairness. PACMPL,
1:80:1–80:30, 2017.

[Bastani et al., 2019] Osbert Bastani, Xin Zhang, and Ar-
mando Solar-Lezama. Probabilistic verification of fairness
properties via concentration. PACMPL, 3:118:1–118:27,
2019.

[Berrada et al., 2021] Leonard Berrada, Sumanth Dathathri,
Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel,
Jonathan Uesato, Sven Gowal, and M. Pawan Kumar. Make
sure you’re unsure: A framework for verifying probabilistic
specifications. In NeurIPS, pages 11136–11147, 2021.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung, Lud-
wig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. CoRR,
abs/1606.01540, 2016.

[Carlini and Wagner, 2017] Nicholas Carlini and David A.
Wagner. Towards evaluating the robustness of neural net-
works. In S&P, pages 39–57. IEEE Computer Society,
2017.

[Cer et al., 2018] Daniel Cer, Yinfei Yang, Sheng-yi Kong,
Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Univer-
sal sentence encoder. CoRR, abs/1803.11175, 2018.

[Chen et al., 1998] Tsong Yueh Chen, S. C. Cheung, and Siu-
Ming Yiu. Metamorphic testing: A new approach for gener-
ating next test cases. Technical Report HKUST–CS98–01,
HKUST, 1998.

[Clarkson and Schneider, 2008] Michael R. Clarkson and
Fred B. Schneider. Hyperproperties. In CSF, pages 51–65.
IEEE Computer Society, 2008.

[Deng et al., 2021] Yao Deng, Guannan Lou, James Xi
Zheng, Tianyi Zhang, Miryung Kim, Huai Liu, Chen Wang,
and Tsong Yueh Chen. BMT: Behavior driven development-
based metamorphic testing for autonomous driving mod-
els. In MET@ICSE, pages 32–36. IEEE Computer Society,
2021.

[Deng et al., 2022] Yao Deng, Xi Zheng, Tianyi Zhang, Huai
Liu, Guannan Lou, Miryung Kim, and Tsong Yueh Chen. A
declarative metamorphic testing framework for autonomous
driving. TSE, pages 1–20, 2022.

[Dwarakanath et al., 2018] Anurag Dwarakanath, Manish
Ahuja, Samarth Sikand, Raghotham M. Rao, R. P. Ja-
gadeesh Chandra Bose, Neville Dubash, and Sanjay Podder.
Identifying implementation bugs in machine learning based
image classifiers using metamorphic testing. In ISSTA,
pages 118–128. ACM, 2018.

[Eniser et al., 2022] Hasan Ferit Eniser, Timo P. Gros,
Valentin Wüstholz, Jörg Hoffmann, and Maria Christakis.
Metamorphic relations via relaxations: An approach to
obtain oracles for action-policy testing. In ISSTA, pages
52–63. ACM, 2022.

[Galhotra et al., 2017] Sainyam Galhotra, Yuriy Brun, and
Alexandra Meliou. Fairness testing: Testing software for
discrimination. In ESEC/FSE, pages 498–510. ACM, 2017.

[Gehr et al., 2018] Timon Gehr, Matthew Mirman, Dana
Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin T. Vechev. AI2: Safety and robustness certification
of neural networks with abstract interpretation. In S&P,
pages 3–18. IEEE Computer Society, 2018.

[Goodfellow et al., 2015] Ian J. Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[He et al., 2020] Pinjia He, Clara Meister, and Zhendong Su.
Structure-invariant testing for machine translation. In ICSE,
pages 961–973. ACM, 2020.

[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for com-
puter programming. CACM, 12:576–580, 1969.

[Hofmann, 1994] Hans Hofmann. The German credit
dataset. https://archive.ics.uci.edu/ml/datasets/Statlog+
(German+Credit+Data), 1994. Accessed: 2023-04-28.

[Huang et al., 2017] Xiaowei Huang, Marta Kwiatkowska,
Sen Wang, and Min Wu. Safety verification of deep neural
networks. In CAV, volume 10426 of LNCS, pages 3–29.
Springer, 2017.

[Katz et al., 2017] Guy Katz, Clark W. Barrett, David L. Dill,
Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks.
In CAV, volume 10426 of LNCS, pages 97–117. Springer,
2017.

[Larson et al., 2016] Jeff Larson, Surya Mattu, Lauren Kirch-
ner, and Julia Angwin. How we analyzed the COMPAS
recidivism algorithm. https://www.propublica.org/article/
how-we-analyzed-the-compas-recidivism-algorithm, 2016.
Accessed: 2023-04-28.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua Ben-
gio, and Patrick Haffner. Gradient-based learning applied
to document recognition. In Proc. IEEE, pages 2278–2324.
IEEE Computer Society, 1998.

[LeCun et al., 1999] Yann LeCun, Corinna Cortes, and
Christopher J.C. Burges. The MNIST database of hand-
written digits. http://yann.lecun.com/exdb/mnist, 1999. Ac-
cessed: 2023-04-28.

[Li et al., 2020] Renjue Li, Jianlin Li, Cheng-Chao Huang,
Pengfei Yang, Xiaowei Huang, Lijun Zhang, Bai Xue, and
Holger Hermanns. PRODeep: A platform for robustness
verification of deep neural networks. In ESEC/FSE, pages
1630–1634. ACM, 2020.

[Liu, 2017] Jiashen Liu. 515K hotel reviews data in
Europe. https://www.kaggle.com/datasets/jiashenliu/
515k-hotel-reviews-data-in-europe, 2017. Accessed: 2023-
04-28.

[Ma et al., 2020] Pingchuan Ma, Shuai Wang, and Jin Liu.
Metamorphic testing and certified mitigation of fairness vi-
olations in NLP models. In IJCAI, pages 458–465. ijcai.org,
2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4756

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/datasets/jiashenliu/515k-hotel-reviews-data-in-europe
https://www.kaggle.com/datasets/jiashenliu/515k-hotel-reviews-data-in-europe

[Madry et al., 2018] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to
adversarial attacks. In ICLR. OpenReview.net, 2018.

[Meyer, 1992] Bertrand Meyer. Eiffel: The Language.
Prentice-Hall, 1992.

[Parr, 2013] Terence Parr. The Definitive ANTLR 4 Reference,
2nd Edition. O’Reilly Media, 2013.

[Raffin et al., 2019] Antonin Raffin, Ashley Hill, Maximil-
ian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3, 2019. https://github.com/
DLR-RM/stable-baselines3.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[Segura et al., 2016] Sergio Segura, Gordon Fraser, Ana B.
Sánchez, and Antonio Ruiz Cortés. A survey on metamor-
phic testing. TSE, 42:805–824, 2016.

[Seshia et al., 2018] Sanjit A. Seshia, Ankush Desai, Tom-
maso Dreossi, Daniel J. Fremont, Shromona Ghosh,
Edward Kim, Sumukh Shivakumar, Marcell Vazquez-
Chanlatte, and Xiangyu Yue. Formal specification for deep
neural networks. In ATVA, volume 11138 of LNCS, pages
20–34. Springer, 2018.

[Sharma and Wehrheim, 2020] Arnab Sharma and Heike
Wehrheim. Higher income, larger loan? Monotonicity
testing of machine learning models. In ISSTA, pages 200–
210. ACM, 2020.

[Singh et al., 2019] Gagandeep Singh, Timon Gehr, Markus
Püschel, and Martin T. Vechev. An abstract domain for
certifying neural networks. PACMPL, 3:41:1–41:30, 2019.

[Sousa and Dillig, 2016] Marcelo Sousa and Isil Dillig.
Cartesian Hoare logic for verifying k-safety properties. In
PLDI, pages 57–69. ACM, 2016.

[Sun et al., 2018] Youcheng Sun, Min Wu, Wenjie Ruan, Xi-
aowei Huang, Marta Kwiatkowska, and Daniel Kroening.
Concolic testing for deep neural networks. In ASE, pages
109–119. ACM, 2018.

[Tian et al., 2018] Yuchi Tian, Kexin Pei, Suman Jana, and
Baishakhi Ray. DeepTest: Automated testing of deep-
neural-network-driven autonomous cars. In ICSE, pages
303–314. ACM, 2018.

[Tian et al., 2020] Yuchi Tian, Ziyuan Zhong, Vicente Or-
donez, Gail E. Kaiser, and Baishakhi Ray. Testing DNN
image classifiers for confusion & bias errors. In ICSE,
pages 1122–1134. ACM, 2020.

[Tramèr et al., 2017] Florian Tramèr, Vaggelis Atlidakis,
Roxana Geambasu, Daniel J. Hsu, Jean-Pierre Hubaux,
Mathias Humbert, Ari Juels, and Huang Lin. FairTest:
Discovering unwarranted associations in data-driven ap-
plications. In EuroS&P, pages 401–416. IEEE Computer
Society, 2017.

[Udeshi et al., 2018] Sakshi Udeshi, Pryanshu Arora, and
Sudipta Chattopadhyay. Automated directed fairness test-
ing. In ASE, pages 98–108. ACM, 2018.

[Urban et al., 2020] Caterina Urban, Maria Christakis,
Valentin Wüstholz, and Fuyuan Zhang. Perfectly parallel
fairness certification of neural networks. PACMPL,
4:185:1–185:30, 2020.

[Usman et al., 2021] Muhammad Usman, Yannic Noller, Co-
rina S. Pasareanu, Youcheng Sun, and Divya Gopinath.
NEUROSPF: A tool for the symbolic analysis of neural
networks. In ICSE, pages 25–28. IEEE Computer Society,
2021.

[via Isotopic Replacement, 2022] Improving Machine Trans-
lation Systems via Isotopic Replacement. Sun, zeyu and
zhang, jie m. and xiong, yingfei and harman, mark and
papadakis, mike and zhang, lu. In ICSE, pages 1181–1192.
ACM, 2022.

[Wang and Su, 2020] Shuai Wang and Zhendong Su. Meta-
morphic object insertion for testing object detection sys-
tems. In ASE, pages 1053–1065. IEEE Computer Society,
2020.

[Wang et al., 2018] Shiqi Wang, Kexin Pei, Justin White-
house, Junfeng Yang, and Suman Jana. Formal security
analysis of neural networks using symbolic intervals. In
Security, pages 1599–1614. USENIX, 2018.

[Wang et al., 2021] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue
Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. Beta-
CROWN: Efficient bound propagation with per-neuron split
constraints for neural network robustness verification. In
NeurIPS, pages 29909–29921, 2021.

[Warden, 2018] Pete Warden. Speech commands: A
dataset for limited-vocabulary speech recognition. CoRR,
abs/1804.03209, 2018.

[Wicker et al., 2018] Matthew Wicker, Xiaowei Huang, and
Marta Kwiatkowska. Feature-guided black-box safety test-
ing of deep neural networks. In TACAS, volume 10805 of
LNCS, pages 408–426. Springer, 2018.

[Yang et al., 2021] Pengfei Yang, Renjue Li, Jianlin Li,
Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue,
and Lijun Zhang. Improving neural network verification
through spurious region guided refinement. In TACAS,
volume 12651 of LNCS, page 12651. Springer, 2021.

[Zhang et al., 2018] Mengshi Zhang, Yuqun Zhang, Ling-
ming Zhang, Cong Liu, and Sarfraz Khurshid. Deep-
Road: GAN-based metamorphic testing and input vali-
dation framework for autonomous driving systems. In ASE,
pages 132–142. ACM, 2018.

[Zhang et al., 2020] Peixin Zhang, Jingyi Wang, Jun Sun,
Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song
Dong, and Ting Dai. White-box fairness testing through
adversarial sampling. In ICSE, pages 949–960. ACM, 2020.

[Zhou and Sun, 2019] Zhi Quan Zhou and Liqun Sun. Meta-
morphic testing of driverless cars. CACM, 62:61–67, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4757

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	Introduction
	Nomos Specification Language
	Testing Framework for Nomos
	Experimental Evaluation
	Related Work
	Conclusion and Outlook
	Specifications

