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Abstract
Snapshot observation based source localization has
been widely studied due to its accessibility and low
cost. However, the interaction of users in exist-
ing methods does not be addressed in time-varying
infection scenarios. So these methods have a de-
creased accuracy in heterogeneous interaction sce-
narios. To solve this critical issue, this paper pro-
poses a sequence-to-sequence based localization
framework called Temporal-sequence based Graph
Attention Source Identification (TGASI) based on
an inductive learning idea. More specifically, the
encoder focuses on generating multiple features by
estimating the influence probability between two
users, and the decoder distinguishes the importance
of prediction sources in different timestamps by a
designed temporal attention mechanism. It’s worth
mentioning that the inductive learning idea ensures
that TGASI can detect the sources in new scenar-
ios without knowing other prior knowledge, which
proves the scalability of TGASI. Comprehensive
experiments with the SOTA methods demonstrate
the higher detection performance and scalability in
different scenarios of TGASI.

1 Introduction
Numerous studies have demonstrated that rumors spread
quickly in social networks [Qian et al., 2018; Wang et al.,
2022b], which could be extremely harmful to society. The
issues of automatically resisting rumors, i.e., content-based
rumor identification and rumor source identification, have
garnered much attention in recent years [Dong et al., 2019;
Jin et al., 2017; Song et al., 2021; Lao et al., 2021; Yang
et al., 2021; Khoo et al., 2020]. However, it is still difficult
to effectively cut off and control the propagation of rumors in
social networks if only to identify the fake news instead of lo-
cating the rumor sources. Therefore, more and more studies
focus on the problem of rumor source identification in social
networks based on the network structure [Jiang et al., 2016;
Jin and Wu, 2021].

The corresponding methods of rumor source identification
are classified into two types, including infection-status-based
methods and sensor-based methods [Dong et al., 2019]. In
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Figure 1: The illustration of the multiple rumor source detection
problem under available snapshots with discrete timestamps. Due
to the constraints of time and space consumption, the timestamps of
snapshots we can capture are limited and discrete.

practice, the sensors sometimes cannot be presciently de-
ployed in the break area in advance, and the sensor deploy-
ment process requires time and space overhead [Paluch et al.,
2020]. In contrast, the infection-status-based methods have
broader application scenarios because the snapshots are eas-
ier to obtain in practice [Diepold et al., 2022].

However, most of the infection-status-based methods, e.g.,
IVGD [Wang et al., 2022a], SL VAE [Ling et al., 2022], as-
sume that the attributes of all individuals (e.g., the infection
probability or influence intensity) in a network is known in
advance. Obviously, it is difficult to obtain such information
in practice due to the huge labor and statistical costs. Al-
though the SOTA methods, e.g., GCNSI [Dong et al., 2019]
and GCSSI [Dong et al., 2022], try to identify the rumor
sources without using the information of the underlying prop-
agation model, they do not explicitly consider the user’s inter-
active behavior when several time-varying snapshots are con-
veniently available. Therefore, the lack of essential behavior
representation results in the limited performance of current
localization methods in the complicated social network. Be-
sides, the scalability of the model reflects the extensive appli-
cation and robustness in practice [Agarwal et al., 2021]. But
the source localization methods so far have not considered the
transfer performance of the model in new scenarios (differ-
ent propagation models or different social networks, denoted
as inductive learning [Michalski, 1983]). In summary, there
is no sequence based inductive localization model for time-
varying snapshots to consider the impact of user’s behavior
features on propagation.

In this paper, we study the multiple rumor source detec-
tion (MRSD) problem and focus on addressing the above
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issues. Our goal is to design a generic source localization
framework with transferability, especially can analyze the
behavior diversity in time-varying infection scenarios. In
practice, there should be a potentially heterogeneous influ-
ence between any two users in a social network no matter
what the complex propagation models are. And such the
corresponding influence can be evaluated from a collection
of available snapshots with time-varying infection charac-
teristics in discontinuous timestamps. So we can infer the
sources by using these available captured snapshots. Such
a problem is presented in Fig. 1. To this end, considering
the excellent embedding ability of Graph Neural Network
(GNN) [Welling and Kipf, 2016] for node attributes (or node
features) and the outstanding modeling ability of the Gate
Recurrent Unit (GRU) [Chung et al., 2014] for time series
data, we propose a novel sequence-to-sequence model called
Temporal-sequence based Graph Attention Source Identifi-
cation (TGASI). The input is a set of infection snapshots at
available timestamps in a social network, and the output is a
set of predicted sources. The TGASI model includes a GNN-
based encoder to generate and aggregate the low-dimensional
feature embedding of each individual, and a GRU-based de-
coder to infer the source with a temporal attention mecha-
nism. The major contributions of TGASI are as follows.

• A generic sequence-to-sequence framework with trans-
ferability is designed for source localization, enabling
TGASI to transfer to new diffusion models and social
networks for source prediction without knowing other
prior knowledge. And a unique loss function is de-
signed to further enhance the performance of TGASI
in the source localization task. Code is available at
https://github.com/cgao-comp/TGASI.

• We design a deep module based on the stationary distri-
bution of a Markov chain to learn the user’s probability
transition matrix in order to differentiate the user behav-
ior diversity and consider the influence of heterogenous
behavior on propagation. Then a high quality represen-
tation of the interactive behavior embedding is obtained.

• We design the dynamic infection features and static
topology features to enrich the representation of low-
dimensional embedding. The propagation information
based dynamic features can better fit the source localiza-
tion task, and topological features can better incorporate
the graph-level task into a sequence based framework.

• A one-timestamp based attention mechanism is intro-
duced to further comprehensively consider the weight of
the source prediction probability at different timestamps.
Dynamically distinguishing the importance of different
timestamps can solve the imbalance of infection infor-
mation under temporal characteristics.

2 Related Work
TGASI is a sequence based framework to solve the source
localization problem based on the infection status observa-
tions. Therefore, the infection-status-based localization and
sequence-to-sequence learning are summarized.

2.1 Infection-status-based Source Localization
The aim of the source localization is to infer a set of sources
in a network based on some observations. Due to the con-
venience and feasibility of snapshot acquisition, several re-
cent surveys on this topic are available [Jiang et al., 2016;
Shelke and Attar, 2019]. A novelty method LPSI designs a
source prominence based label propagation method to iden-
tify the source without using the prior knowledge [Wang et
al., 2017]. With the development of deep learning, Dong et
al. inspired by LPSI design a GCN based source identifi-
cation (GCNSI) model to solve the MRSD problem [Dong
et al., 2019]. However, they only simply consider the cen-
trality features of individuals. Therefore, some studies fo-
cus on more features in the source localization task, such
as the SIGN method extracting the individual’s dynamic fea-
tures [Li et al., 2021], and the MCGNN method considering
the edge features [Sun et al., 2021]. Moreover, the dynamic
features of the propagation are also considered before exe-
cuting the source inferring process, like IVGD [Wang et al.,
2022a], SL VAE [Ling et al., 2022]. However, all the above
methods do not consider and analyze the impact of time series
characteristics on source localization. In summary, there is
no generic sequence-to-sequence model for source localiza-
tion to comprehensively consider the behavior features under
available time-varying snapshots.

2.2 Sequence-to-Sequence Learning
With the rapid development of deep learning, sequence-to-
sequence learning shows great performance on various tasks
based on the characteristic of time series [Sutskever et al.,
2014]. For example, Chung et al. propose the gated re-
current unit (GRU), whose performance is comparable to
LSTM [Hochreiter and Schmidhuber, 1997] with lightweight
overhead [Chung et al., 2014]. And GCSSI is a sequence-
to-sequence framework using GRU as a recurrence unit to
learn the time series features [Dong et al., 2022]. Currently,
the novel encoder-decoder architecture for supervised dis-
crete time dynamic graph (DTDG) learning focuses on the
various dynamics in the real world, which brings new ideas
to the embedding of temporal information [Zhu et al., 2022].
TGASI is based on the one of DTDG architectures, called the
static graph encoder and sequential decoder, for the MRSD
task. The dynamic intuition in TGASI refers to the dynamic
infection features of each individual in different timestamps.
We improve such a framework to analyze the behavioral fea-
tures of individuals under time-varying characteristics based
on the inductive learning idea, so that the trained TGASI can
be applied to different networks and different propagations.

3 Methodology
3.1 Problem Definition
Given a collection of captured available snapshots {Gsj =
(V,E, Ysj ) | j = 1, 2, 3, ...} with different timestamps sj ∈
T = {t1, t2, t3, ...} based on an undirected network G =
(V,E), where T is the timestamp set of complete propagation
chain (including unavailable snapshots, i.e., t1≤s1<sn′≤tn,
and n′<n), Y = {Y1, ..., Y|V |} is the set of the node state, and
Yi=1 if the observed state of node vi is infected, otherwise
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Figure 2: The illustration of TGASI based on the sequence-to-
sequence framework. The features generation encoder includes four
innovative modules. (a) influence probability transition matrix W
is estimated by available captured snapshots. (b) coarse-grained
source probability feature in one timestamp s is designed based on
the influence matrix W . (c) dynamic infected feature H2 and un-
infected feature H3 is generated from each node’s neighbors. (d)
lower dimensional embedding HG of the topology structure is ob-
tained based on the topology graph. The GRU-based decoder with
temporal attention uses Bi-GRU to decode the embedding, then (e)
a one-timestamp based attention mechanism is designed for time se-
ries information in order to distinguish and weight the importance
of decoder information at each different timestamp for source local-
ization task. What’s more, (f) a graph constraint based loss function
is specially designed for the localization task to train TGASI.

Yi=0. And we denote the original rumor sources set as R ⊂
V . The goal of our method in the MRSD problem is to predict
a source set R∗ which can maximize indicator like R∩R∗

R∪R∗ .

3.2 Temporal-sequence Based Graph Attention
Source Identification

In this part, an inductive framework based on the graph-level
task for source localization is proposed, namely temporal-
sequence based graph attention source identification. As
shown in Fig. 2, the framework of TGASI is an encoder-
decoder essentially. More specifically, a GNN-based en-
coder generates and embeds the node’s features, which in-
clude coarse-grained-based source probability, dynamic in-
fection features, and static topology features. And a GRU-
based decoder with a temporal attention mechanism infers the
source by decoding the embedding from the encoder.

Features Generation Encoder
Considering the complicated behavior diversity in social net-
works in practice, and such the potential relationship of

any two users can be characterized as a heterogenous in-
fluence. Then a deep heterogeneous influence estimation
method is proposed to automatically learn the influence ma-
trix W ∈ R|V |×|V |, where Wij represents the probability
that an infected-state node vi successfully influences its un-
infected neighbor vj . Note that Wij ̸=Wji because people
are influenced by celebrities to buy endorsement products but
celebrities do not be influenced in reverse. More specifically,
a propagation mechanism fθ(Gsj ) is used to predict the infec-
tion state of the snapshot of the next timestamp Gsj+1 . Here
the fθ is a nonlinear mapping function to characterize a prop-
agation scheme based on the learnable matrix W . Based on
the mapping, we can construct the predicted snapshots matrix
G′, i.e.,

G′ = [fθ(Gs1), fθ(Gs2), fθ(Gs3), ...] (1)
Note that the selection of the propagation mapping func-

tion fθ is flexible, and it can be designed autonomously based
on deep models, e.g., GCNs [Welling and Kipf, 2016] or
attention-based graph models [Velickovic et al., 2018]. As
for the detailed underlying design, some research has demon-
strated that users in social networks have the ability to iden-
tify and prevent fraud [Baesens et al., 2015; Ventola, 2014].
So we use the IC strategy that only has one opportunity to
activate the neighbors instead of the common widely used
random walk that can be infected multiple times. What’s
more, the stationary distribution of a Markov chain revises
the distribution bias of influence parameters (i.e., W) in the
diffusion process [Salamat et al., 2020]. Motivated by the
stationary distribution of influence diffusion models [Xia et
al., 2021], an approximate stationary distribution of a Markov
chain based on the IC diffusion model is adopted for fθ, as
defined in Eq. (2).

fθ(Y
s+1
vi

) = 1−
∏

vj∈N (vi)

(
1−Wji

(
Y s
vj

− Y s−1
vj

))
(2)

where N (vi) is the neighbors set of node vi, and Y s ∈ R|V |
is an available snapshot in timestamp s. The equation means
that the state of node vi in the next timestamp is approxi-
mately influenced by the heterogenous behavior of its neigh-
bors in the timestamp s. In order to further improve the effi-
ciency of the learning process of this propagation parameter
on the graph-level task, we manually design two rules that
conform to propagation. First, we set Wij=0 and remove
the corresponding learning gradient if there is no edge be-
tween vi and vj . Second, the propagation parameter theoreti-
cally should be greater than 0, and we take the absolute value
when the learning parameter Wij<0 in order to increase the
penalty of MSE loss. Then we generalize the nonlinear map-
ping function fθ from one node to network G, and use fθ(G)
to guide an MLP to evaluate the influence matrix W .

Although there are many classic sequence-to-sequence
models such as AGC-Seq2Seq [Zhang et al., 2019] and i-
Revnet [Jacobsen et al., 2018; Chang et al., 2018] to directly
identify the source based on the data of the snapshots, the
sparse features (we only have two available features whether
the state is infected or not) and lack of parameters in hidden
layers restrict the ability to learn the spatial-temporal infor-
mation in the localization task. So we construct some neces-
sary feature embedding based on user behavior diversity W .
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First, We consider the coarse-grained source probability
based on the behavioral interaction under each independent
snapshot s, which is denoted as Hs

1 . GNN can efficiently and
conveniently embed the user’s influence information in W
into the message-passing process. Inspired by the invertible
graph residual network, Hs

1 is designed by using the follow-
ing graph convolution operation.

Hs
1 = εsGRN(Y

s,A | W) = εsGCN(Y
s,A | W) + αY s

= σ
(
D̂−

1
2 ÂD̂−

1
2XW

)
+ Y s, s.t. Lε < 1,

Â = A+ In +W , Xi =

{
[1, 0], Y s

vi
= 0

[0, 1], Y s
vi

= 1

(3)

where W ∈ R2×hone is a learnable weight matrix in the GCN
module, 2 is the number of observed infection features which
imply the infected state and uninfected state (denoted as Xi

here), hone is the hidden size of GCN in one timestamp s, σ(·)
is the activation function, Hs

1∈R|v| is the output feature of all
nodes in a timestamp s, α is the residual weight, and Lε is
the Lipschitz constants to initialize W . Here, we convert the
observed state feature Y of snapshots into a one-hot encod-
ing, characterizing that the infected state and uninfected state
are categorical variables rather than numeric variables. The
operation can enhance the learning ability and interpretabil-
ity of the deep module. What’s more, the learnable weight
matrix W is normalized via the power iteration method to
achieve the Lipchitz constant Lε<1 in order to guarantee the
stronger robustness and accelerate convergence speed [Wang
et al., 2022a]. Then, we consider the infection characteristics
of all nodes in each available timestamp s according to the
source localization task, and design two infection features of
node vi in timestamp s, which is shown in Eq. (4) and Eq. (5).

Hs
2(vi) =

∑
vj∈N (vi),Y s

j =1 Wij

|N (vi) |
(4)

Hs
3(vi) =

∑
vj∈N (vi),Y s

j =0 Wij

|N (vi) |
(5)

where Hs
2 ∈ R|V | and Hs

2(vi) is a infected neighbor’s feature
of vi in an available timestamp s, and similarly H3 is the un-
infected neighbor’s feature. The H2 and H3 are interpretable,
and the proof is in the appendix due to the limited space.
Theorem 1. The ratio of the neighbor’s infected state and un-
infected state are special variants of infected feature H2 and
uninfected feature H3, respectively.

The aim of designing these embedding (i.e., H1-H3) is to
make the decoder efficiently learn the propagation features
and predict the source. However, the common input of the
time series decoder is sequence based data. It is necessary
to additionally design the rules if the input includes graph
information. There are two reasons why we do not directly
process the decoder in the form of graph recurrent layer, such
as ht = σ

(
AHsWih+Aht−1Whh+b

)
. First, the format

constraints of the recurrent unit Wih∈R3×2 and Whh∈R2×2

would lead to too few learnable parameters and reduce the

model’s learning capacity. The second reason is that design-
ing topological features in the encoder expands the dimen-
sionality of the embedding and increases the quality and inter-
pretability of the embedding. So we use a one-layer GCN to
design the topology feature embedding in a low-dimensional
way to better solve the graph-level based localization task, as
shown in Eq. (6).

HG = εGCNG
(In,A) = σ

(
D̂−

1
2 ÂD̂−

1
2 InW

)
(6)

where W ∈ R|V |×
√
|V | is a learnable weight matrix, and

HG ∈ R|V |×
√
|V | is the output topology features of all nodes.

Therefore, we implement the feature embedding from a high-
dimensional graph to a low-dimensional vector.

We get the coarse-grained source probability Hs
1 , the infec-

tion features H2 and H3 in the timestamp s, and the network
topology HG from the encoder. And the embedding H in the
timestamp s can be obtained by concatenating these features.

Hs = CONCAT(Hs
1 , H

s
2 , H

s
3 , HG) (7)

GRU-based Decoder with Temporal Attention
For the available snapshots {Gsj = (V,E, Ysj ) | j =
1, 2, 3, ...} with different timestamps sj , we can acquire the
embedding Hs1 , Hs2 , Hs3 , etc., from the encoder. Next, a
time series decoder needs to be designed to predict the source
by using the embedding. To determine the output dimension,
we identify the source localization problem as a node binary
classification problem, then we use a target function that in-
cludes the loss of all nodes to constrain the training on graph-
level G. A bidirectional lightweight time series module, i.e.,
Bi-GRU, is used as the decoder to predict the source. The
update function is shown in Eq. (8).

ht = (1− zt) ∗ nt + zt ∗ h(t−1) (8)
where ht and ht−1 are the hidden layer state of the model
at the timestamp st and the previous timestamp, zt and nt

are the update and new gates, respectively. We input the em-
bedding of snapshot sequence {Hs1 , Hs2 , Hs3 , ...Hsζ} into
a Bi-GRU model, and the forward GRU infer the source based
on the snapshots from the timestamp s1 to sζ , and we denote
the output predicted binary classification for all nodes of the

hidden layer in the timestamp sj as
→
h j ∈ R|V |×2. Similarly,

the output of backward GRU is represented as
←
h j ∈ R|V |×2.

Finally, the two hidden layer states of the timestamp sj are

concatenated, i.e., R̂j =

[
→
h j ,
←
h j

]
∈ R|V |×4.

For any timestamp sj , each node R̂j(v) has 4 features out-
put by the Bi-GRU. However, it is difficult to determine ex-
actly at which timestamp the source probability can be eval-
uated. Because the infection information is imbalanced in
different timestamps. That is, the information in the earlier
propagation stage is lacking. And the information in the later
propagation stage is highly coupled and overlapping. Thus,
we design a temporal attention mechanism to dynamically
adjust the weight of predicted source probability in differ-
ent timestamps. A one-timestamp adjacency matrix ϖ is de-
signed to enhance the attention ability for the infection times-
tamps, which is defined as follows.
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ϖ =


1 1 0 · · · 0
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (9)

And the self-attention focusing on the weight of different
timestamps is implemented by a shared attentional mecha-
nism a: CONCAT(R|WT

A R̂(v)|,R|WT
A R̂(v)|)→R to compute

the attention coefficients eij corresponding to the timestamp
si and timestamp sj of a node v, which indicates the impor-
tance of timestamp j’s features to timestamp i.

eij(v) = a(W T
AR̂i(v),W

T
AR̂j(v)) s.t. abs(i− j) ≤ 1

(10)
where WA ∈ R4×2, here the input feature 4 is the double-
times binary classification. And we apply a single-layer BP
neural network for the attention mechanism a, which is a
weight vector with a⃗ ∈ R2|W T

A R̂(v)|. Then to make coeffi-
cients easily comparable across different timestamps, we nor-
malize the attentional mechanism.

ϕij(v) = softmaxj (eij(v)) =
exp (eij(v))∑

k∈ϖik
exp (eik(v))

=
exp

(
ReLU

(−→a T
[
W T

A R̂i(v)∥W T
A R̂j(v)

]))
∑

k∈ϖik
exp

(
ReLU

(−→a T
[
W T

A R̂i(v)∥W T
A R̂j(v)

]))
(11)

The normalized attention coefficients ϕij are used to compute
a linear combination of the four features in one timestamp
corresponding to them, to serve as the final source prediction
for a node v in timestamp si with K-head attention, which is
shown in Eq. (12).

R̂′i(v) = softmax

 1

K

K∑
1

σ

 ∑
j∈ϖij

ϕijW
T
AR̂i(v)


(12)

After the final prediction R̂′i(v) for each node v in each
timestamp si finishes, we pick the needed number (denoted
as Z) of predicted nodes by ranking the highest probability
as the predicted source, such a source set R∗ is shown in
Eq. (13).

R∗ = {argmax
v∈V

(R̂′i(v)) | v /∈ R∗, |R∗| = Z} (13)

3.3 Loss Function
Further, we design a unique loss function for TGASI to better
adapt to the task of source localization.

L = LEntropy(Rhot, R
∗
hot)+LMSE(Rhot, H

si
1 )+LG(Rhot, R

∗
hot)

(14)
Among them, LEntropy using binary cross entropy is the

main loss to train the complete process of TGASI. LMSE

using mean square error is an encoder loss to constrain the
learning process of source probability prediction for a single
timestamp si. And LG is a designed auxiliary loss to enhance
the learning ability of the TGASI on the localization task.

LG(Rhot, R
∗
hot) =

∑
Rhot

|V |
∑

vi∈Rhot(vi)=0

(R∗hot[vi, 0])

+(1−
∑

Rhot

|V |
)

∑
vi∈Rhot(vi)=1

(R∗hot[vi, 1])

(15)

4 Experiments
4.1 Datasets and Baselines
Six social networks are selected to evaluate the performance
of all localization methods 1.

Network |V | |E| ⟨k⟩

G1 Karate 34 78 4.6
G2 Jazz 198 2742 27.7
G3 Facebook 4039 88234 43.69
G4 Twitch-ES 4648 59382 25.55
G5 Wiki-Vote 7115 103689 29.15
G6 Page-Large 22470 171002 15.22

Table 1: Information of the real-world datasets.

To demonstrate the validity and novelty of the current
work, we compare the TGASI method with the SOTA lo-
calization methods, including IVGD [Wang et al., 2022a],
SL VAE [Ling et al., 2022], GCSSI [Dong et al., 2022],
SIGN [Li et al., 2021], MCGNN [Sun et al., 2021], Res-
GCN [Shah et al., 2020], GCNSI [Dong et al., 2019].

4.2 Evaluation Metrics
By comprehensively considering the evaluation metrics of the
baseline methods, we use two metrics, i.e., the standard F1-
score [Sokolova et al., 2006] (F1) and average error distance
(AED) [Dong et al., 2022].

F1-score =
2 ∗ Precision ∗Recall

Precision+ Recall
(16)

∆AED = min
r∗∈ permutation (R∗)

Q∑
i=1

d (r∗i , ri)

Q
(17)

4.3 Settings and Optimizations
By following existing methods in the field of information
propagation [Xia et al., 2021] and rumor source localiza-
tion [Wang et al., 2022a; Ling et al., 2022], we use the in-
dependent cascade (IC) model as the underlying propagation
model. Also in reference to their study, we pick 10% nodes
as the ground-truth sources and simulate the IC propagation
process based on G1 to G6 networks. And we set the low in-
fection rates in the experiments due to the propagation char-
acteristics of rumors in social media [Kou and Gray, 2017;
Wang et al., 2022b]. We independently generate 1000 sets

1The six datasets are available at: http://snap.stanford.edu
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Network G1 G2 G3 G4 G5 G6

Algorithm F1 AED F1 AED F1 AED F1 AED F1 AED F1 AED
GCNSI 0.117 1.78 0.05 1.93 0.003 2.21 0.004 2.23 0.001 2.41 0 2.89
GCSSI 0.213 1.58 0.071 1.85 0.007 2.17 0.009 2.18 0.002 2.38 0 3.11
SIGN 0.421 1.09 0.377 1.21 0.065 1.88 0.055 1.91 0.013 2.11 0 2.86

ResGCN 0.410 1.11 0.371 1.17 0.117 1.69 0.130 1.61 0.025 1.89 0.007 2.17
MCGNN 0.312 1.36 0.297 1.42 0.110 1.87 0.123 1.88 0.031 1.98 0 2.90

IVGD 0.537 0.91 0.517 0.93 0.371 1.17 0.375 1.19 0.257 1.44 0.103 2.04
SL VAE 0.377 1.18 0.353 1.22 0.291 1.39 0.277 1.43 0.196 1.73 0.012 2.35
TGASI 0.514 0.89 0.596 0.72 0.727 0.58 0.672 0.64 0.661 0.62 0.493 1.49

Table 2: Source identification performance on the test dataset of six social networks. The bold values represent the best results.

of propagation. Each set includes several available snap-
shots with different timestamps. And we use a 10-fold cross-
validation strategy to divide the training dataset and the test
dataset, then the final result is output by taking the average
prediction in the test dataset from each fold. Moreover, an
early stopping mechanism is designed in order to avoid over-
fitting in the training process.

4.4 Overall Experimental Results
The source detection performance based on the F1-score and
AED metrics in G1 to G6 is shown in Tab. 2. The higher
F1-score and the lower AED reveal better performances. In
general, the models considering the propagation process gen-
erally have a better prediction performance than other meth-
ods, i.e., IVGD, and SL VAE. And the most challenging base-
line is IVGD. The main reasons are that GCNSI, SIGN, and
ResGCN only design different training models from the per-
spective of neural network structure, GCCSI only considers
the time series features, and MCGCN only solves the sin-
gle source detection rather than the MRSD task. Although
IVGD considers the individual’s comprehensive interaction
based on the influence, it does not consider the impact of time
series characteristics in the sequence data on source detection.

Compared with the optimal baseline IVGD, TGASI is
comparable in G1, and TGASI based on the F1-score met-
ric demonstrates an improvement of approximately 15% in
G2, 54% in G3, 88% in G4, etc. Similarly, the compari-
son superiority of TGASI on the AED metric also increases
with the network scale. In conclusion, TGASI outperforms
all the SOTA methods on the basis of rigorous metrics in all
datasets. There are three reasons: (1) The influence matrix
is embedded through the graph residual network to imply the
user interaction at each timestamp. (2) The dynamic infection
features and static topology features are designed to fit the
source localization task. (3) The attention mechanism distin-
guishes the weight and importance of decoder information at
each different timestamp for source localization.

4.5 Comparison of Different Loss Functions
We specially design the loss function in the sequence-to-
sequence framework to fit the source localization task. In or-
der to prove the necessity of each component of the loss func-
tion L we designed, we rigorously demonstrate the detection
performance of TGASI by removing or replacing each item

in the loss function. Some localization studies only use MSE
as the loss function, so we first use the MSE loss to replace
the main loss item LEntropy, which is denoted as LEntropy→MSE
(LE→M). It can be seen from Tab. 3 that the performance of
entropy loss on the TGASI model is better than that of MSE.
Because we define the source localization task as a node bi-
nary classification task based on the graph-level constraint.
What’s more, the other two loss items, i.e., LMSE and LG

in L, also play a positive role in the learning process of the
TGASI model. So we further keep the main loss item LEntropy
unchanged, and remove the loss item LMSE or loss item LG,
respectively. As can be seen from the last two rows of Tab. 3,
we can conclude that both the loss item LMSE and the loss
item LMSE positively guide the source detection of TGASI.

4.6 Ablation Study
We further study the influence of designed components of
TGASI on the source detection performance to prove their
contributions. The critical modules of the TGASI model in-
clude the coarse-grained feature based on the estimated influ-
ence matrix W , the dynamic infection features H2 and H3,
the topology features of a social network HG, and the self-
attention mechanism on different timestamps. So four variant
models of TGASI are developed as follows.

• TGASI W− uses a zero vector [0]|v|×1 to replace the
coarse-grained feature H1 shown in Eq. (3).

• TGASI D− uses two zero vectors [0]|v|×1 to replace the
dynamic features H2 shown in Eq. (4) and H3 shown in
Eq. (5), respectively.

• TGASI S− uses a zero matrix [0]
|v|×

√
|V | to replace the

static topology features HG shown in Eq. (6).

Network G2 G3 G4

Loss F1 Epoch F1 Epoch F1 Epoch
L 0.5959 5 0.7266 6 0.6716 6

LE→M 0.5730 5 0.7013 6 0.6411 6
-LMSE 0.5811 7 0.7132 6 0.6607 8
-LG 0.5621 11 0.6933 10 0.6373 11

Table 3: The performance evaluation of variant loss in G2 to G4.
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Figure 3: The performance evaluation of variant models from
TGASI in G2 to G4.

• TGASI A− replaces the attention mechanism in Eqs.

(9)-(12) with softmax( 12 (
→
h j +

←
h j)).

We set the parameters of four variant models as the same
as those in Sec. 4.3 to guarantee the rigor of the experiments.
Due to the limited space, we only present the experiment re-
sults in G2-G4. As can be seen from Fig. 3 that it will lead to
a performance decrease or a delay in the convergence speed
of model training no matter removing any critical modules.

4.7 Scalability
The scalability of the model can evaluate whether the model
can be applied in a variety of scenarios, which can reflect
the strength of its transferability and robustness. The de-
coder we designed mainly includes Bi-GRU and attention
mechanism, which can be used in the inductive learning task.
We demonstrate the inductive learning capabilities of TGASI
from two perspectives, including social networks and propa-
gation models. More specifically, when we have trained the
TGASI model using the snapshot set {Gsj = (V,E, Ysj ) |
j = 1, 2, 3, ...} based on a social network G1=(V,E), we
further apply the trained TGASI to the other snapshot set
{G′sj′ = (V ′, E′, Ysj′ ) | j′ = 1, 2, 3, ...} based on the
other social network G2=(V ′, E′), where V ̸=V ′ and E ̸=E′,
and Ysj′ and Ysj are generated by different propagation mod-
els. Due to the better performance in G3, we use the trained
TGASI model in G3 to conduct inductive learning.

In the inductive learning of social networks, we replace the
original test set of G3 with another batch of snapshot sets gen-
erated by G1, G2, G4, G5, and G6. One issue that requires
improvement in the future is the variation in the dimensional-
ity of HG caused by network scale, which only is addressed
by using the original topological embedding here. In order to
rigorously evaluate TGASI’s performance in inductive learn-
ing, we also compare the inductive results with the native
results of SOTA methods and TGASI on native datasets or
propagation models. From figs. 4(a)-(b), the inductive learn-
ing ability of TGASI is similar to or better than the original
detection performance of the optimal SOTA method. What’s
more, it can be seen from Fig. 4(c) that the inductive perfor-
mance in G4 or G5 is stronger than that in G1 or G6. We
conclude that the decreased extent of inductive performance
is proportional to the deviation from the network scale corre-
sponding to the trained baseline model.

In the inductive learning of propagation models, we use
various propagation models, including the heterogeneous SI
with infection rate I∼U(0.05, 0.15), the heterogeneous SIR
with recovery rate R∼U(0, 0.05), the homogeneous SI with
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Figure 4: The performance evaluation of TGASI on the inductive
learning task. (a)-(c) is the inductive learning on different social net-
works based on the IC model, and (d)-(f) is on different propagation
models in G3. P1, P2, P3, and P4 are denoted as homogeneous
SI, homogeneous SIR, heterogeneous SI, and heterogeneous SIR.

I = 0.1, and the homogeneous SIR with R = 0.02, to eval-
uate the source detection performance of TGASI in different
propagation models. Figs. 4(d)-(e) show that the inductive
learning ability of TGASI based on the propagation model is
overall higher than 0.5 on the F-score metric, and is better
than the original performance of all SOTA methods. More-
over, the performance of TGASI on the homogeneous model
is better than that of the heterogeneous model because it is
easier to accurately learn the influence information W in the
homogeneous models. And the performance of TGASI on the
SI model is better than that of the SIR model because the in-
teractive behavior and the temporal characteristic in the SIR
model are more complicated.

5 Conclusion
In this paper, we pay attention to the source localization prob-
lem by considering the heterogeneous behavior diversity in
time-varying infection scenarios, and we design a sequence-
to-sequence framework TGASI with the transferability to
share trained TGASI to different propagation models and so-
cial networks. Comprehensive experiments demonstrate the
necessity of designed modules, i.e., a coarse-grained-based
source probability feature, dynamic infection features, static
topology features, a temporal attention mechanism, and a
unique loss function for the localization task in TGASI. It’s
worth mentioning that TGASI is the first source localization
framework that considers scalability based inductive learn-
ing. So a trained TGASI model is suitable for other social
networks and propagation models. And model transferability
experiments demonstrate that the inductive detection perfor-
mance of TGASI is overall superior to the original detection
performance of SOTA methods. However, we also analyze
that the source detection performance of TGASI could dete-
riorate when it transfers to some scenarios. So we are moti-
vated to propose a novel localization framework in the future
that can efficiently handle scalability under various scenarios.
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