
Relation-enhanced DETR for Component Detection
in Graphic Design Reverse Engineering

Xixuan Hao1∗ , Danqing Huang2 † , Jieru Lin3∗ and Chin-Yew Lin2

1The University of Hong Kong
2Microsoft Research

3Harbin Institute of Technology
hxxjxw@connect.hku.hk, {dahua, cyl}@microsoft.com, hitjierulin@gmail.com

Abstract
It is a common practice for designers to create digi-
tal prototypes from a mock-up/screenshot. Reverse
engineering graphic design by detecting its compo-
nents (e.g., text, icon, button) helps expedite this
process. This paper first conducts statistical anal-
ysis to emphasize the importance of relations in
graphic layouts, which further motivates us to in-
corporate relation modeling into component detec-
tion. Built on the current state-of-the-art DETR
(DEtection TRansformer), we introduce a learnable
relation matrix to model class correlations. Specifi-
cally, the matrix will be added to the DETR decoder
to update the query-to-query self-attention. Exper-
iment results on three public datasets show that our
approach achieves better performance than several
strong baselines. We further visualize the learned
relation matrix and observe some reasonable pat-
terns. Moreover, we show an application of com-
ponent detection where we leverage the detection
outputs as augmented training data for layout gen-
eration, which achieves promising results.

1 Introduction
Reverse engineering graphic design aims to detect the logical
components from a pixel-based design and parse its layout
structure. It plays an important role in design understand-
ing and can potentially enable many downstream applications
(e.g., digital prototyping from a mock-up artifact or screen-
shot). In Figure 1, we show some design examples anno-
tated with component classes and bounding boxes, including
mobile user interface (UI), poster and slide. As we can see,
the layouts are diverse and complex with many free-form and
overlapped components, thus bringing more challenges for
component detection.

One major characteristic across different types of design is
that objects usually follow certain relation patterns. For ex-
ample in mobile UI, Icon is often created inside ToolBar
as a navigation widget on top of the interface. As another ex-
ample, freeform objects in a slide are usually clustered in
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Figure 1: Graphic design examples including (a) mobile UI from
RICO; (b) posters from Crello; (c) slides from InfoPPT.

a small region to form a meaningful shape. To better quantify
this characteristic, we conduct a statistical analysis of rela-
tions in graphic layouts with some interesting findings.

Recently MagicLayout [Manandhar et al., 2021] is an
initial attempt to incorporate co-occurrence relations into
UI component detection. It statistically calculates a co-
occurrence matrix between object classes in the corpus and
incorporates it as a fixed weight into Faster-RCNN [Ren et
al., 2015] to enhance the proposal features. Although Magi-
cLayout has shown the effectiveness of the co-occurrence re-
lation, its matrix is only calculated once as a prior and fixed
during the training process, which might not be flexible for
model learning. Moreover, the relation is constrained to co-
occurrence while other types of relations (e.g., spatial over-
lap) [Jiang et al., 2018] could also be useful in capturing com-
plex interactions between objects in graphic layouts.

In this paper, we explore a more flexible solution of relation
modeling for component detection. We build our method on
the current state-of-the-art detection framework DETR [Car-
ion et al., 2020]. DETR is an end-to-end pipeline which uses
a sparse set of learnable object queries as input to a Trans-
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former encoder-decoder. In the decoder, queries will inter-
act with each other (self-attention) and attend to relevant re-
gions of the image (cross-attention). Specifically, we propose
a learnable relation matrix for capturing class-to-class corre-
lations. For each query pair, we retrieve the corresponding
weight from the relation matrix using their predicted class in-
dexes from the previous decoder layer. This relation weight
will then be added to the self-attention weight to update
query-to-query interactions.

We conduct experiments on three publicly-available
graphic design datasets, including RICO [Deka et al., 2017]
(mobile UI), Crello [Yamaguchi, 2021] (posters) and In-
foPPT [Shi et al., 2022] (slides). Experiment results show
that such simple relation modeling works surprisingly well
and achieves better performance than several strong base-
lines. Through matrix visualization and case studies, we can
observe that the relation matrix has captured certain reason-
able correlations between class pairs. Furthermore, we show
a potential application of layout generation using the compo-
nent detection outputs as augmented training data and achieve
promising results.

To summarize, the main contributions of this paper are:

• We conduct an in-depth analysis of relations in graphic
design layouts to emphasize their importance.

• We propose a simple but effective relation-enhanced
self-attention based on the strong object detector DETR,
and achieve currently the best performance on three
datasets.

• We explore an application of leveraging component de-
tection outputs as augmented training data in layout gen-
eration, which shows promising results.

2 Related Work
2.1 Component Detection in Graphic Design
Traditional approaches aggregate edge or contour features
with heuristic rules to recover the interface structure [Yeh et
al., 2009; Nguyen and Csallner, 2015; Dixon and Fogarty,
2010]. For example, REMAUI [Nguyen and Csallner, 2015]
combines the OCR outputs of text boxes and the detected
edges of elements to infer the final components on a design
using simple merging algorithms. In recent years, as neural
detection networks such as Faster RCNN [Ren et al., 2015]
and Mask RCNN [He et al., 2017] have shown great perfor-
mance across different domains, many works directly adopt
these detection models for GUI component detection [Moran
et al., 2018]. Some methods further incorporate specific fea-
tures in graphic design. E3Nets [Ma et al., 2021] embeds
edge features along with the RGB channels to train a seg-
mentation model, as edges provide useful information of the
object skeleton. The most closely related research to this pa-
per is MagicLayout [Manandhar et al., 2021], which exploits
common spatial relationships of components in UI layouts. It
pre-calculates a co-occurrence matrix between object classes
in the corpus and uses this fixed matrix as prior to update
the proposal features in Faster RCNN. In this paper, we ex-
plore a more flexible solution of relation modeling and will

show that our proposed learnable matrix can capture reason-
able patterns.

Meanwhile, document layout analysis is a highly relevant
task of identifying regions of interest in the scanned image
of a document. It mainly focuses on textual documents such
as forms [Harley et al., 2015] and scientific articles [Zhong
et al., 2019], where text blocks are dominant and layouts are
mostly simple rectangle grids. Detailed related works can
be referred to [Binmakhashen and Mahmoud, 2019]. Being
compared, graphic design layouts have more complex vari-
ations with free-form and overlapping objects, which makes
its component detection more challenging.

2.2 Object Detection
Previous works on graphic design component detection
mainly view it as a detection task. At the present stage, most
object detection methods [Girshick, 2015; Ren et al., 2015;
He et al., 2015; Lin et al., 2017; Wang et al., 2022a]
are known as anchor-based, which rely on numerous hand-
crafted target assignments and non-maximum suppression
post-processing, and thus are not fully end-to-end trainable
and hard for parameter tuning.

DETR and its variants Recently DETR [Carion et al.,
2020] has been proposed as a new paradigm for object detec-
tion which achieves promising results. It employs a Trans-
former architecture and replaces hand-crafted components
with a set-based global loss. As DETR has suffered from
slow and unstable convergence during training, many follow-
ing works [Zhu et al., 2021; Liu et al., 2022; Yao et al., 2021;
Meng et al., 2021; Wang et al., 2022b; Zhang et al., 2022;
Gao et al., 2021] have been proposed to eliminate the issues.
For example, Deformable DETR [Zhu et al., 2021] designs
multi-scale deformable attention to only focus on a small set
of relevant regions. DAB-DETR [Liu et al., 2022] explic-
itly assigns 4D box coordinates to queries as positional prior
which obtain faster convergence.

Relation Modeling There are many pioneering works that
have already verified the effectiveness of modeling relations
in object detection [Jiang et al., 2018; Chen et al., 2019;
Xu et al., 2019; Zhao et al., 2021; Bi et al., 2022; Manandhar
et al., 2021]. Relations used in previous works can be mainly
categorized into three types: (1) co-occurrence between ob-
ject classes. For example, [Chen et al., 2019] uses condi-
tional probabilities to represent co-occurrence; MagicLayout
aggregates co-occurrence frequencies of objects in different
regions; (2) spatial relation computes relative positions be-
tween objects. [Zhao et al., 2021] use self-attention to build
position-wise spatial relation. SRRV [Bi et al., 2022] sim-
ply uses the distance between region proposals and achieves
great performance improvement; (3) learnable relation intro-
duces more model capacities. For example, SGRN [Xu et
al., 2019] defines a sparse graph where the edge weights are
tuned during training. In this paper, we follow the direction of
learnable relation modeling which is more flexible with less
human priors.

3 Methodology
In this section, we first conduct an analysis to emphasize
the importance of relations in graphic design layouts. Then
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we revisit the DETR architecture and propose our relation-
enhanced attention mechanism.

3.1 Relations in Graphic Design Layouts
Relations between objects play quite an important role in
graphic design layouts. For example in Figure 2, the combi-
nation of Toolbar and Icon (highlighted in red bold edge)
exists in all three interfaces, as they compose a navigation
widget which has a high frequency of co-occurring in the up-
per region.

To better quantify this characteristic, we measure the cor-
relation degree of class pairs at corpus-level using Pointwise
Mutual Information (PMI):

PMI(cx, cy) = log
P (cx, cy)

P (cx)P (cy)
(1)

where P (cx, cy) denotes the probability of class cx and cy
co-occurring in a layout. PMI = 0 indicates statistically in-
dependent between two classes, while a larger PMI value in-
dicates a higher positive correlation.

We use the mobile UI dataset RICO for analysis and show
its PMI distribution in Figure 3(a) by enumerating all pos-
sible class pairs. As for comparison, we also compute the
PMI on the natural image dataset COCO [Lin et al., 2014]
(Figure 3(b)). In our measurement, there are approximate
93% class pairs in RICO with PMI values larger than 0, and
the distribution is negatively-skewed indicating the majority
of class pairs have high positive correlations. While being
compared, there are only 62% frequently co-occurred pairs
in COCO and the PMI values are evenly distributed. Based
on this statistic, we can observe different characteristics be-
tween natural image and graphic design layouts, where the
latter contains more highly correlated class pairs.

Figure 2: Examples of mobile UIs. Toolbar and Icon are com-
bined as a navigation widget and have a high co-occurrence proba-
bility (highlighted in red bold edge).

3.2 Revisit DETR
Since our method is built on the current state-of-the-art detec-
tion model DETR, here we briefly introduce its architecture
as shown in Figure 4. It contains a CNN backbone, a Trans-
former encoder-decoder, and two prediction heads to predict
object classes and bounding boxes. For an input image of
(H,W, 3),

Figure 3: PMI distribution of class pairs in (a) RICO and (b) COCO.
The distribution in RICO is negatively-skewed, indicating more pos-
itive correlated class pairs in RICO.

• The CNN backbone extracts image features and pro-
duces a feature map of (H32 ,

W
32 , C). C is the output chan-

nel size.

• The encoder takes in the summation of the flattened fea-
ture map and the positional embedding, then outputs the
encoded image feature of (H32 ,

W
32 , C).

• The decoder inputs a set of learnable object queries
(N,C) and updates the queries with self-attention
(query-to-query) and cross-attention (query-to-image).

• For each query, two prediction heads predict the class
probabilities (N,Nc) and bounding boxes (N, 4) re-
spectively. Nc is the number of classes.

DETR Variants As mentioned in Section 2, there are
many following works trying to resolve the issues of slow
convergence and unstable training in DETR. For example,
Conditional DETR [Meng et al., 2021] projects the object
queries of (N,C) to 2D reference points of (N, 2). Simi-
larly, DAB-DETR [Liu et al., 2022] uses anchors of (N, 4) as
queries. Our proposed relation-enhanced attention in the next
subsection can be generally added to most of the DETR vari-
ants. For experiments, we verify our method’s effectiveness
using the two DETR variants mentioned above.

3.3 Relation-enhanced Attention in DETR
Based on the relation analysis in Section 3.1, we propose a
relation-enhanced attention mechanism in the DETR decoder
(Figure 5).

Specifically, we initiate a learnable class-to-class matrix
A ∈ Nc × Nc for modeling correlations between classes in
graphic design layouts. The self-attention in the L-th de-
coder layer is enhanced with an query-query relation weight
R ∈ Nq ×Nq:

eij =
(Wqhi)(Wkhj)√

dk
+Rij (2)

aij = softmax(eij) (3)
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Figure 4: DETR Pipeline + Learnable Relation Matrix. It consists of a CNN backbone to extract image features, a Transformer encoder-
decoder for query-image interaction, and two heads for class and bounding box prediction. We propose a learnable relation matrix as an
additional input to the decoder for modeling class correlations.

Figure 5: Transformer decoder with relation-enhanced self-attention. In each layer, we obtain the query-to-query relation weight R by
retrieving corresponding values from the learnable relation matrix A using the predicted class indexes from the previous layer. We add R to
the self-attention weight for updating query-to-query interaction.

where hi is the hidden state of the i-th object query, Wq,Wk

are weights of the learned linear projections for query and
key in self-attention, dk denotes the hidden size of Wqhi, and
aij defines the probability distribution of attention over the
queries which are computed from the un-normalized attention
scores eij .

To obtain Rij , we use the class predictions from the pre-
vious (L − 1)-th layer as indexes to retrieve corresponding
value from matrix A:

Rij = A[cL−1
i , cL−1

j ] (4)

cL−1
i = one-hot(argmax{softmax(Wch

L−1
i )}) (5)

where cL−1
i is the predicted class of the i-th query with max-

imum probability in the previous layer, and Wc is the weight
of the class prediction head.

Since the one-hot assignment operation via argmax is
non-differentiable, we instead use Gumbel-Softmax [Jang
et al., 2016] for sampling from class distribution:

cL−1
i [t] =

exp(Wch
L−1
i [t] + γt)∑Nc

k=1 exp(Wch
L−1
i [k] + γk)

(6)

where {γ} of classes {0, . . . , k, . . . , Nc} are i.i.d random
samples drawn from the Gumbel(0, 1) distribution. We
apply the straight-through trick in [van den Oord et al., 2017]
to compute the class assignment as

ĉL−1
i = one-hot(argmax(cL−1

i ))+cL−1
i −sg(cL−1

i ) (7)

where sg is the stop gradient operator. With the straight-
through trick, ĉL−1

i has the one-hot value of assignment to
a single class, and its gradient is equal to the one of cL−1

i ,
which makes the relation-enhanced self-attention differen-
tiable and end-to-end trainable.

4 Experiments
4.1 Experiment Settings
Here we introduce the datasets, baselines and evaluation met-
rics used in our experiments.

Datasets. We consider three publicly-available graphic de-
sign datasets: RICO, Crello and InfoPPT1. (1) RICO [Deka

1We do not consider DrawnUI [Ionescu et al., 2020] since it is
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Methods AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl

Faster RCNN [Ren et al., 2015] 50.0 58.7 53.1 6.8 27.7 50.6 42.3 61.4 63.0 9.4 35.9 63.4

Faster RCNN + SGRN [Xu et al., 2019] 50.7 59.2 53.7 7.5 28.4 51.2 42.5 61.6 63.2 10.1 36.1 63.4

Faster RCNN + Magiclayout [Manandhar et al., 2021] 51.0 59.4 54.0 7.7 28.7 51.5 42.8 61.8 63.4 10.4 36.1 63.6

Conditional-DETR [Meng et al., 2021] 51.1 58.3 53.5 2.3 22.3 52.2 43.6 66.3 68.9 5.3 35.9 70.0

Conditional-DETR + SGRN 52.5 59.8 55.0 2.4 21.7 53.5 44.3 67.4 70.1 5.2 35.4 71.1

Conditional-DETR + MagicLayout 52.6 60.2 55.0 2.5 21.8 53.9 44.2 67.4 70.1 5.5 35.7 71.5

Conditional-DETR + relation (ours) 53.1 60.2 55.4 2.6 22.9 54.4 44.0 67.2 69.8 5.6 36.4 71.1

DAB-DETR [Liu et al., 2022] 55.3 62.7 57.7 2.7 25 56.8 46.7 72.7 76.6 7.8 42 78.4

DAB-DETR + SGRN 55.5 63.3 58.3 3.0 24.8 57.1 47.2 73.3 77.2 7.6 41.0 79.1

DAB-DETR + Magiclayout 55.7 63.3 58.4 3.3 25 57.2 47.3 73.8 77.7 8.1 42.6 79.6

DAB-DETR + relation (ours) 57.6 64.9 59.9 3.1 26.1 59.2 47.4 74.6 78.5 8.5 43.2 80.2

Table 1: Performance comparison on RICO dataset.

Methods AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl

Faster RCNN 63.8 79.7 69.0 21.9 42.2 67.2 50.0 73.8 74.8 29.4 48.4 78.3

Faster RCNN + SGRN 64.3 80.1 69.5 23.1 42.5 67.5 50.2 74.1 75.0 31.7 48.2 78.5

Faster RCNN + Magiclayout 64.2 80.1 69.1 22.0 42.0 67.3 50.1 73.9 74.9 31.6 48.3 78.5

Conditional-DETR 70.7 84.7 73.0 22.1 37.8 75.8 53.5 81.0 84.3 50.2 58.0 88.8

Conditional-DETR + SGRN 70.9 85.0 73.6 28.9 38.7 76.2 53.4 80.9 84.4 52.0 57.1 89.0

Conditional-DETR + MagicLayout 70.7 85.0 73.2 22.9 37.3 76.0 53.4 80.9 84.2 47.0 59.8 88.9

Conditional-DETR + relation (ours) 71.2 85.5 73.4 17.5 38.4 76.8 53.3 81.2 84.5 47.6 59.0 89.2

DAB-DETR 71.0 85.7 73.6 24.3 42.0 76.3 53.3 81.4 85.3 49.2 62.2 89.6

DAB-DETR + SGRN 71.2 85.8 73.4 29.9 41.5 76.4 53.4 81.4 85.3 59.0 60.6 89.7

DAB-DETR + Magiclayout 71.4 85.8 74.0 24.2 41.8 76.7 53.5 81.7 85.4 52.2 59.6 89.8

DAB-DETR + relation (ours) 72.5 86.3 74.8 25.9 43.9 77.6 53.8 82.5 86.2 52.8 62.1 90.6

Table 2: Performance comparison on Crello dataset.

et al., 2017] consists of approximately 70k unique UI screen-
shots from more than 9.3k Android mobile apps. We use
its simplified annotations [Manandhar et al., 2020] of 25
UI component classes with in total of 65K images. (2)
Crello [Yamaguchi, 2021] contains 23k images with 5 cate-
gories, covering a wide range of designs such as social media
posts, banner ads and posters collected from crello.com. (3)
InfoPPT [Shi et al., 2022] contains 23k information presen-
tations collected from public websites. We parse the slides
(.pptx) to obtain object annotations and then convert image
inputs.

Baselines. We consider two detection backbones: Faster
RCNN and DETRs (conditional DETR and DAB-DETR).
Two baselines are applied to the detection framework: (1)
SGRN [Xu et al., 2019] is a graph-based feature fusion
method by learning a relational graph between region pro-
posals in Faster RCNN; (2) MagicLayout [Manandhar et
al., 2021] uses a pre-computed class co-occurrence matrix
to update proposal features in Faster RCNN. When they are
adapted to DETRs, we use their matrices to update the object
queries similar to the region proposals in Faster RCNN.

Evaluation Metrics. Following MagicLayout, we use the
standard metrics from COCO detection evaluation criteria
[Lin et al., 2014]: mean Average Precision (mAP) across dif-
ferent IoU thresholds (IoU= 0.5:0.95, 0.5, 0.75) and scales
(small, medium, large). We also report Average Recall (AR)
with different numbers of detection (1, 10, 100) and scales.

not currently available.

4.2 Implementation Details
We use open-source implementations of Faster-RCNN 2,
Conditional DETR3 and DAB-DETR4. Models are initialized
using parameters pretrained on COCO. We run all the models
on 8 Tesla V100 GPUs with batch size 8 for 40 epochs and
AdamW [Loshchilov and Hutter, 2017] is used for training
with weight decay 10−4. We set different learning rates for
backbone and other modules to 10−5 and 10−4 respectively.
CosineAnnealing optimizer is used with Tmax of 40 and de-
cays it by a factor of 0.05 by the end of training. During
training, images are resized such that the short side is at least
480 and at most 800 pixels and the long size is at most 1333
pixels.

4.3 Overall Results
We show the overall results in Table 1 (RICO), Table 2
(Crello) and Table 3 (InfoPPT) respectively. As we can see,
DETR-based models (Conditional DETR and DAB-DETR)
generally outperform Faster RCNN by a large margin. Ex-
cept that in RICO, DETRs have lower accuracy in terms of
APs, APm and ARs. We argue that as RICO has much more
classes and larger size variation of objects, Faster RCNN with
multi-scale features would handle some specific classes bet-
ter. Furthermore, our relation-enhanced attention mechanism

2https://github.com/open-mmlab/mmdetection
3https://github.com/Atten4Vis/ConditionalDETR
4https://github.com/IDEA-Research/DAB-DETR
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Methods AP AP50 AP75 APs APm APl AR1 AR10 AR100 ARs ARm ARl

Faster RCNN 67.4 82.8 75.2 50.1 64.6 70.4 32.5 71.2 74.2 54.6 71.0 78.5

Faster RCNN + SGRN 67.6 83.1 75.6 52.2 65.7 70.6 32.6 71.5 74.4 55.9 71.6 78.5

Faster RCNN + Magiclayout 67.9 83.5 75.8 52.9 65.7 70.9 32.7 71.4 74.6 55.8 71.3 78.6

Conditional-DETR 67.1 85.5 74.5 58.1 65.8 73.6 32.7 74.2 79.9 68.0 78.2 87.5

Conditional-DETR + SGRN 67.7 86.2 75.1 58.1 66.4 74.6 32.8 74.6 80.2 68.5 79.4 87.7

Conditional-DETR + MagicLayout 68.0 86.6 75.2 60.6 65.6 74.6 32.4 75.1 80.7 70.6 79.6 87.8

Conditional-DETR + relation (ours) 69.1 87.1 77.0 60.2 66.9 75.7 32.8 75.6 81.2 68.6 79.6 88.5

DAB-DETR 68.7 86.8 76.4 57.6 66.7 75.0 32.8 76.0 82.4 70.7 81.1 89.5

DAB-DETR + SGRN 68.9 86.9 76.6 60.9 68.4 74.8 32.2 76.3 82.7 73.8 82.1 89.6

DAB-DETR + Magiclayout 69.4 87.5 77.3 61.8 68.1 75.5 32.9 76.2 82.5 73.4 81.2 89.6

DAB-DETR + relation (ours) 71.2 88.4 78.7 63.8 70.0 77.3 33.4 77.2 83.6 76.1 82.4 90.1

Table 3: Performance comparison on InfoPPT dataset.

has boosted the performance in both DETR variants and ob-
tained better results than SGRN and MagicLayout. For ex-
ample, under the setting of DAB-DETR, the mAP has been
improved from 55.3% to 57.6% on RICO, achieving state-of-
the-art performance. Similar gains can be observed in Crello
(+1.5%) and InfoPPT (+2.5%).

4.4 Qualitative Results
Here we show some predicted results in Figure 6 on RICO.
We keep all the detected objects with confidence scores larger
than 0.6. With the use of relation matrix, our model outputs
objects with generally higher confidence and more reason-
able bounding boxes. For example, our model successfully
detects all the Text objects with confidence over 0.96 in Fig-
ure 6(a). Also, our model can correctly recognize objects that
are missed by the baseline DAB-DETR, such as the two white
TextButton in Figure 6(b). For the above analysis, we use
the DAB-DETR setting on RICO.

4.5 Matrix Visualization
To better understand what the relation matrix has learned,
we further visualize the relation matrix heatmap in Figure
7(a). We only highlight the top-5 frequent classes in each
row for better viewing. The diagonal of the matrix has
the largest weight, which indicates that each class pays the
most attention to its own. We can also observe high correla-
tions between some class pairs in the learned matrix, such as
<Toolbar, Icon>, <Input, TextButton>. As an ex-
ample shown in Figure 7(b), the baseline DAB-DETR failed
to detect a TextButton object (“SIGN IN” button in blue)
while our relation-enhanced model can correctly identify the
object with the surrounding context of Input. This demon-
strates that our relation matrix has captured useful contextual
information between class pairs for better detection accuracy.

4.6 Relation Type Ablation
To verify the effectiveness of the learnable relation, we
experiment with different types of relations into the self-
attention, including (1) class co-occurrence: we use the same
pre-computed co-occurrence matrix as in MagicLayout; (2)
spatial distance: center-point distance between two object
queries using their predicted bounding boxes from previous
decoder layer. As shown in Table 4, there is a relatively small

improvement using the relation of class co-occurrence and
spatial distance. We argue that the learnable matrix can pro-
vide more capacities for capturing relevant information and
therefore shows more performance gain than the other two
types of relations. Due to the space limitation, more ablation
studies will be provided in the Supplementary.

Relation Type AP AP50 AR1 AR10

None 55.3 62.7 46.7 72.7
Class Co-occurrence 55.9 63.6 47.2 73.4
Spatial Distance 55.5 63.6 46.7 72.7
Learnable 57.6 64.9 47.4 74.6

Table 4: Ablation of different relation types used in the decoder.

4.7 Data Augmentation for Layout Generation
Here we show a potential usage of component detection,
which uses the detection outputs as augmented training data
for graphic layout generation. This task aims to synthesize a
set of diverse and realistic layouts. Assuming that we only
have a small amount of labeling data, this experiment verifies
if the detection outputs can be used as high-quality training
data to improve the layout generation results. In our setting,
we sample 500 layouts as the initial set and increasingly add
percentages of detection outputs (in total 2k layouts) to train
the layout generator. We use the state-of-the-art model Lay-
outTransformer [Gupta et al., 2021] for generation. Three
commonly-used evaluation metrics are reported: FID, Over-
lap and Alignment. As shown in Table 5, the generation per-
formance gets steadily boosted with increasing amounts of
augmented data, which indicates the high quality of our de-
tection outputs. We expect better and more stable results will
be obtained with a larger scale of data, which could be possi-
bly collected by parsing layouts from numerous pixel-based
designs available online.

Due to the space limitation, we show more analysis and
case studies in the Supplementary.

5 Conclusion
In this paper, we study the problem of component detection in
reverse engineering graphic design. We conduct a statistical
analysis to demonstrate the importance of relations in graphic
layouts. Built on the strong detector DETR, we present
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Figure 6: Examples of predictions from DAB-DETR (baseline) and our proposed relation-enhanced DAB-DETR (ours), as well as the ground
truth (gt) on RICO. Our method can detect more accurately than the baseline. Zoom-in for better view.

Figure 7: (a) relation matrix visualization. (b) detection examples from DAB-DETR (baseline), our model (ours) and ground truth (gt).
Zoom-in for better view.

Training data FID↓ Overlap Align

RICO-500 37.16 122.22 0.16
+ 10% aug data 34.27 98.26 0.15
+ 50% aug data 32.54 94.90 0.16
+ 100% aug data 39.50 90.17 0.15

Real data 4.26 48.43 0.20

Table 5: Layout generation results with augmented training data
from detection outputs. For the metric Align and Overlap, closer
the values to real data (last row), better is the performance. Gener-
ated examples will be shown in the Supplementary.

a relation-enhanced self-attention mechanism in DETR de-
coder for better interactions between object queries. Our
method has achieved the best results on three public datasets.
Moreover, we leverage the detection outputs as augmented
data to improve the layout generation performance. In the fu-
ture, we plan to explore better solutions to handle the overlap-
ping objects which are not solved well by the current model.
Also we will try to use component detection to enable more
applications in graphic design intelligence.
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