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Abstract

Synthesis-based steganography without embedding
(SWE) methods transform secret messages to con-
tainer images synthesised by generative networks,
which eliminates distortions of container images
and thus can fundamentally resist typical steganal-
ysis tools. However, existing methods suffer from
weak message recovery robustness, synthesis fi-
delity, and the risk of message leakage. To ad-
dress these problems, we propose a novel robust
steganography without embedding method in this
paper. In particular, we design a secure weight
modulation-based generator by introducing secure
factors to hide secret messages in synthesised con-
tainer images. In this manner, the synthesised re-
sults are modulated by secure factors and thus the
secret messages are inaccessible when using fake
factors, thus reducing the risk of message leak-
age. Furthermore, we design a difference predic-
tor via the reconstruction of tampered container im-
ages together with an adversarial training strategy
to iteratively update the estimation of hidden mes-
sages. This ensures robustness of recovering hid-
den messages, while degradation of synthesis fi-
delity is reduced since the generator is not included
in the adversarial training. Extensive experimen-
tal results convincingly demonstrate that our pro-
posed method is effective in avoiding message leak-
age and superior to other existing methods in terms
of recovery robustness and synthesis fidelity.

1 Introduction
Steganography refers to the hiding of a secret message into
a media carrier [Bandyopadhyay et al., 2008], such as an
image [Cheddad et al., 2010], so as to conduct concealed
communication by transmitting the carrier in a public chan-
nel [Marvel et al., 1999], such as the Internet or social
software. Traditional steganography methods directly em-
bed the secret message into the carrier image by modulating
some unnoticeable components, such as the least significant
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bits of pixel values [Van Schyndel et al., 1994] or texture-
rich areas [Holub and Fridrich, 2012]. To further improve
hidden capacity and message recovery robustness, various
deep learning-based steganography methods have been pro-
posed [Baluja, 2017; Zhu et al., 2018]. However, the embed-
ding processing inevitably leads to abnormalities of statisti-
cal characteristics of the carrier image and, in consequence,
to an inherent risk of detection by machine learning-based
steganalysis tools.

To overcome this issue, steganography without embedding
(SWE) methods can be designed to implement a mapping re-
lationship between secret messages and hash sequences to
select a natural image from a prepared database [Zhou et
al., 2015]. However, the required image quantity of such
mapping-based SWE methods is exponential to their hidden
capacity, which limits their efficacy. To address this problem,
synthesised-based SWE methods [Hu et al., 2018] implicitly
represent a secret message by synthesising a container image
using deep generative networks, such as GANs [Goodfellow
et al., 2020]. These methods can hide more than 100 message
bits in one image, which is several times the hidden capacity
of mapping-based methods. Due to this relatively high hid-
den capacity and the modification-free hiding process, which
is inherently immune to typical steganalysis tools, synthesis-
based SWE has gained wide interest.

However, there are still a number of drawbacks that hin-
der real-world applications based on existing synthesis-based
SWE methods: (1) most of them are weak in terms of robust-
ness because they fail to ensure accurate message recovery
under various image attacks; (2) existing SWE methods de-
signed to enhance robustness train their generator using ad-
versarial training, which leads to significant degradation of
image synthesis fidelity; and (3) they suffer from the risk of
message leakage, since, due to the mapping between secret
messages and synthesised containers, if someone else who
owns the extractor they can also recover hidden messages.

To tackle the above drawbacks, in this paper, we propose
Secure container synthesis and Iterative message recovery-
based Steganography Without Embedding (SI-SWE) as a
novel robust SWE method. SI-SWE consists of a secure
weight modulation-based generator, which constructs a trans-
formation from secret messages to synthesised images, and
a robust difference predictor, which predicts the difference
between two unknown messages by contrasting their trans-
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formed images. Our proposed secure container synthesis
mechanism introduces a secure factor to modulate the synthe-
sis of the secure generator, while the iterative message recov-
ery updates an estimate of the secret message using the pre-
dicted difference for a pair of container images: the original
and one that is reconstructed from the estimate by the genera-
tor. Furthermore, we design a novel adversarial training strat-
egy that uses various image attacks to only train the difference
predictor. Separating the training of the generator and the dif-
ference predictor has two benefits. On one hand, using an
adversarial training strategy to train the difference predictor
improves the recovery robustness, since the difference pre-
dictor can accurately predict the differences from tampered
images and the iterative mechanism also reduces the impact
of attacks through the reconstruction. On the other hand,
the generator is trained without considering attacks to reduce
degradation caused by adversarial training, which guarantees
high synthesis fidelity. In addition, secure factors are intro-
duced to modulate the transformation of secret messages by
the generator, which means that different secure factors will
lead to different synthesised containers for hiding the same
message. In this manner, using fake factors will mislead the
recovery of secret messages since the reconstructed images
cannot accurately represent their message differences against
the container images, which in turn effectively prevents mes-
sage leakage.

Our main contributions in this paper can be summarised as
follows:

• Robust message recovery: we design a difference pre-
dictor via iterative reconstructions of container images
together with an adversarial training strategy for mes-
sage recovery, leading to strong robustness to accurately
recover hidden secret messages even from seriously tam-
pered container images;

• Enhanced undetectability: we design different strate-
gies for the training of the weight modulation-based
generator and the difference predictor, with the former
trained without considering attacks and the latter us-
ing adversarial training. As a result, SI-SWE reduces
degradation caused by adversarial training and guaran-
tees high synthesis fidelity to minimise the risk of con-
tainer images being suspected, while ensuring high re-
covery robustness;

• Avoiding message leakage: we introduce secure factors
to modulate the transformation from secret messages to
synthesised container images so that the differences be-
tween different messages can only be accurately pre-
dicted from their synthesising images modulated by the
same secure factor. This ensures that hidden messages
are inaccessible without knowing the correct factor, sig-
nificantly reducing the risk of message leakage.

Our code is made available at https://github.com/Lemok00/
SI-SWE.

2 Related Work
2.1 Steganography Based on Embedding
Traditional steganography embeds a secret message into a
carrier image through (minimal) modifications. [Van Schyn-

del et al., 1994] first proposes to replace the least significant
bits (LSBs) of pixel values in images with secret message
bits, while [Sharp, 2001] extends this method by adjusting the
whole pixel values to avoid “pairs of values” [Westfeld and
Pfitzmann, 1999]. For resistance against steganalysis, [Pevnỳ
et al., 2010] introduces high-dimensional models to minimise
the weighted difference of feature vectors, while [Holub and
Fridrich, 2012] embeds secret bits into texture-rich and noisy
image regions, and [Holub et al., 2014] extends this method
to arbitrary domains.

Deep learning-based steganography approaches yield im-
provements in terms of undetectability, capacity and robust-
ness. For improved undetectability, [Tang et al., 2017;
Tang et al., 2020] propose the use of GANs or a reinforce-
ment learning framework to predict probability maps for
modification, which minimises pixel-level embedding costs.
To enlarge the hidden capacity, [Baluja, 2017; Baluja, 2019]
train deep networks to hide full-size images into another im-
age. [Shaoping et al., 2021] employs invertible neural net-
works to improve the recovery quality with a large capac-
ity. For improved robustness, [Zhu et al., 2018; Wengrowski
and Dana, 2019] train DL-based models against perturbation
pipelines or specialised datasets to ensure accurate message
recovery from tampered or camera-captured images. Further-
more, [Xu et al., 2022] proposes a normalising flow which
models the distribution of redundant components to recover
high-quality images from tampered images.

However, embedding-based steganography methods carry
the inherent risk that any modification on natural images
leaves traces in statistical characteristics, resulting in their
lack of resistance against steganalysis tools.

2.2 Steganography Without Embedding
To overcome this issue, [Zhou et al., 2015] proposes to hide
messages by choosing unmodified natural images whose hash
sequences are the same as message segments. To improve
both hidden capacity and recovery robustness, image hashes
can be generated based on the scale invariant feature trans-
form (SIFT) [Zheng et al., 2017], discrete wavelet trans-
form coefficients [Liu et al., 2020], or objects recognised
by a Faster R-CNN [Luo et al., 2020]. Moreover, [Zou et
al., 2022] uses an unsupervised clustering algorithm for the
image database to improve efficiency and robustness. How-
ever, such mapping-based SWE methods require a number of
database images exponential to the hidden capacity, limiting
the hidden capacity.

Significantly higher hidden capacities can be achieved
through image synthesis-based methods. [Hu et al., 2018]
first proposes to train GANs [Goodfellow et al., 2020] with an
extractor to achieve concealed message transmission through
synthesised container images. To improve recovery reliabil-
ity and synthesise diversity, [Liu et al., 2022] disentangles
images into structure and texture representations, and synthe-
sise a container image by a randomly sampled texture and a
structure representing a message. For application in online
social networks, [You et al., 2022] trains both the message
hiding and recovery modules against a differential approxi-
mation of JPEG compression to synthesise container images
which can defend against all possible attacks in transmission
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Figure 1: Overview of our proposed SI-SWE.

channels.

3 Proposed Method
3.1 Overview
An overview of our proposed SI-SWE method is given in Fig-
ure 1. Our approach consists of a secure container synthesis
mechanism for message hiding, and an iterative message re-
covery mechanism for message recovery. For message hid-
ing, we first map a secret message m to a secret vector z and
then input z together with a secure factor f to a generatorG to
synthesise a container image x which can then be transmitted
through noisy channels with various image attacks. For mes-
sage recovery, the hidden secret message is recovered using
a difference predictor P together with the same factor f and
the generatorG to iteratively update an estimate vector ẑt and
reconstruct the attacked container image x̂. In the following,
we explain the key modules of SI-SWE in detail.

3.2 Mapping Processes
Instead of directly inputting a message m to the generator,
we take a vector z to achieve flexible hidden capacity and
construct a mapping relationship between z and m. For this,
we employ the mapping processM and its inverse process M̃
proposed in [Liu et al., 2022], where M maps m to z through
mapping its every σ-bit segment si to a float value zi in range
[−1, 1] as

zi = (hi + 0.5)/2σ−1 − 1, (1)
where hi is the decimal value of si.
M̃ performs the inverse mapping

hi = ⌊(zi + 1)× 2σ−1⌋, (2)

and recovers the segment si from hi.

3.3 Generator
In SI-SWE, the key module for message hiding is the gener-
ator G, which takes a secret vector z and a secure factor f as
input to synthesise a container image x as

x = G(z, f) = Gsyn(Gtrans(z), Gmap(f)), (3)
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Figure 2: Generator training procedure.

where Gtrans(·) transforms z to a high-dimension feature
map, Gmap(·) maps f to a latent vector, and Gsyn(·) adopts
StyleGAN2 [Karras et al., 2020] as its backbone architecture
to synthesise high fidelity images.

The training procedure of G is illustrated in Figure 2,
where three images are firstly synthesised using different
combinations of secret vectors and secure factors as

x11 = G(z1, f1),

x21 = G(z2, f1),

x12 = G(z1, f2), (4)

where, based on to the mapping interval of M , z1 and z2

each consist of nz elements sampled from a uniform distribu-
tion U(−1, 1), while f1 and f2 are sampled from a Bernoulli
distribution B(nf , 0.5) with nf the length of f and 0.5 the
probability.

To train the generator to synthesise containers modulated
by secure factors for message hiding, we use the difference
predictor P to calculate a prediction loss Lpred and an inverse
loss Linv . Since x21 and x11 are synthesised using the same
factor but with different vectors, Lpred is used to ensure their
difference vector d = (z1 − z2) can be accurately predicted,
and we thus define the loss as

Lpred =∥ P (x11, x21), d ∥1, (5)

where ∥ · ∥1 denotes the L1 loss. On the other hand, x12 is
synthesised using the same vector as x11 but with a different
factor. The inverse loss Linv is thus designed to prevent mes-
sage recovery using fake factors by maximising the predicted
difference and is obtained as

Linv = max(0, τinv− ∥ P (x11, x12), 0 ∥1), (6)

where τinv refers to a margin greater than 0 and indicates that
the difference vector whose norm exceeds the margin will not
contribute to the loss.

To ensure realistic image synthesis, a generative loss term
Lgen is introduced to make all synthesised images indiscrim-
inative from real images and is defined as

Lgen =
∑

x∈X
softplus(−D(x)), (7)

where X = {x11, x12, x21} and D denotes a discriminator
trained against the generator.
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Figure 3: Difference predictor training procedure.

In addition, since using only the generative loss results in
the generator synthesising images of a limited number of con-
tents and styles [Kazemi et al., 2019], we introduce content
and style diversity losses, Lcd and Lsd, to enhance synthesis
diversity. For this, we train the generator to synthesise im-
ages with content diversity while using different secret vec-
tors, and with style diversity while using different secure fac-
tors and define the loss terms as

Lcd = max(0, τc − Lcc(x
11, x21)), (8)

Lsd = max(0, τs − Lsc(x
11, x12)), (9)

where Lcc and Lsc refer to the content and style consistent
losses proposed in [Kazemi et al., 2019], and τc and τs are
margins. We thus associate the secret vectors with the syn-
thesised contents since the locality of contents makes the re-
covery of vectors more reliable, and the secure factors with
the synthesised styles since the globality of styles will lead to
a significant recovery error when there is a minor difference
between the input factors.

The over loss of the generator is then obtained as

LG =λpredLpred + λinvLinv + λgenLgen

+ λcdLcd + λsdLsd, (10)

where the hyper-parameters λpred, λinv , λgen, λcd, λsd con-
trol the impact of each loss term. It should be noted that, to
reduce the degradation of synthesis performance, our genera-
tor is trained without considering any image attacks.

3.4 Difference Predictor
As shown in Figure 1(c), we design a difference predictor P
to predict the difference between a pair of images x̂ and ŷt−1

as

d̂t = P (x̂, ŷt−1) = Phead(Pref (Pfeat(x̂), Pfeat(ŷt−1))),
(11)

where Pfeat refers to a feature encoder, Pref to a reference
attention module [Yu et al., 2021b], and Phead to a convolu-
tional prediction head.
Pref fuses encoded features ψx and ψy as

Pref (ψx, ψy) = ψy + γ · v(ψy)α
T , (12)

with
α = softmax(k(ψx)

T q(ψx)), (13)
where γ is a learnable parameter, and k(·), q(·), v(·) are three
functions implemented by 1× 1 convolutions.

attack details/parameters

quantisation (QT) quantise images to 8-bit RGB format
Gaussian noise (GN) mean = 0, variance = {0.06, 0.08, 0.10}
salt & pepper noise (SPN) noise density = {0.06, 0.08, 0.10}
speckle noise (SN) variance = {0.06, 0.08, 0.10}
JPEG compression (JC) quality factor = {90, 70, 50}
WebP compression (WC) quality factor = {90, 70, 50}
Gaussian filter (GF) variance = 1, window = {5×5, 9×9, 13×13}
averaging filter (AF) window = {5×5, 9×9, 13×13}
median filter (MF) window = {5×5, 9×9, 13×13}

Table 1: Attacks used in adversarial training.

The training procedure of the difference predictor is illus-
trate in Figure 3 and consists of three parts:

(1) Attack images. To train the difference predictor for
robust message recovery, we first tamper a container image x
to obtain an attacked container x̂ as

x̂ = A(x), (14)

where A denotes an attack randomly selected from Table 1,
and the gradient back-propagation is stopped at x̂ to avoid the
effect of non-differential operations in attacks.

(2) Initialise estimates. We initialise an estimate vector
ẑ0 by randomly sampling it from the uniform distribution
U(−1, 1) and synthesise a reconstructed container ŷ0 through
the generator G as

ŷ0 = G(ẑ0, f), (15)

where f is the secure factor used to hide the secret vector into
the container image x.

(3) Update estimates. We update the estimate vector ẑ
and the reconstructed container ŷ iteratively T times, where
T is uniformly sampled from {1, ..., Tmax}. In particular, in
the t-th iteration (1 ≤ t ≤ T ), the difference predictor firstly
contrasts x̂ and ŷt−1 to predict a difference vector d̂t, and the
estimate vector ẑt−1 is then updated to ẑt as

ẑt = ẑt−1 ⊕ d̂t, (16)

where ⊕ denotes an element-wise addition operation. Finally,
the reconstructed container is updated, using ẑt and f , as

ŷt = G(ẑt, f). (17)

We calculate a vector recovery loss

Lt
vec =∥ d̂t, (z − ẑt−1) ∥1, (18)
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QT GN SPN SN JC WC GB AB MB average capacity

DCGAN-Steg 94.83% 69.12% 60.49% 77.99% 62.48% 62.93% 64.34% 56.41% 57.48% 64.54% 100 bits
SAGAN-Steg 96.60% 63.96% 57.02% 78.28% 60.55% 63.25% 66.34% 47.70% 51.01% 61.74% 200 bits
SSteGAN 97.87% 91.33% 80.13% 95.84% 88.38% 90.45% 96.94% 83.90% 85.24% 89.21% 100 bits
WGAN-Steg 91.65% 74.03% 63.01% 82.16% 84.94% 85.73% 83.68% 72.71% 74.37% 77.87% 100 bits
GDA-Steg 72.11% 69.82% 71.74% 72.81% 73.26% 73.61% 73.90% 65.69% 66.83% 70.98% 256 bits
IDEAS 100% 50.51% 50.19% 57.89% 49.84% 50.01% 49.22% 50.06% 51.94% 52.20% 256 bits
CIS-Net-32 99.89% 98.50% 89.83% 99.63% 99.83% 99.24% 98.67% 82.35% 83.97% 94.12% 32 bits
CIS-Net-64 76.67% 75.12% 67.75% 76.44% 76.67% 76.59% 73.79% 70.13% 71.94% 73.62% 64 bits

SI-SWE-64 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 64 bits
SI-SWE-256 99.74% 95.47% 99.74% 98.83% 99.02% 98.93% 99.74% 99.74% 99.74% 98.92% 256 bits

Table 2: Average recovery accuracy results for all methods under different attacks on all three datasets. The best results are bolded, the
second-best underlined.

and an image reconstruction loss

Lt
img =∥ ŷt, x̂ ∥1 (19)

of the t-th iteration, where z is the hidden secret vector. The
total loss of the difference predictor is then obtained as

LP =
∑T

t=1
(λvecL

t
vec + λimgL

t
img), (20)

where λvec and λimg balance vector recovery and image re-
construction.

4 Experimental Results
4.1 Experimental Setup
To demonstrate the superiority of SI-SWE, we compare it
with seven state-of-the-art synthesis-based SWE methods,
namely DCGAN-Steg [Hu et al., 2018], SAGAN-Steg [Yu et
al., 2021a], SSteGAN [Wang et al., 2018], WGAN-Steg [Li
et al., 2020], GDA-Steg [Peng et al., 2022], IDEAS [Liu et
al., 2022], and CIS-Net [You et al., 2022]. We use three pub-
licly available datasets: LSUN [Yu et al., 2015] Bedrooms,
LSUN Churches, and FFHQ [Karras et al., 2019] to train the
models. All images in the datasets are resized to a resolu-
tion of 256×256 pixels. We train SI-SWE with two different
input dimensions, namely SI-SWE-64 with nz = nf = 64,
and SI-SWE-256 with nz = nf = 256. The training hyper-
parameters are set to λpred = λvec = 10, λinv = 5, and
τinv = 0.75 to ensure both robust message recovery and pre-
venting message leakage, while we set λcd=4 to enhance the

StegExpose XuNet YeNet

DCGAN-Steg 0.594 0.564 0.556
SAGAN-Steg 0.587 0.508 0.550
SSteGAN 0.422 0.499 0.506
WGAN-Steg 0.609 0.539 0.552
GDA-Steg 0.615 0.553 0.507
IDEAS 0.477 0.413 0.518
CIS-Net-32 0.590 0.458 0.497
CIS-Net-64 0.623 0.435 0.502

SI-SWE-64 0.523 0.425 0.503
SI-SWE-256 0.507 0.452 0.497

Table 3: AUC detection results of different steganalysis tools for all
methods.

diversity of the synthesised images’ contents. We further set,
empirically, Tmax = 10, λgen = 2 and, λsd = λimg = τc =
τs = 1, while σ in the mapping process is set to 1.

4.2 Message Recovery Robustness
To compare the robustness of SI-SWE with other SWE meth-
ods, we evaluate their recovery accuracies under the attacks
listed in Table 1, where each attack (except image quantisa-
tion) adopts 6 different parameters with only 3 of the 6 having
been used during the adversarial training. The average accu-
racy results for all methods and all attacks are reported in
Table 2.

From there, it is evident that our SI-SWE method achieves
superior message recovery robustness, with SI-SWE-64
yielding 100% under all attacks, and SI-SWE-256 giving the
second best average accuracy of 98.92%. Although CIS-Net-
32 obtains slightly higher accuracies for some attacks com-
pared to SI-SWE-256, it supports only a significantly lower
hidden capacity (32 vs. 256 bits), which is also difficult to
expand as demonstrated by the severely reduced accuracy re-
sults for CIS-Net-64 (73.62% vs. 94.12%).

4.3 Container Undetectability
To evaluate the undetectability of the SWE methods, we
test their synthesised container images in terms of resistance
against steganalysis tools and synthesis fidelity.

For resistance evaluation, we select three well-known
steganalysis tools, namely StegExpose [Boehm, 2014],

Bedrooms Churches FFHQ average

DCGAN-Steg 293.16 108.24 115.31 172.24
SAGAN-Steg 162.89 100.60 82.24 115.24
SSteGAN 177.51 220.19 173.61 190.44
WGAN-Steg 147.71 181.56 67.89 132.39
GDA-Steg 74.80 147.77 82.36 101.64
IDEAS 16.88 15.90 32.88 21.89
CIS-Net-32 54.26 31.57 42.22 42.68
CIS-Net-64 152.01 26.53 44.34 74.29

SI-SWE-64 14.61 14.65 30.53 19.93
SI-SWE-256 13.86 11.68 28.23 17.92

Table 4: FID results for all methods. The best results are bolded,
the second-best underlined.
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Figure 4: Examples of container images synthesised by all methods.

XuNet [Xu et al., 2016], and YeNet [Ye et al., 2017]. We
obtain the receiver operating characteristic (ROC) curves of
detection results and report the area under the curve (AUC)
values in Table 3. As we can see from thee, all SWE meth-
ods achieve AUC values close to 0.5, which means that de-
tection by the steganalysis tools is close to random guessing.
This confirms that SWE methods are fundamentally immune
to the detection by current steganalysis tools, as they synthe-
sise realistic images to represent the secret message without
modifications.

The synthesis fidelity of synthesised images determines
their imperceptibility to visual inspection, and is determined
by the authenticity and diversity of the generated images. We
use the Fréchet inception distance (FID), a widely employed
synthesis fidelity metric, to evaluate the synthesis fidelity of
all SWE methods, and report the obtained results in Table 4.
As is apparent from there, SI-SWE outperforms all othe SWE
methods on all three datasets, with SI-SWE-64 yielding an
average FID of 19.93, and SI-SWE-256 an even better aver-
age FID of 17.92 as it takes higher-dimensional secret vectors
as input which leads to more diverse characteristics. Con-
tainer images generated by SI-SWE are thus less likely to be
suspected compared to images synthesised by the other ap-
proaches.

Examples of images synthesised by all SWE methods are
shown in Figure 4 to also allow a more subjective evaluation.
Looking at the container images generated by SI-SWE, it is

evident that they are of high authenticity and diversity, and
that it would be very hard to identify them as synthesised im-
ages.

4.4 Avoiding Message Leakage

To evaluate SI-SWE’s effectiveness in avoiding message
leakage, we evaluate the recovery accuracies to recover mes-
sages from quantised (QT) images using different secure fac-
tors: the real factor and other randomly sampled fake fac-
tors. Table 5 lists the obtained results and shows significantly
decreased recovery accuracies when using fake factors com-
pared to using the real secure factor for SI-SWE-64 and SI-
SWE-256. This confirms that our proposed method ensures
that hidden messages are inaccessible without knowing the
real factor, thus significantly reducing the risk of message
leakage.

Bedrooms Churches FFHQ

SI-SWE-64 100% / 70.19% 100% / 69.12% 100% / 69.10%
SI-SWE-256 99.43% / 48.72% 100% / 69.04% 99.81% / 68.24%

Table 5: Recovery accuracies for quantised images using real secure
factors (left number in each entry) and fake factors (right number).
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accuracy FID

SI
-S

W
E

-6
4 without attacks 55.95% 15.67

CIS-Net 98.79% 23.87
SI-SWE 100% 19.93

SI
-S

W
E

-2
56 without attacks 57.81% 14.72

CIS-Net 83.85% 21.74
SI-SWE 98.92% 17.92

Table 6: Results for different adversarial training strategies. The
results for our proposed strategy are bolded.

4.5 Ablation Studies
Adversarial Training Strategies
We train SI-SWE using the following adversarial training
strategies and compare the resulting performance in terms of
recovery and synthesis: without attacks as a baseline, using
the strategy of CIS-Net, and using our proposed strategy. Ta-
ble 6 shows the obtained average recovery accuracies and FID
scores, and demonstrates that our proposed strategy signif-
icantly enhances the robustness of message recovery, since
more attacks are used, and effectively reduces degradation of
image synthesis fidelity due to the the separated training of
generator and difference predictor.

τinv Settings
We perform experiments to investigate how different settings
of τinv impact the performance of SI-SWE. For this, we eval-
uate the FID scores together with the recovery accuracies
from quantised (QT) images for different factor bit error rates
(f-BERs) between the real and fake factors. The factor-BER
is defined as

f-BER =
number of different bits

number of total bits
× 100%, (21)

and we use three f-BERs in our experiments, f-BER1 =
12.5%, f-BER2 = 25%, and f-BER3 = 50%. We evaluate
for τinv = {0.25, 0.5, 0.75, 1}, and report the results in Ta-
ble 7. From there, we can observe that there is a trade-off
between synthesis fidelity performance of and the ability to
avoid message leakage. When τinv increases, recovery accu-
racies decrease to prevent access to hidden messages, while

accuracy

τinv f-BER1 f-BER2 f-BER3 FID

SI
-S

W
E

-6
4 0.25 94.65% 90.20% 87.37% 17.44

0.5 80.48% 76.45% 73.06% 18.18
0.75 74.62% 72.74% 71.71% 19.93

1 70.60% 67.14% 66.24% 24.67

SI
-S

W
E

-2
56

0.25 92.45% 90.93% 90.04% 16.81
0.5 78.05% 76.72% 75.74% 17.11

0.75 71.82% 66.56% 62.35% 17.92
1 68.74% 65.24% 58.03% 20.87

Table 7: FID and recovery accuracies for quantised images for
different f-BERs and different settings of τinv . The results for
τinv = 0.75, our recommended setting, are bolded.

Lcd Lsd λcd Bedrooms Churches FFHQ average

SI
-S

W
E

-6
4

4 14.61 14.65 30.53 19.93
1 27.78 16.05 56.94 33.59

% - 29.98 26.62 63.46 40.02
% 4 16.75 14.98 38.78 23.50

% % - 114.93 37.33 122.00 91.42

SI
-S

W
E

-2
56

4 13.86 11.68 28.23 17.92
1 14.56 14.99 48.83 26.12

% - 32.43 27.44 53.26 37.71
% 4 15.50 13.25 33.80 20.85

% % - 94.70 58.08 36.98 63.25

Table 8: Diversity loss ablation results in terms of FID.%indicates
removing the corresponding loss term, and the results for λcd = 4,
our recommended setting, are bolded.

FID scores increase indicating worse synthesis fidelity. Com-
pared to τinv = {0.25, 0.5}, setting τinv = 0.75 much bet-
ter avoids message leakage while FID scores increase only
slightly, whereas τinv = 1 significantly compromises the
synthesis fidelity so that container images are more likely to
arouse suspicion. We consequently recommend τinv = 0.75
as the best balance to avoid message leakage while guaran-
teeing high synthesis fidelity to enhance undetectability.

Diversity Loss Settings
To investigate the impact of the diversity loss terms Lcd and
Lsd, and the hyper-parameter λcd, on the synthesis fidelity of
SI-SWE, we evaluate the FID scores when removing the loss
items and varying the weight parameter. As shown in Table 8,
removing the diversity loss term or reducing λcd leads to de-
graded fidelity, demonstrating the effectiveness and necessity
of this component, while we recommend setting λcd to 4.

5 Conclusions
In this paper, we have proposed SI-SWE, a synthesised-based
SWE method which is fundamentally immune to detection
by steganalysis tools. SI-SWE not only guarantees high im-
age synthesis fidelity, but also achieves reliable message re-
covery under a variety of image attacks, while the messages
hidden in container images are inaccessible without know-
ing the right secure factor to reduce the risk of message leak-
age. Compared to other state-of-the-art synthesis-based SWE
methods, SI-SWE is shown to effectively prevent message
leakage while achieving superior performance in terms of re-
covery robustness and synthesis fidelity. In future work, we
plan to further enlarge the hidden capacity of our approach,
which, in comparison to some other techniques such as full-
image hiding methods, is still relatively small.
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Fridrich. Designing steganographic distortion using
directional filters. In IEEE International Workshop on
Information Forensics and Security, pages 234–239, 2012.
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