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Abstract
Adversarial example is a rising tool for voice pri-
vacy protection. By adding imperceptible noise to
public audio, it prevents tampers from using zero-
shot Voice Conversion (VC) to synthesize high
quality speech with target speaker identity. How-
ever, many existing studies ignore the human per-
ception characteristics of audio data, and it is chal-
lenging to generate strong and imperceptible adver-
sarial audio. In this paper, we propose the Voice
Guard defense method, which uses a novel method
to advance the adversarial perturbation to the time
domain to avoid the loss caused by cross-domain
conversion. And the psychoacoustic model is in-
troduced into the defense of VC for the first time,
which greatly improves the disruption ability and
concealment of adversarial audio. We also stan-
dardize the evaluation metrics of adversarial au-
dio for the first time, combining multi-dimensional
metrics to define the criteria for defense. We eval-
uate Voice Guard on several state-of-the-art zero-
shot VC models. The experimental results show
that our method can ensure the perceptual quality
of adversarial audio while having a strong defense
capability, and is far superior to previous works in
terms of disruption ability and concealment.

1 Introduction
With the development of deep learning, it is easier for deep
neural networks to fake realistic data, which has many ap-
plications in film and television creation [Sinha et al., 2022;
Perov et al., 2020] , audio reading [Huang et al., 2022;
Ye et al., 2022] , text generation [Mu and Li, 2022; Shu et al.,
2021] and other fields. However, as shown in Fig.1(a), some
criminals employ VC, a technique that alters the speaker’s
identity while maintaining the speech content unchanged, in
order to fabricate high-quality speech and perpetrate large-
scale network voice fraud, which poses a serious threat to citi-
zen privacy protection and security authentication [Wenger et
al., 2021]. In particular, zero-shot VC models such as AdaIN-
VC [Chou et al., 2019], VQMIVC [Wang et al., 2021] are

∗Corresponding author

(a) Tampering of speaker identity based on VC.

(b) Active defense against VC. Disrupting with speaker identity
and speech content of converted audio.

Figure 1: Description of the forgery and defense scenario.

the most dangerous, since they can convert voices between
any two speakers. Although there has been a lot of research
on the detection of forged audio [Yamagishi et al., 2021;
Wang and Yamagishi, 2021; Jung et al., 2022; Yi et al., 2022],
this passive defense method can only reduce the damage of
the attack after it occurs. Therefore, this paper aims to re-
sist such attacks in an active fashion [Ruiz et al., 2020] as
shown in Fig.1(b), which makes a precise and comprehensive
defense available to the public before the attack occurs.

Adversarial examples can change the output of a neural
network using imperceptible noise [Yuan et al., 2019], and
have shown excellent disruption performance on image [Xie
et al., 2020] and speech [Qin et al., 2019] classification tasks.
In contrast, there are few studies on adversarial perturbation
for generative models, and it is difficult to achieve the same
level of disruption performance as the former. We try to add
adversarial noise to the target audio that does not affect the
original content, so that the defended audio loses its origi-
nal feature information after performing voice conversion to
achieve active defense.

Typically, there are two ways to produce adversarial au-
dio: by adding adversarial perturbations to a waveform in the
time domain, as well as by adding adversarial perturbations
to frequency domain feature spectrograms such as Mel and
Mel-scale Frequency Cepstral Coefficients (MFCC) [Kassis
and Hengartner, 2021]. However, the adversarial audio gen-
erated in the frequency domain needs to be restored to the
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speech waveform by the vocoder, and this upsampling pro-
cess will weaken the disruption performance of the adversar-
ial audio. Therefore, we move up the perturbation process
from frequency domain to time domain to maintain the dis-
ruption performance of adversarial audio.

In the production of adversarial audio, researchers often di-
rectly regard the time domain or frequency domain audio data
as images, and use the same generation steps as the adversar-
ial image. However, human eyes utilize a different signal pro-
cessing mechanism than human ears. Therefore, adversarial
noise invisible to the human eye is not necessarily inaudible
to the human ear [Lin and Abdulla, 2015]. In order to ensure
the imperceptibility of adversarial noise while implementing
powerful disruption, we use the masking effect in acoustics,
which is a phenomenon that the larger energy signal masks
the smaller energy signal with similar frequency and time to
make it inaudible. We introduce a psychoacoustic model to
constrain adversarial noise and improve its concealment.

Previous works often evaluate the disruption ability and
concealment of adversarial audio separately, which leads to
adversarial audio being either weak or perceptible. Only
strong and imperceptible adversarial examples are effective.
In addition, the evaluation metrics of voice conversion perfor-
mance should not be limited to the change in speaker identity.
Speech quality and speech content are also significant indica-
tors. Therefore, we combine multiple dimensions and simul-
taneously consider the concealment and disruption ability of
adversarial audio, and propose the adversarial audio evalua-
tion metrics for voice conversion for the first time.

Overall, this work makes the following contributions:
(1) We propose Voice Guard, a strong and impercepti-

ble voice privacy protection method that enhances disruption
ability through a novel time-domain perturbation. It also im-
proves the concealment of the perturbation by introducing a
psychoacoustic model into the voice conversion defense for
the first time.

(2) We first standardize the performance evaluation met-
rics of adversarial examples for voice conversion models, and
evaluate the concealment and disruption ability of adversarial
examples in multiple dimensions.

(3) We verify the effectiveness of Voice Guard through sys-
tematic and comprehensive experiments, obtaining a state-of-
the-art defense success rate of over 80%. Compared with pre-
vious works, Voice Guard has been significantly improved in
disruption ability and concealment.

2 Related Work
2.1 Voice Conversion
The state-of-the-art zero-shot voice conversion model not
only breaks through the need for parallel datasets, but also
performs voice conversion between arbitrary speakers, syn-
thesizing sufficiently realistic audio. AdaIN-VC [Chou et al.,
2019] is based on a simple autoencoder structure, and intro-
duces adaptive instance normalization in the content encoder
and decoder to assist the separation of speaker information
and content information. To further improve the model’s dis-
entanglement ability, VQMIVC [Wang et al., 2021] intro-

duces mutual information as a constraint based on the tra-
ditional feature disentanglement method.

2.2 Adversarial Examples for Generative Model
Kos et al. [2018] propose three defense flows to generate
adversarial examples against VAE, VAE-GAN and other gen-
erative models in the image reconstruction task. In exper-
iments, the researchers find that misclassification does not
necessarily lead to the reconstruction of the target class. This
indicates that the classifier is more vulnerable to adversar-
ial examples than the generative model. This idea is also
tested by the work of Joshi et al [2021]. Researchers find
that in speaker classification tasks, compared with traditional
defense methods such as random smoothing and adversar-
ial training, using generative models such as GAN, VAE
and vocoder to preprocess audio can more effectively defend
against adversarial examples. Huang et al. [2021] transfer
Kos et al.’s work from image generation task to voice conver-
sion task and demonstrate the feasibility of disrupting voice
conversion. However, their method has major defects: it can-
not balance the disruption ability and concealment of adver-
sarial audio; speech quality and speech content are not in-
cluded in the evaluation index.

2.3 Psychoacoustic Model
The emergence of psychoacoustic models [Lin and Abdulla,
2015], which is a quantitative model closely matching the au-
ditory mechanism, promotes research on the concealment of
adversarial audio. Researchers can analyze auditory thresh-
olds using empirically determined masking models. Qin et
al. [2019] are the first to introduce a psychoacoustic model
to disrupt neural network-based speech recognition systems.
In order to avoid the perception of adversarial noise, they cal-
culate the masking threshold using a psychoacoustic model
and implement perturbations below the masking threshold.
Wang et al. [2020] disrupt x-vector based speaker recognition
systems using psychoacoustic models. Their method uses a
masking threshold instead of the common lp norm to limit
the strength of adversarial perturbations. This allows them
to achieve an excellent disruption effect while ensuring the
imperceptibility of adversarial examples.

3 Threat Model
The tamper collects high-quality audio of citizens on the pub-
lic network, and then uses zero-shot VC to generate forged
audio of the target speakers for telecom fraud. Formally, let
F (·, ·) be the VC model used by the tamper and ASV (·) be
the speaker classification model. Speakers X , Y , and T are
the providers of audio x̂, ŷ, and t̂ respectively. These speakers
are defined consistently throughout, but play different roles
for different systems.

When the tamper attacks speaker X using VC system, au-
dio x̂ acts as the target speaker and provides the speaker in-
formation. Audio t̂ acts as the source speaker and provides
the speech content. The choice of speaker T is arbitrary and
unimportant, because audio t̂ only needs to provide specific
content and can come from anyone. When the attack suc-
ceeds, the tamper gets forged audio with the identity of the
target speaker X . That is, ASV (F (x̂, t̂)) = X .
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Figure 2: Overview of the Voice Guard defense pipeline. The speech t̂ and x̂ are extracted by feature extraction to obtain the spectrogram t
and x. Ec(t) and Es(x) are the content features and speaker features extracted by the content encoder and the speaker encoder, respectively.
The decoder combines Ec(t) and Es(x) to generate a spectrogram F (t, x), and then restores it to a speech waveform F̂ (t, x) through the
vocoder. θx is the masking threshold for speech x̂ calculated by the psychoacoustic model.

To prevent this forgery, we propose Voice Guard, which
prevents zero-shot VC from generating audio with speaker X
identity information by adding time domain adversarial noise
δ̂ to audio x̂ beforehand, such that, ASV (F (x̂+ δ̂, t̂)) ̸= X .
We adopt the concept of least likely class in adversarial exam-
ples and use it to guide the generation of noise δ̂ by selecting
the speaker Y who is the most dissimilar to speaker X .

4 Methodology
Zero-shot VC models are usually composed of a speaker en-
coder, a content encoder, and a decoder. With the help of a
known zero-shot VC model, our proposed Voice Guard gener-
ates strong and imperceptible adversarial audio in two stages.
In stage 1, we generate adversarial noise strong enough to
perturb the zero-shot VC, and in stage 2, we hide it. Fig.2
shows an overview of the Voice Guard defense pipeline.

4.1 Strong Adversarial Audio
Based on previous research, there are three methods to defend
voice conversion models based on adversarial audio: end-to-
end defense (e2e), feedback defense (fb), and embedding de-
fense (emb). emb can change the output of the speaker en-
coding to protect the speaker identity of the input audio. e2e
directly alters the output of the voice conversion model. fb
transmits the output result back to the speaker encoder to en-
sure that the speaker information can be changed in the con-
verted spectrogram. All three defenses add adversarial noise
in the frequency domain and rely on speaker features to gen-
erate targeted disruption. Among them, emb has the highest
efficiency and fb has the highest success rate. The above de-
fense flows can be expressed as follows,

min
w
Lemb(x, y, δ) = L(Es(x+ δ), Es(y))

−λL(Es(x+ δ), Es(x))

min
w
Le2e(x, y, δ, t) = L(F (t, x+ δ), F (t, y))

−λL(F (t, x+ δ), F (t, x))

min
w
Lfb(x, y, δ, t) = L(Es(F (t, x+ δ)), Es(y))

−λL(Es(F (t, x+ δ)), Es(x))

subject to δ = ϵ · tanh(w)

(1)

where w ∈ RM×Lf , M and Lf are the total number of fre-
quency components and time frames respectively. w uses the
variable transformation method [Carlini and Wagner, 2017]
of the tanh(·) function to effectively constrain the frequency
domain noise δ to stay in the range [−ϵ, ϵ]. L(·, ·) is the dis-
tance between two vectors or two feature spectrograms, and
ϵ is a constraint on the strength of the adversarial noise. x,
y and t are frequency domain features of audio x̂, ŷ and t̂
converted from time domain, respectively. The expression of
each defense flow has two terms. The first item makes the
output speech sound as if it was uttered by speaker Y . The
second item aims to remove the identity of the speaker X . λ
is a positive hyperparameter that balances these two terms.

However, previous defenses have certain limitations. The
adversarial examples generated in the frequency domain need
to be restored to waveforms through lossy upsampling, and
this process will reduce the disruption ability of the adversar-
ial examples. To avoid the loss caused by this cross-domain
conversion, we propose to replace the frequency domain ad-
versarial noise δ with the time domain adversarial noise δ̂.
But since the data input to the model are often spectrograms
of acoustic features such as Mel and MFCC, methods that
provide extraction of such features, such as librosa, do not
support backward gradient propagation. To implement our
proposed defense, we need a way to backpropagate gradients
computed in the frequency domain to the time domain. We
re-implement the feature extractor H(·) that supports gradient
backpropagation in Pytorch [Paszke et al., 2019]. Formally,
x = H(x̂). To propagate the gradient back to the original
signal layer, we apply the chain rule:

∂F (H(t̂), H(x̂+ δ̂))

∂δ̂
=

∂F (H(t̂), H(x̂+ δ̂)))

∂H(δ̂)
· ∂H(δ̂)

∂δ̂
(2)

Based on Eq.2, we are able to construct adversarial noise
from the frequency domain to the time domain, and it is ef-
fective for all three defense methods mentioned in Eq.1. Con-
sidering the defense effect and production efficiency of adver-
sarial examples, we propose the Voice Guard defense method
based on embedding defense. The generation method of ad-
versarial examples can be expressed as follows,
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min
ŵ
Lvc(x̂, ŷ, δ̂) = L(Es(H(x̂+ δ̂)), Es(H(ŷ)))−

λL(Es(H(x̂+ δ̂)), Es(H(x̂)))

subject to δ̂ = ϵ · tanh(ŵ)

(3)

where ŵ ∈ R1×Lt , and Lt is the length of the waveform x̂.

4.2 Imperceptible Adversarial Audio
The imperceptibility of adversarial audio is very crucial in
real scenarios. The tamper will select clean audio examples
for speaker identity tampering, and if the generated adversar-
ial audio sounds noisy, it will be directly screened by the tam-
per. Consequently, the noise needs to be constrained based on
the human perception mechanism for audio signals.

To exploit masking effects, we constructed psychoacoustic
models [Lin and Abdulla, 2015] using Numpy [Van Der Walt
et al., 2011]. The calculation of the masking threshold
requires the use of the normalized power spectral density
(PSD), which is calculated for the input audio x̂ and can be
expressed as follows,

Px(k) = 10log10|
1

N
sx(k)|2 (4)

P̄x(k) = 96−max{Px(k)}+ Px(k) (5)

where sx(k) is the output of x̂ with frequency k after passing
the short-time Fourier Transform (STFT). The calculation of
the masking threshold can be expressed as follows,

θx = P (P̄x(k)) (6)
where P (·) is the psychoacoustic model, detailed calculation
steps are given in Appendix A, and θx is the masking thresh-
old of the input audio x̂. In order to construct imperceptible
adversarial audio, we constrain the generated adversarial per-
turbations based on a masking threshold, which can be calcu-
lated as follows:

Lθ(x̂, δ̂) = Ekmax{P̄δ(k)− θx(k)} (7)

4.3 Strong and Imperceptible Adversarial Audio
Combining the methods proposed in 4.1 and 4.2, we imple-
ment Voice Guard, a strong and imperceptible voice privacy
protection method. We formulate the problem of computing
time-domain adversarial noise δ̂ as minimizing a loss func-
tion L(x̂, ŷ, δ̂), defined as follows:

min
ŵ
L(x̂, ŷ, δ̂) = Lvc(x̂, ŷ, δ̂) + α · Lθ(x̂, δ̂)

subject to δ̂ = ϵ · tanh(ŵ)
(8)

The adaptive parameter α is used to balance the weight of
disruption ability and concealment. In the Eq.8, the first term
Lvc prompts the audio synthesized by the voice conversion
model to have speaker features of audio ŷ. The second term
Lθ forces the normalized PSD estimate of the adversarial per-
turbation P̄δ(k) to be below the frequency masking threshold
θx(k) of the original audio.

Algorithm 1 Adversarial noise generation for Voice Guard
Input: x̂ (defend wav), ŷ (defend target wav)
Parameter: T1/T2 (defense step 1/2 iterations), F (Number
of binary searches)
Output: δ̂ (time domain noise)

1: Random Init δ̂ ∼ N(0, 1)
2: for t1 in T1 do
3: δ̂ ← δ̂ − lr1 · ∇δ̂Lvc(x̂, ŷ, δ̂)
4: end for
5: for f in F do
6: for t2 in T2 do
7: δ̂ ← δ̂ − lr2 · ∇δ̂L(x̂, ŷ, δ̂)
8: end for
9: Update α by Binary Search

10: end for
11: return δ̂

The whole defense process of Voice Guard is divided into
two defense stages. In stage 1, we consider the disruption
ability of the perturbation. The performance of voice conver-
sion is greatly reduced by using the Eq.3 to construct strong
adversarial audio. In stage 2, we hide the strong adversar-
ial audio generated in stage 1 by introducing the loss of the
masking threshold (Eq.7). We perform this stage of defense
several times and judge whether the defense is successful or
not, and then update the adaptive parameter α using binary
search according to the results, until we find the largest α that
can successfully defend. The adversarial noise generation of
Voice Guard can be expressed as algorithm 1.

5 Experiments
5.1 Data Preparation
We perform experiments on AdaIN-VC [Chou et al., 2019]
and VQMIVC [Wang et al., 2021], which are the state-of-
the-art any-2-any zero-shot voice conversion models.

We use the CSTR VCTK corpus [Veaux et al., 2017] in
our experiments, where we randomly select 20 speakers as
objects of defense, and each speaker has 100 utterances. For
each speaker, a speaker classifier is used to find the most un-
likely speaker identity, and 100 utterances of the speaker are
selected as the direction of disruption.

In defense stage 1, we use the Adam [Kingma and Ba,
2014] optimizer with learning rate 0.001 for 3000 iterations
and initialize δ̂ to a random vector that fits the normal distri-
bution N(0, 1). In defense stage 2, we initialize the adaptive
parameter α to 1.0 and perform 1500 iterations.

5.2 Evaluation Metrics
In the performance evaluation of adversarial audio, disrup-
tion ability and concealment are equally critical and should
be evaluated together. Additionally, the performance of VC
takes into account not only the speaker identity of the con-
verted audio, but also the naturalness and completeness.

We propose a comprehensive evaluation metric that com-
bines disruption ability and concealment for adversarial audio
on voice conversion. Our metrics are speaker identity, speech
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Model Method Defend MCD ASV MOS CER WER

AdaIN-VC

rec 0.00% 0.74 100.00%→ 100.00% 4.53→ 3.73 3.01%→ 6.50% 8.09%→ 15.63%
emb 57.19% 3.71 76.01%→ 19.65% 3.06→ 2.81 4.55%→ 8.26% 10.37%→ 18.41%
fb 64.65% 3.23 90.39%→ 25.75% 3.52→ 2.98 4.27%→ 8.43% 9.58%→ 18.54%

e2e 55.39% 4.10 83.60%→ 29.04% 3.64→ 2.93 3.90%→ 8.39% 9.87%→ 18.30%
VG 86.40% 4.39 99.17%→ 12.76% 3.65→ 3.12 3.84%→ 9.05% 9.17%→ 20.28%

VQMIVC

rec 0.00% 1.01 92.86%→ 92.86% 3.98→ 3.60 1.28%→ 12.01% 3.18%→ 23.90%
emb 77.94% 4.57 84.79%→ 7.78% 3.79→ 3.56 3.29%→ 15.41% 7.95%→ 29.90%
fb 40.17% 4.52 80.06%→ 48.32% 3.82→ 3.58 3.91%→ 14.71% 8.07%→ 21.11%

e2e 53.65% 4.64 81.37%→ 32.48% 3.62→ 3.58 2.55%→ 13.67% 7.17%→ 26.70%
VG 94.44% 5.40 100.00%→ 5.56% 3.51→ 3.75 2.52%→ 15.88% 7.06%→ 28.90%

AdaIN-VC
to

VQMIVC

emb 60.07% 3.58 76.19%→ 20.25% 3.08→ 3.70 4.56%→ 15.68% 11.85%→ 29.60%
fb 69.38% 3.30 85.93%→ 18.63% 3.56→ 3.73 3.58%→ 14.58% 9.57%→ 27.60%

e2e 69.84% 3.43 82.22%→ 18.25% 3.67→ 3.70 3.25%→ 14.37% 8.93%→ 27.51%
VG 88.83% 4.68 97.22%→ 8.39% 3.69→ 3.71 2.90%→ 16.50% 9.01%→ 32.86%

VQMIVC
to

AdaIN-VC

emb 38.33% 4.60 87.26%→ 49.76% 3.82→ 2.82 2.61%→ 6.60% 5.73%→ 16.48%
fb 12.88% 4.52 89.96%→ 78.79% 3.82→ 3.01 2.81%→ 7.52% 5.91%→ 17.32%

e2e 21.59% 4.69 80.83%→ 60.08% 3.62→ 2.81 4.17%→ 7.54% 9.50%→ 16.80%
VG 51.84% 5.27 98.33%→ 46.49% 3.50→ 2.65 1.76%→ 16.08% 4.63%→ 30.69%

Table 1: Defense performance comparison between the proposed method and the baseline methods. The best results are highlighted in bold.
Defend refers to the defense success rate of adversarial audio, and ASV stands for the accuracy of speaker classification. MCD is the distortion
of defended aduio. The larger the value, the higher the distortion. MOS is the predicted Mean Opinion Score with values ranging from [0, 5],
where higher values represent better subjective perceived quality. CER/WER is the Character/Word Error Rate, and the lower the value is,
the more similar the speech content is to the original audio. The data with arrows indicate the change in the corresponding metrics from
the defended audio to the converted audio. rec refers to the preprocessing and reconstruction steps of the corresponding VC model, and VG
stands for Voice Guard defense.

naturalness, and speech content. We set a threshold for each
index, and an index exceeding the threshold is considered to
have changed greatly. Only adversarial audio with high con-
cealment and strong jamming capability is considered to pro-
vide an effective defense.

We use GE2E [Wan et al., 2018] based speaker classifier,
MOSNet [Lo et al., 2019] speech quality prediction model
and Whisper [Radford et al., 2022] speech recognition model
to measure the above indicators. The definition of adversarial
audio defense can be expressed as follows,

Fimp =


True if

Sdf is ASV (Wdf ) and

MOS(Wdf ) ≥MOSth and

ASR(Wdf ) ≥ ASRth

,

False otherwise,

(9)

Fstr =


True if

Sdf is not ASV (Wvc) or

MOS(Wvc) < MOSth or

ASR(Wvc) < ASRth

,

False otherwise,

(10)

Fd = Fimp and Fstr (11)
where ASV (·) is the speaker classification model, which can
extract speaker features from the audio, compare them with
the registered speaker database, and return the speaker with
the highest feature similarity. MOS(·) is a speech quality
prediction model, which can evaluate audio quality. ASR(·)
is a speech recognition model that evaluates the complete-
ness of the speech content. MOSth and ASRth are the au-
dio quality threshold and information integrity threshold, re-

spectively. Audio above the threshold is considered accept-
able, otherwise it is considered unacceptable. Sdf is the pro-
tected speaker. Wdf and Wvc are the defended audio and the
converted audio, respectively. Fd is the flag that determines
whether the defense is successful or not.

In order to make a fair comparison between the adversarial
examples generated by different methods, we use MEL Cep-
stral distortion (MCD) to compare the performance of adver-
sarial examples with the same distortion. We calculate the
defense success rate DAcc = Ns/N by counting the number
of defenses N that appear in a certain distortion interval and
the number Ns of successful defense markers Fd.

5.3 Defense Performance Evaluation
We compare the defense performance of Voice Guard with the
only previous work, attack-vc [Huang et al., 2021], in white-
box and black-box scenarios. In the white-box scenario, we
know the structure and all parameters of the voice conver-
sion model, and directly generate adversarial examples of the
target voice conversion model. In the black-box scenario, we
know nothing about the voice conversion model, and can only
transfer the adversarial examples generated in the white-box
scenario to this scene for defense. To reduce the impact of
VC model performance, we screen out samples that fail to
perform VC correctly when ϵ = 0. Thus, when ϵ = 0, the
defense success rate of the remaining audio is 0.00%.

Tab.1 shows the performance comparison between the
Voice Guard and the baseline under white and black box
scenarios. In order to facilitate comparison with the tradi-
tional evaluation system, this experiment does not introduce
MOSth and ASRth. Instead, it only uses speaker identity as
the evaluation criterion for defense success.
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Model Method Defend MCD ASV MOS CER WER

white box

emb 33.33% 3.70 76.73%→ 19.03% 3.08→ 2.84 4.63%→ 8.61% 10.58%→ 19.36%
fb 44.15% 3.26 89.86%→ 26.88% 3.56→ 3.02 3.43%→ 8.77% 8.92%→ 19.04%

e2e 48.22% 3.15 83.71%→ 28.82% 3.68→ 2.95 3.79%→ 8.54% 9.23%→ 18.57%
VG w/o P 75.90% 5.86 99.17%→ 10.41% 3.71→ 3.14 3.09%→ 9.16% 7.86%→ 19.54%

VG 80.06% 4.34 99.17%→ 13.55% 4.07→ 3.27 3.05%→ 8.89% 7.84%→ 18.91%

black box

emb 30.79% 3.58 74.70%→ 19.81% 3.06→ 3.69 4.73%→ 15.42% 11.83%→ 28.74%
fb 40.85% 3.33 86.16%→ 19.01% 3.52→ 3.72 3.53%→ 14.75% 9.62%→ 27.67%

e2e 37.13% 3.15 80.44%→ 18.21% 3.63→ 3.71 3.27%→ 14.55% 9.13%→ 27.65%
VG w/o P 72.63% 5.75 97.22%→ 12.53% 3.77→ 3.63 3.13%→ 13.79% 8.93%→ 27.30%

VG 81.62% 4.23 97.22%→ 13.22% 4.13→ 3.70 2.31%→ 15.26% 7.40%→ 30.92%

Table 2: Comparison of defense performance under more stringent evaluation metrics. The best results are highlighted in bold. VG w/o P
represents the defense method that only advances the perturbation to the time domain and does not introduce the psychoacoustic model.
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Figure 3: Trend of defense success rate variation with MCD distor-
tion. The defense success rate of our proposed method significantly
surpasses the baseline method at all distortion stages.

Obviously, Voice Guard has a significant improvement in
the defense success rate. It is well known that any defense
method will destroy the original information of the audio
to varying degrees. However, compared with the baseline
method, on the one hand, Voice Guard destroys the original
information of the audio, especially the speaker identity, to
a lesser extent. On the other hand, the audio defended by
Voice Guard will produce a greater degree of loss in the fea-
ture information contained after performing voice conversion.
Therefore, it can be considered that the adversarial audio con-
structed by Voice Guard has a significant improvement in
terms of disruption ability and concealment.

It is worth noting that the Voice Guard defense does not
perform as well as the feedback defense in the MCD metric.
This is because MCD is a distortion calculation method based
on the frequency domain features of the audio frequency. As a
result, the noise directly added in the frequency domain leads
to a lower MCD distortion. In addition, the feedback defense
sacrifices efficiency and directly considers the speaker char-
acteristics of the converted audio as the disruption target, so
the MCD index performs better. Despite the fact that adding
noise in the time domain results in large MCD distortions,
the psychoacoustic model prevents the additional noise from
adversely affecting audio quality. To further analyze the ef-
fectiveness of our proposed method, we study the trend of
each indicator under different distortion levels.

Fig.3 shows the trend of the defense success rate of differ-
ent methods as the distortion degree changes for the white-
box scenario of the AdaIN-VC model. It can be seen that
the defense success rates of the baseline methods all show a
trend of first increasing and then decreasing. This is because
when the distortion is low, the strength of the added adver-
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Figure 4: Trend of speech features variation with MCD distortion.
The solid and dashed lines with the same color represent the perfor-
mance of the defended audio and the converted audio of the same
defense method under the corresponding metrics.

sarial noise is low. Thus, it is difficult to change the feature
information of the converted audio. When the distortion is
too large, the added adversarial noise is too powerful, which
seriously affects the quality of adversarial audio and makes it
lose its concealment. Only when the distortion degree is in
the right position, the adversarial perturbation can change the
characteristics of the converted audio without affecting the
original audio characteristics. This enables a defense success
rate of around 60%.

However, the defense success rate of Voice Guard only has
an upward trend but no downward trend, which is due to the
fact that we directly add adversarial noise in the time domain
in order to avoid cross-domain conversion. Therefore, both
the original audio features and the generated adversarial noise
are completely preserved in this process. The introduction
of the psychoacoustic model further reduces the distortion
caused by the addition of adversarial noise. The concealment
of adversarial audio is significantly improved. The changes
in MOS, ASV, CER and WER indicators in Fig.4 confirm
this view. The characteristics of the audio defended by our
proposed method (red solid line) change slowly, especially in
ASV and MOS indicators, and the red solid line is almost a
horizontal line. It is not affected by the increase in distortion.
It should be mentioned that when MCD reaches 12, all base-
line defended audio is considered as a defense failure, so we
denote the corresponding index by 0.
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Voice Guard does not reduce the disruption ability of ad-
versarial audio due to the improvement of their concealment.
From the trend of MOS and ASV index in Fig.4, it can be
seen that the audio defended by Voice Guard still shows large
characteristic differences after voice conversion. It can be be-
lieved that the Voice Guard improves concealment while en-
suring disruption ability, so the defense success rate has been
improved by leaps and bounds.

5.4 Ablation Experiment
Since the psychoacoustic model can only be applied to a de-
fense launched from the time domain, we test the perfor-
mance changes due to perturbations only in the time domain
in AdaIN-VC’s white and black box scenarios. We add re-
strictions on MOS and ASR metrics according to Sec.5.2,
where MOSth = 3 and ASRth = 10%.

By comparing the performance of the baseline in Tab.2 and
1, we find that after considering the subjective perceived qual-
ity and the completeness of speech content, the defense per-
formance of the baseline decreases substantially. However,
Voice Guard still shows satisfactory defense performance in
the face of more stringent evaluation systems.

As can be seen, the defense success rate of the VG w/o
P method improves considerably. The features before con-
version are more similar to the original audio, and the fea-
tures after conversion have a larger disturbance amplitude.
This is because some information of audio will be lost af-
ter cross-domain conversion, and high-level features such as
speaker identity will be offset. On the other hand, adversar-
ial examples also suffer from loss after experiencing cross-
domain transformation, resulting in decreased disruption per-
formance. The process of cross-domain conversion can be
eliminated by advancing the perturbation to the time domain,
so the concealment and disruption ability of the adversarial
audio generated by this method are increased.

The problem is that directly adding adversarial perturba-
tions in the time domain is equivalent to adding more noise
sources. This leads to greater MCD distortion and the pres-
ence of noise is more easily perceived by humans. There-
fore, we introduce psychoacoustic models based on this to
hide adversarial noise using high-energy signals in raw audio.
The data show that the features before conversion, especially
MOS, have been greatly improved, and the concealment of
adversarial audio has been further improved.

6 Conclusion
Adding strong and imperceptible noise to audio to defend
against voice conversion-based identity tampering is a highly
challenging task. In this paper, the Voice Guard defense
method is based on improving the disruption ability and con-
cealment of adversarial audio. This is accomplished by ad-
vancing the perturbation from frequency domain to time do-
main and introducing a psychoacoustic model, which greatly
improves the success rate of defense. In order to meet the
needs of real-world scenarios, we also propose a more strin-
gent evaluation system for adversarial audio, and compare
the defense performance of several state-of-the-art zero-shot
voice conversion models with baseline methods. The results

are encouraging. In future work, we will further improve the
robustness of Voicd Guard in black-boxe scenarios.

A Psychoacoustic Model
The computation of the masking threshold consists of 3 steps:

A.1 STEP 1: Identifications of Maskers
The normalized PSD estimate of reasonable maskers must
satisfy three constraints. First they need to be local maxima,

P̄x(k) ≥ P̄x(k + 1) and P̄x(k) ≥ P̄x(k − 1) (12)
Secondly, they should be larger than the absolute threshold

of hearing (ATH). ATH(f) is approximated by the following
frequency dependence function:

ATH(f) = 3.64(
f

1000
)−0.8 + 10−3(

f

1000
)4

−6.5exp{−0.6( f

1000
− 3.3)2} (13)

Finally, they must be the highest within 0.5 Bark of the
masked frequency. Bark is a psychoacoustic driven frequency
scale, and b(f) represents the Bark scale at frequency f ,
which is related to frequency as follows:

b(f) = 13arctan(
0.76f

1000
) + 3.5arctan(

f

7500
)2 (14)

A.2 STEP 2: Calculation of Individual Masking
Thresholds

After the masks are identified, the masking threshold in the
frequency domain needs to be calculated for each mask.
Since the spread function of the mask is similar under differ-
ent Bark, we calculate the masking threshold using the dual-
slope diffusion function at the Bark scale,

SF [b(i), b(j)] =

{
27∆bij , if ∆bij ≤ 0

G(b(i)) ·∆bij , otherwise
(15)

where G(b(i)) = [−27 + 0.37max{P̄x(b(i)) − 40, 0}],
∆bij = b(j) − b(i), b(i) and b(j) are Bark scales with fre-
quencies iand j, respectively. T [b(i), b(j)] represents the
masking threshold of frequency j for frequency i, which can
be calculated as follows:

T [b(i), b(j)] = P̄x(b(i)) + ∆m[b(i)] + SF [b(i), b(j)] (16)
∆m[b(i)] = −0.6025− 0.275b(i) (17)

A.3 Step 3: Global Masking Threshold
Finally, the final global masking threshold is obtained by
stacking the masking threshold and the silencing threshold
of each mask in the logarithmic domain,

θx(i) = 10log10[10
ATH(i)

10 +

Nm∑
j=1

10
T [b(i),b(j)]

10 ] (18)

where Nm is the number of maskers and the calculated θx is
the frequency masking threshold of the input audio x̂.
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