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Abstract
Identifying the potential associations among drugs,
microbes, and diseases is of great significance in
exploring the pathogenesis and improving preci-
sion medicine. There are plenty of computational
methods for pair-wise association prediction, such
as drug-microbe and microbe-disease associations,
but few methods focus on the higher-order triple-
wise drug-microbe-disease (DMD) associations.
Driven by the advancement of hypergraph neural
networks (HGNNs), we expect them to fully cap-
ture high-order interaction patterns behind the hy-
pergraph formulated by DMD associations and re-
alize sound prediction performance. However, the
confirmed DMD associations are insufficient due to
the high cost of in vitro screening, which forms a
sparse DMD hypergraph and thus brings in subop-
timal generalization ability. To mitigate the limita-
tion, we propose a Multi-view Contrastive Learn-
ing Hypergraph Neural Network, named MCHNN,
for DMD association prediction. We design a novel
multi-view contrastive learning (CL) on the DMD
hypergraph as an auxiliary task, which guides the
HGNN to learn more discriminative representa-
tions and enhances the generalization ability. Ex-
tensive experiments show that MCHNN achieves
satisfactory performance in DMD association pre-
diction and, more importantly, demonstrate the ef-
fectiveness of our devised the multi-view CL on the
sparse DMD hypergraph.

1 Introduction
Microbes are instrumental in modulating drug efficacy and
toxicity during disease treatment, and drugs can also affect
the diversity and function of microbial communities [Long et
al., 2020a]. Exploring potential associations among drugs,
microbes, and diseases can help to understand the underlying
disease mechanisms and facilitate personalized treatments.
Currently, a large number of methods have been proposed to
predict drug-microbe [Long et al., 2020b], microbe-disease
[Wang et al., 2021], and drug-disease associations [Liu et al.,
2021]. Despite the apparent connections between these pair-
wise association prediction tasks, most existing methods deal

with them separately and fail to provide in-depth insights into
intricate drug-microbe-disease (DMD) interaction patterns.
Indeed, recent studies in human metabolic systems pointed
out the importance of identifying triple-wise DMD associa-
tions [Wu et al., 2022; Wang et al., 2022a]. For that reason, it
is necessary to develop effective methods for predicting DMD
associations that have been few investigated before.

Predicting triple-wise associations is a fundamental issue
in multiple domains, e.g., recommendation systems [Wang
et al., 2022b; Cheng et al., 2022], knowledge graphs [Qian
et al., 2018; Guan et al., 2018] and bioinformatics [Sidorov
et al., 2019; Chen and Li, 2019; Chen and Li, 2020; Liu et
al., 2022]. For example, [Chen and Li, 2019] developed a
tensor decomposition model to predict which target a drug
binds to when administered to a disease. [Balažević et al.,
2019] constructed a neural tensor factorization for knowl-
edge graph completion. [Wang et al., 2022b] built a Spatio-
temporal convolutional attention network for personalized
point-of-interest recommendation. Recently, hypergraph neu-
ral network (HGNN)-based methods have increasingly been
proposed for triple-wise association prediction tasks, where
HGNNs have shown powerful abilities for modeling high-
order relations and learning expressive representations. For
example, [Cheng et al., 2022] devised an interactive hyper-
graph neural network for personalized product search. [Liu
et al., 2022] proposed a multi-way relation-enhanced hyper-
graph representation learning method to predict anti-cancer
drug synergy. Driven by the benefits of HGNNs, we rea-
son that using them to handle the hypergraph formulated by
DMD associations is expected to capture the complex inter-
action patterns behind the data and provide a desirable pre-
diction performance. However, the confirmed DMD associ-
ations are much insufficient due to the prohibitive cost of in
vitro screening. This inevitably results in a sparse DMD hy-
pergraph which limits the expressive power of HGNNs and
further hinders the generalization ability for prediction.

To alleviate the above limitations, we propose a Multi-view
Contrastive Learning Hypergraph Neural Network, named
MCHNN, for DMD association prediction. We construct
a DMD hypergraph where node attributes are composed of
drug features learned from molecular graphs by a GIN [Xu
et al., 2019], microbe features extracted from pair-wise mi-
crobe similarities and disease features encoded from pair-
wise disease similarities. Then, we simply deploy a hyper-
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graph convolutional network (HGCN) [Bai et al., 2021] over
the DMD hypergraph, which absorbs these biological fea-
tures, captures the high-order relations of DMD associations
and generates high-level node representations. Moreover, to
mitigate the sparsity issue of the DMD hypergraph, we bring
in contrastive learning (CL) acting as an auxiliary task to en-
hance the learned node representations. CL on graph data is
a promising technique for graph representation learning that
enriches supervision signals by exploiting abundant pseudo-
label data, but few studies deal with hypergraphs. Here, we
fulfill a multi-view CL for the DMD hypergraph in a global-
local mutual information maximization paradigm [Velickovic
et al., 2019], where four task-specific augmentation schemes
are devised to form multiple views of hypergraph counter-
parts. To our knowledge, this is the first work aiming at triple-
wise DMD association prediction. In summary, the main con-
tributions of this paper are described as follows:

• We leverage the merits of hypergraphs modeling high-
order relations and the powerful abilities of HGNNs in
representation learning to develop a hypergraph-based
framework for the DMD association prediction.

• We design a multi-view CL with four task-specific hy-
pergraph augmentation schemes, which permits more
expressive and discriminative representation learning on
the sparse DMD hypergraph.

• We conduct extensive experiments across four testing
scenarios. The results show that MCHNN achieves com-
petitive performance in DMD association prediction and
our designed multi-view CL is an effective remedy for
the sparsity problem of the DMD hypergraph.

2 Related Work
2.1 Hypergraph Neural Networks
Hypergraph neural networks (HGNNs) have received tremen-
dous attention caused of their ability to capture high-order in-
teraction patterns in hypergraph data. HGNN [Feng et al.,
2019] and HyperGCN [Yadati et al., 2019] extends convo-
lution operation to hypergraphs from a spectral perspective.
On that basis, [Jiang et al., 2019] extended HyperGCN to
a dynamic hypergraph, [Zhang et al., 2020] devised a self-
attention based HGNN, and [Yi and Park, 2020] developed
a hypergraph convolutional recurrent neural network. More-
over, [Bai et al., 2021] introduced two differentiable opera-
tors to the family of HGNNs: hypergraph convolution and
attention, achieving state-of-the-art results in hypergraph rep-
resentation learning. Recently, these powerful HGNNs have
been widely applied to representation learning in numerous
domains, including recommendation systems [Ji et al., 2020;
Li et al., 2022; Xia et al., 2022b], social networks [Gao et
al., 2022] and bioinformatics [Liu et al., 2022]. Inspired by
these works, we expect HGNNs to learn informative repre-
sentations from the DMD hypergraph and to produce sound
prediction performance.

2.2 Contrastive Learning on Graphs
Contrastive learning (CL) has become currently state-of-the-
art in unsupervised graph representation learning, which al-
lows models to learn structural semantics behind graph data

without any explicit supervision. A line of studies related
to this work has successfully introduced the mutual informa-
tion maximization principle [Hjelm et al., 2018] into graph
learning, and what they essentially do is to pull positive pairs
close to each other and keep negative pairs irrelevant to each
other [Yang et al., 2022]. As a result, different schemes
(usually graph augmentation approaches) to yield the posi-
tive and negative pairs lead to diverse semantic biases that
govern model performance. Deep Graph Infomax (DGI)
[Velickovic et al., 2019] fabricates a corrupted graph coun-
terpart by shuffling node features or perturbing edges, which
leads to ’fake’ node representations contrasting against true
representations learned from the original graph. [Hassani
and Khasahmadi, 2020] extended DGI to multi-view learn-
ing by leveraging graph diffusion to generate a positive coun-
terpart of the original graph. Although CL on hypergraphs
has not been systematically discussed [Wei et al., 2022],
some domain-specific hypergraph contrastive strategies are
designed in recommendation systems [Xia et al., 2022a;
Yu et al., 2021]. Different from them, we design a novel
multi-view CL on our constructed DMD hypergraph in a DGI
paradigm, which acts as an auxiliary objective to boost our
model performance.

3 Methodology
3.1 Problem Formulation
Given a drug set D, a microbe set M and a disease set N ,
their Cartesian product S = D ×M×N is a set of all pos-
sible DMD triplets. For each triplet (d,m, n) ∈ S , we assign
it a label p ∈ {0, 1} where p = 1 if the association between
the triplet is confirmed, otherwise p = 0. Note that p = 0
does not definitely mean that there is no relationship between
the triplet, whereas it is an unknown association and also may
be a potential association that was undiscovered before. Our
goal is to learn a model that predicts potential associations
from those unknown ones.

3.2 Model Architecture
MCHNN is an end-to-end deep learning model consisting of
four phases (Figure 1): 1) DMD Hypergraph construction;
2) Hypergraph representation Learning; 3) Multi-View Con-
trastive Learning; 4) Model training. In the following, we
review each phase and provide the necessary details on how
we operated.

DMD Hypergraph Construction
The complex and high-order DMD associations can be
modeled as a hypergraph G = (V , E), in which
drugs/microbes/diseases are represented as nodes V = D ∪
M∪N and known DMD associations are represented as hy-
peredges E . Note that these hyperedges correspond to the
triplets labeled as 1, i.e. E ⊂ S . Technically, G is further for-
mulated as an attributed hypergraph with an incidence matrix
Y ∈ R|V|×|E| and node attributes X ∈ R|V|×F .
Incidence matrix. The hyperedges are stored in an inci-
dence matrix Y , with entries defined as:

Y ve =

{
1, if v ∈ e
0, if v /∈ e

(1)
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Figure 1: Workflow of MCHNN: 1⃝ DMD Hypergraph construction, 2⃝ Hypergraph representation Learning, 3⃝ Multi-View Contrastive
Learning, 4⃝ Model training.

Node attributes. The node attributes X consists of drug
features XD, microbe features XM and disease features
XN . In our specific scenario, we take full advantage of the
domain knowledge of bio-entities to initialize the node at-
tributes. For each drug, its SMILES string can be converted
into a molecular graph G = (Z,A) via the DeepChem pack-
age, where Z is the attribute matrix of all nodes representing
the atoms and A is the adjacency matrix encoding the bonds.
We simply adopt a graph isomorphism network (GIN) [Xu et
al., 2019] on the molecular graph to learn atom representa-
tions which then are summarized into a drug feature vector
through a global max pooling (GMP). Concretely, the k-th
layer of the GIN encoder is defined as:

Z(k) = MLP(k)
(
(A+ (1 + ϵ)I)Z(k−1)

)
(2)

where MLP is a multi-layer perceptron, I is the identity
matrix, ϵ is a fixed scalar, and Z(0) = Z. Afterward,
we apply the GMP over all molecular graphs, we obtain
all drug features that can be compiled into XD ∈|D|×F .
For microbe nodes and disease nodes, we compile similar-
ity matrices SM ∈ {1, 0}|M|×|M| and SN ∈ R|N |×|N|

based on the methods provided by [Ma and Jiang, 2021;
Wang et al., 2007], which then are transformed into XM ∈
R|M|×F and XN ∈ R|N |×F by fully-connected networks.

Hypergraph Representation Learning
To encode high-order interaction information behind DMD
associations and absorb biological domain knowledge stored
in the node attributes, we adopt a simple yet effective hy-
pergraph convolutional network (HGCN) [Bai et al., 2021]
deployed on our constructed DMD hypergraph G = (V , E).
The HGCN defines a message-passing rule over hypergraphs,

where node embeddings are updated by aggregating the in-
formation from the nodes linked through the hyperedges.
Specifically, one step of hypergraph convolution is formu-
lated as:

H(l) = σ
(
D−1Y WB−1Y ⊤H(l−1)Θ(l−1)

)
(3)

where σ(·) indicate a nonlinear activation function (ReLU),
Θ is a learnable weight matrix, H(l) is the node embeddings
at the l-th layer and H(0) is initialized with X; D and B
are diagonal matrices respectively corresponding to the sums
of rows and columns in Y called degrees of nodes and hy-
peredges; W is also a diagonal matrix that stores hyperedge
weights and it is set equal to the identity matrix with appro-
priate dimensions because we assumed that the contribution
of each hyperedge in the hypergraph is the same. Finally,
we denote the learned node representations as H and given a
node v ∈ V , its representation hv is available from H .

Multi-View Contrastive Learning
The used HGCN may only learn limited knowledge from
the sparse hypergraph induced by inadequate DMD associ-
ations, which results in insufficiently powerful node repre-
sentations, especially for those nodes with few degrees. To
mitigate this limitation, we introduce CL with a DGI style,
as it permits more expressivity by maximizing the mutual
information between node-level and graph-level representa-
tions. To implement a DGI-style CL on our DMD hyper-
graph, the first we should do is to corrupt the DMD hyper-
graph to generate negative-sampled hypergraphs. Different
from DGI working on the underlying graphs where a single-
view negative graph produced by randomly perturbing edges
is useful enough, we focus on the DMD hypergraph where
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different hyperedge perturbation schemes would bring about
extremely diverse connectivity biases because the hyperedges
represent higher-order associations among multiple types of
nodes (bioentities) in the DMD hypergraph. These biases can
pronouncedly govern model training and lead to unsteerable
prediction. Thus, we consider multi-view negative hyper-
graphs corresponding to different perturbation schemes. The
multi-view setting is speculated to be helpful for more ratio-
nal and robust CL over the DMD hypergraph on the basis
of two-fold well-known facts: 1) compared with the single-
view setting, the multi-view setting involves more negative
examples (pairs) in the DGI-style CL, while adequate super-
visory signals are instrumental for modeling the complexity
of the DMD hypergraph; 2) synthesizing multi-view informa-
tion can reduce the single-view biases resulting from different
perturbation schemes. In what follows, we detail our multi-
view CL under several hyperedge perturbation schemes.

For each hyperedge (or triple-wise association) (d,m, n) in
the DMD hypergraph, we can corrupt it to obtain one or more
’fake’ triplets, and simultaneously we ensure the selected
’fake’ triplets are not in the original hyperedge set E . After
that, we can maintain ’fake’ hyperedge sets {Ẽz}Zz=1 and con-
struct corresponding negative hypergraphs {(X, Ỹ z)}Zi=z ,
where Z is the number of views we consider. To be more
specific, we adopt four types of perturbation schemes to gen-
erate four views of negative hypergraphs: View 1 (drug-mode
perturbation): we break the joint between drug d and the
microbe-disease pair (m,n) and then link (m,n) to another
drug d′ ∈ D to form the ’fake’ hyperedge (d′,m, n); View
2 (microbe-mode perturbation): likewise, we draw the ’fake’
hyperedge (d,m′, n) by linking the drug-disease pair (d, n)
to another microbe node m′ ∈ M; View 3 (disease-mode
perturbation): we link the drug-microbe pair (d,m) to an-
other disease node n′ ∈ N and produce the ’fake’ hyper-
edge (d,m, n′); View 4 (random perturbation): we break the
chain of the entities d, m and n and chain other ones ran-
domly selected from D, M and N to generate the ’fake’ hy-
peredge (d′,m′, n′). Then, the augmented multi-view node
embeddings {H̃z}Zz=1 are further computed from these per-
turbed hypergraphs {(X, Ỹ z)}Zz=1 through the same encoder
as HGCN deployed on the original hypergraph. h̃z

v is the z-th
counterpart of the node representation hv .

Similar to DGI, (hv, s) is deemed as a positive example
and (h̃z

v, s) is a negative example, where s is the graph-level
representation obtained through a global mean pooling layer:
H ∈ R|V|×F → s ∈ RF . Then, the objective of our multi-
view CL task is formulated as:

Lc = − 1

5|V|

(∑
v∈V

logΨ(hv, s)+

4∑
z=1

∑
v∈V

log
(
1− Ψ(h̃z

v, s)
)) (4)

where Ψ(·, ·) is the contrastive discriminator constructed by
a simple bilinear function Sigmoid(h⊤Ws) that estimates
similarities between the node-level representations and the
graph-level representation.

Model Training
For the DMD association prediction, we utilize the learned
embeddings of drug hd, microbe hm, and disease hn to out-
put the probability of their association p̂ through a scoring
function:

p̂ = MLP(hd ∥ hm ∥ hn) (5)
After that, the loss of the supervised prediction task can be
formulated as:

Lp = − 1

|T |
∑
i∈T

(pi log p̂i + (1− pi) log(1− p̂i)) (6)

where T is the training sets and p represents the true label.
The supervised prediction task jointly optimizes the model

with the aforementioned CL task during the training phase.
To implement the prediction task and the CL task simultane-
ously, we optimize the following objective function that com-
bines Eq.(4) and Eq.(6):

L = αLp + (1− α)Lc (7)

where α is a hyperparameter for the trade-off for different
loss components.

4 Experiment
4.1 Datasets
We obtain data from several public datasets. The drug-
microbe associations are collected from MDAD [Sun et al.,
2018], aBiofilm [Rajput et al., 2018], and DrugVirus [Ander-
sen et al., 2020], and the microbe-disease associations are ob-
tained from HMDAD [Ma et al., 2017], Disbiome [Janssens
et al., 2018], gutMDisorder [Cheng et al., 2020], and Pery-
ton [Skoufos et al., 2021]. Then we merge the drug-microbe
and microbe-disease associations into data schema <drug,
microbe, disease>, as such, we obtain 2,763 triplets of DMD,
involving 270 drugs, 58 microbes, and 167 diseases. For
drugs, their SMILES strings are downloaded from PubChem.
For microbes and diseases, their taxonomic information is
collected from NCBI’s Taxonomy and MeSH databases, re-
spectively. Compared with the number of conceivable DMD
combinations (270×58×167), the confirmed associations we
obtained are conspicuously insufficient, as when we use the
collected DMD associations vs all conceivable DMD associ-
ations, the proportion is 0.11%.

4.2 Baselines
We compare MCHNN with baselines as follows:

• Random Forest (RF) and multilayer perception
(MLP) are trained with the concatenation of the node
attributes as sample features.

• Graph convolutional network (GCN) [Welling and
Kipf, 2016] is deployed on binary association graphs,
i.e. drug-microbe and microbe-disease association
graphs. The predictions from GCNs are then combined
to predict DMD triple-wise associations.

• CP and Tucker [Kolda and Bader, 2009] are two stan-
dard tensor factorization models, which reconstruct the
known higher-order associations via tensor completion.
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• CoSTCo [Liu et al., 2019] designs a CNN-based ten-
sor completion model for capturing complex interac-
tions within the higher-order tensors.

• NeurTN [Chen and Li, 2020] proposes a neural tensor
network combining the tensor algebra and deep neural
network to capture the relationships among triplets.

• HypergraphSynergy [Liu et al., 2022] is a hypergraph
representation learning model, utilizing the HGCNs to
encode the triple-wise associations.

The implemented details of the above baselines are de-
scribed in Supplementary materials.

4.3 Experimental Settings
Evaluation protocols. We randomly split the dataset into
a 90% cross-validation (CV) set and a 10% independent test
set. On the CV set, the 5-fold CV is implemented. More-
over, we conduct independent testing, in which the model is
trained on the CV set and tested on the independent test set.
To evaluate the model’s ability to discover associations, we
focus on two top-n metrics: hit ratio (hit@n) and normal-
ized discounted cumulative gain (ndcg@n), which have been
widely used in recommendation tasks [Huang et al., 2018;
Huang et al., 2019]. For each test triplet, we pair it with a
number of sampled triplets (i.e., negative samples) that are
unobserved in the dataset, and rank the test triplet among
these sampled triplets according to their predicted scores. The
hit@n can measure whether a test triplet is retrieved within
the top-n ranked list and the ndcg@n accounts for the po-
sition of the hit by assigning higher scores to hits at top
ranks. Following previous studies [Chen and Li, 2020], we
employ four scenarios to produce negative samples. Scenario
1 (drug-level negative sampling): For the triplet (d,m, n), we
replace the drug d with a random new drug d′ so that the
triplet of (d′,m, n) is unobserved in the dataset. Scenario
2 (microbe-level negative sampling): we replace the triplet
(d,m, n) with (d,m′, n). Scenario 3 (disease-level negative
sampling): we replace the triplet (d,m, n) with (d,m, n′).
Scenario 4 (random negative sampling): we randomly sam-
ple a negative triplet (d′,m′, n′), which is unobserved in the
dataset. In each scenario, we generate 29 negative samples
for each test triplet and report the average metrics overall test
triplets. These scenario settings can comprehensively evalu-
ate the ability of the model to identify positive and negative
samples under these stringent conditions.
Implementation details. The number of GIN layer k for
drug node attributes and HGNN layer l for hypergraph en-
coding are both set to 3. In DMD association prediction, the
scoring function is a 3-layer MLP with Dropout. We fix α to
0.8 as they produced the best performance in hyper-parameter
optimization. Moreover, we employ Adam with a learning
rate of 0.005 to optimize the model and adopt early stopping
to control the training epochs based on validation loss. It is
worth mentioning that in the training step, we use the negative
samples generated from four negative sampling scenarios to
train together (note that in each scenario, we generate 2 neg-
ative samples for each train triplet), while in the test process,
the four scenarios are tested separately to evaluate the per-
formance of the model. More detailed settings, source code,

data set, and additional results of MCHNN are presented in
Supplementary materials1.

4.4 Performance Comparison
Figure 2 shows the performances of MCHNN and baselines
on the CV set. According to the results, MCHNN surpasses
other baselines on almost all scenarios by achieving the high-
est average hit@n/ndcg@n score of 0.9340/0.9280, suggest-
ing its effectiveness in DMD association prediction. We
also have the following observations: (1) Compared with RF,
MLP, and NeurTN which only consider node feature informa-
tion, and GCN which only considers information from pair-
wise associations, MCHNN significantly exceeds all these
baselines in most scenarios, which indicates that the informa-
tion of associations needs to be considered and only consid-
ering pair-wise associations can not extract sufficient infor-
mation from known DMD associations. (2) CP, Tucker, and
CoSTCo, which can model higher-order associations, achieve
better performances than RF, MLP, GCN, and NeurTN, which
implies that modeling high-order interactions among multiple
entities can enhance the prediction for DMD associations. (3)
HypergraphSynergy, which utilizes hypergraph to model the
triple-wise associations, achieves a suboptimal performance
in DMD association prediction, implying the advantage of
utilizing hypergraph to model DMD triple-wise associations.
Our model MCHNN still makes improvements over Hyper-
graphSynergy. It may be attributed to the reason that the
multi-view CL task with four task-specific augmentations can
guide the HGCN to learn more expressive and discrimina-
tive representations and further improve the performances of
DMD association prediction.

Further, we focus on the performances of MCHNN and
baselines on the independent test (Supplementary Figure 3).
As expected, MCHNN outperforms all the baselines in al-
most all scenarios and exceeded the two best baselines: Hy-
pergraphSynergy and CoSTco by 0.91% and 6.20% in aver-
age hit@5 values, and 1.19% and 6.37% in average ndcg@5
values, validating its high generalization ability.

To verify the effectiveness of MCHNN for learning accu-
rate DMD representations, we conduct the t-SNE [Van der
Maaten and Hinton, 2008] visualization on MCHNN and
two deep learning-based models (HypergraphSynergy and
NeurTN) using the embeddings learned from the indepen-
dent test. As illustrated in Figure 3, MCHNN can better
distinguish positive samples from negative samples than the
compared methods and acquires the best silhouette score of
0.5124, which indicates that our model MCHNN can indeed
learn more expressive and discriminative representations for
DMD association prediction. The details and rest results are
shown in Supplementary Figure 4.

4.5 Ablation Study
To investigate the necessity of each component in MCHNN,
we conducted several comparisons between MCHNN and its
variants on the independent test:

• MCHNN without contrastive learning (w/o CL) re-
moves the multi-view CL task from MCHNN.

1https://github.com/Liuluotao/MCHNN
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Figure 2: 5-CV performance of MCHNN and baselines in four scenarios in terms of hit@n and ndcg@n.
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Figure 3: The t-SNE visualization of three models on scenario 4.

• MCHNN without HGCN (w/o HG) removes the hy-
pergraph representation learning and directly uses bio-
chemical attributes of drugs, microbes, and diseases for
DMD association prediction.

• MCHNN without biochemical attributes of nodes
(w/o BA) utilizes one-hot encoding instead of biochem-
ical attributes of nodes in the hypergraph.

• MCHNN without multi-view augmentations (w/o
MA) (w/o MA-i) generates four augmented hypergraphs
under the ordinary scheme of View 4 (random perturba-
tion). (w/o MA-ii) fuses the multi-view augmented hy-
pergraphs into a single hypergraph in the CL task. (w/o
MA-iii-dru, mic, dis, ran) removes the augmented hy-
pergraph of the corresponding View.

We first investigate the importance of various basic com-
ponents to our model. As we can see from Figure 4 (a),
when basic components of MCHNN have been removed, the
performances of corresponding variants significantly decline,
indicating that these components all contribute to the pre-
diction. Besides, we have the following observations: (1)
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Figure 4: Average values of MCHNN and its variants on four sce-
narios in ablation study.

MCHNN(w/o HG) gets the worst results, and all metrics
have been significantly dropped, which demonstrates the pre-
diction performance is boosted mostly by the HGCN and
HGCN is the core component of the model architecture. (2)
MCHNN(w/o CL) gets an obvious performance drop, which
indicates that our designed CL can indeed learn more expres-
sive and discriminative representations and enhance the per-
formance of DMD association prediction. (3) MCHNN(w/o
BA) also gets a performance drop on almost all metrics,
which shows that the biochemical information from drugs,
microbes, and diseases can provide useful domain knowledge
for DMD association prediction.

We further investigate the importance of different aug-
mented hypergraphs and multi-view augmentation strategies
to our model. As we can see from Figure 4 (b), MCHNN
still achieves the best performance in most scenarios, which
demonstrates that our multi-view CL can effectively inte-
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Methods MCHNN w/o CL

hits@1 hits@3 hits@5 hits@1 hits@3 hits@5

[0, 50] 0.6736 0.8299 0.8785 0.6840 0.7882 0.8160
[51, 100] 0.9229 0.9840 0.9894 0.9016 0.9335 0.9548
[101,+∞] 0.9909 0.9955 1.0000 0.9955 1.0000 1.0000

Table 1: Average values of MCHNN and w/o CL on four scenarios
in terms of average degrees of nodes in triplets.

grate different augmented hypergraphs to promote DMD as-
sociation prediction. We also have the following observa-
tion: (1) MCHNN(w/o MA-i) achieves the worst perfor-
mance, which demonstrates that the success of our model is
due to the rational design of the multi-view augmentations
from 4 views with different semantics. (2) The comparison
of MCHNN and MCHNN(w/o MA-ii) reveals that simply
and directly fusing all augmented hypergraphs is insufficient
for DMD association prediction, and task-specific augmen-
tations can learn more discriminative information from the
drug-microbe-disease triple-wise associations. (3)MCHNN
almost exceeds all variants of MCHNN(w/o MA-iii), es-
pecially MCHNN(w/o MA-iii-dru, mic, dis), which shows
that every augmented hypergraph can enhance the prediction
for DMD associations, especially the augmented hypergraph
that correspondingly and independently generated for DMD
triple-wise associations.

4.6 Effectiveness of Contrastive Learning on
Sparse DMD Hypergraph

In this section, we aim to furtherly verify whether our de-
signed CL is effective on sparse DMD hypergraph induced
by insufficient DMD associations. Firstly, we partition the
independent test set into three groups, [0,50], [51,100], and
[101,+∞], according to the average node degree, which is
calculated by the average of the three node degrees in each
test triplet. Next, we compute the evaluation metrics (i.e.,
hit@n) of the test triplets for the MCHNN in the correspond-
ing groups, and then calculate the average metrics on four
scenarios. Moreover, we also compute the metrics for our
model without contrastive learning (w/o CL) under the same
scenarios. The results are shown in Table 1.

According to the results in Table 1, we can mainly draw the
following observations: (1) The higher the average degree of
the triplet, the better the prediction performance of the mod-
els, which may be owing that the triplets with low-degree will
form sparse DMD hypergraph, and the models may only learn
limited knowledge from it, thus results in insufficiently pow-
erful node representations for DMD association prediction.
(2) Compared with w/o CL, the performance of MCHNN is
significantly increased. Specifically, in the groups of [0,50]
and [51,100], MCHNN exceeds w/o CL by 6.25% and 3.46%
in average hit@5 values. This indicates that the use of CL
greatly improves the performance of the model in the spare
DMD hypergraph induced by low-degree triplets, which fur-
ther proves that CL can alleviate the issue caused by insuffi-
cient confirmed associations that occurs in our DMD associ-
ation prediction scenarios.

5 Conclusion
In this paper, we propose a hypergraph-based model with
multi-view CL for DMD association prediction, namely
MCHNN. MCHNN constructs a hypergraph to express DMD
associations in a natural way and utilizes HGCN to encode it.
To tackle the trammel of HGCN’s expressive power caused
by the sparse hypergraph, we implement a multi-view CL
on the DMD hypergraph with four task-specific augmenta-
tions schemes, guiding the HGCN to capture more expres-
sive and discriminative representations for sparse associa-
tions. The experimental results show the superior perfor-
mances of MCHNN over baselines, and the multi-view CL
can indeed tackle the trammel of expressive power caused by
the sparse hypergraph.

In the future, we have several directions to improve DMD
association prediction, such as incorporating more diverse
biological association information (e.g., drug-target interac-
tions, gene-disease interactions) into the hypergraph, con-
sidering more diverse entity features (e.g., microbe genomic
sequence feature, disease phenotypes feature), and further
predicting specific types of drug-microbe associations and
microbe-disease associations(e.g, increase/decrease relation-
ships between microbes and diseases).
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