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Abstract

The deep clustering paradigm has shown great po-
tential for discovering complex patterns that can
reveal cell heterogeneity in single-cell RNA se-
quencing data. This paradigm involves two train-
ing phases: pretraining based on a pretext task and
fine-tuning using pseudo-labels. Although current
models yield promising results, they overlook the
geometric distortions that regularly occur during
the training process. More precisely, the transition
between the two phases results in a coarse flatten-
ing of the latent structures, which can deteriorate
the clustering performance. In this context, exist-
ing methods perform euclidean-based embedding
clustering without ensuring the flatness and convex-
ity of the latent manifolds. To address this prob-
lem, we incorporate two mechanisms. First, we in-
troduce an overclustering loss to flatten the local
curves. Second, we propose an adversarial mech-
anism to adjust the global geometric configuration.
The second mechanism gradually transforms the la-
tent structures into convex ones. Empirical results
on a variety of gene expression datasets show that
our model outperforms state-of-the-art methods.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) facilitates the
study of individual cells, thus providing an in-depth under-
standing of the basic unit of biology. The assessment of
transcriptional heterogeneity within a cell population can pro-
vide answers to a wide range of biological research questions.
For example, scRNA-seq datasets have been commonly used
in the discovery of new cell types [Saviano et al., 2020],
the identification of highly pathogenic cells in tumor tissue
[Tirosh et al., 2016], the detection of hyper-responsive im-
mune cells [Shalek et al., 2014], the analysis of resistance
to treatments [Ocasio et al., 2019], and the study of develop-
mental processes in specific cellular conditions such as cancer
[Brady et al., 2017] and pulmonary epithelium differentiation
[Treutlein et al., 2014]. Since manual cell annotation is labor
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intensive and can be prone to mislabeling, unsupervised cell
identification remains a critical research direction.

The analysis of scRNA-seq data heavily relies on cell type
identification. To accomplish this task, various clustering al-
gorithms have been used. In particular, researchers have ap-
plied traditional methods such as k-means, spectral cluster-
ing [Park and Zhao, 2018], density-based clustering [Ester et
al., 1996], and hierarchical clustering [Johnson, 1967] to de-
tect cell populations. Furthermore, dimensionality reduction
techniques including PCA, TSNE, and UMAP have been ap-
plied before clustering to overcome the curse of dimension-
ality. Unfortunately, the traditional clustering algorithms of-
ten produce suboptimal results. This is because the transcrip-
tomic data have complex relationships between cells within a
cluster, significant sparsity caused by the dropout events, and
strong technical variability of the gene expression levels.

To address the shortcomings of traditional clustering ap-
proaches, CIDR [Lin et al., 2017], MAGIC [van Dijk et
al., 2017], and SAVER [Huang et al., 2018], first impute
the missing values, also known as dropouts, and then clus-
ter the imputed data. Despite the positive effects of impu-
tation, CIDR, MAGIC, and SAVER struggle to capture the
complex structure inherent to scRNA-seq data. Some other
approaches, such as SIMLR [Wang et al., 2017], and MPSSC
[Park and Zhao, 2018], leverage multi-kernel spectral clus-
tering to learn robust similarity measures. However, comput-
ing the Laplacian matrix is time-consuming, which in turn
precludes its applicability to large-scale datasets. Moreover,
these methods overlook important characteristics of the tran-
scriptional data, such as zero inflation and over-dispersion.

Recently, the deep clustering paradigm has found success
in many biological applications. This paradigm relies on a
two-fold strategy consisting of self-supervised learning fol-
lowed by a pseudo-supervision task. During the initial phase,
a pretext task is solved as a proxy to acquire high-level repre-
sentations. The second phase simultaneously learns cluster-
ing assignments and clustering-oriented embeddings by train-
ing with pseudo-labels. Existing deep clustering methods for
scRNA-seq data include scziDesk [Chen et al., 2020], scDC
[Tian et al., 2019], and scDCC [Tian et al., 2021]. These
models operationalize auto-encoding architectures. Further-
more, all of them integrate the Zero-Inflated Negative Bino-
mial distribution (ZINB) to model the key properties of the
gene expression data (over-dispersion, zero inflation, and dis-
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creteness). However, they fail to consider cell-cell relation-
ships, which can make the clustering task more challenging.
As a result, more recent models, such as scTAG [Yu et al.,
2022] and scGAE [Luo et al., 2021], leverage graph neural
networks (GNNs) to preserve the neighborhood relationships.

Although deep clustering has achieved promising results
for scRNA-seq data, existing studies fail to consider two im-
portant issues: 1) the suitability of the geometric configura-
tion obtained at the end of the pretraining phase to the cluster-
ing task, and 2) the geometric distortions that regularly occur
during the training process. Several measures can be used to
analyze the geometry of a manifold, such as curvature and
torsion. In this work, we focus on two measures, namely In-
trinsic Dimension (ID) and Linear Intrinsic Dimension (LID).
Intuitively, ID computes the number of independent direc-
tions a point can move in without leaving the manifold. The
LID computes the smallest dimension of a linear subspace
that best approximates the manifold in a least-squares sense
at each point. An increasing discrepancy between ID and LID
during the training process indicates that the ongoing geomet-
ric transformation makes the manifold more curved.

The authors in [Mrabah et al., 2022] have conducted a ge-
ometric investigation to examine the behavior of ID and LID
under the deep clustering paradigm. They have shown that
self-supervised learning (i.e., pretraining phase) leads to the
emergence of curved latent manifolds with low intrinsic di-
mensions. Moreover, introducing pseudo-supervised learn-
ing after the first phase flattens the latent structures coarsely,
which in turn degrades the clustering performance by twist-
ing the curvatures [Mrabah et al., 2022]. The main goal of our
approach is to avoid this sharp geometric transition caused by
minimizing a euclidean-based clustering loss after the first
phase. Without prior knowledge, there is no systematic way
to identify the optimal non-euclidean metric that can capture
the latent similarities. Therefore, it is crucial to gradually ad-
just the geometric configuration of the latent manifolds, so
that it becomes appropriate for euclidean-based clustering.

We propose a novel single-cell graph auto-encoder model
that follows the deep clustering paradigm. Unlike previous
methods, our approach tackles the coarse geometric transi-
tion between pretraining and clustering. We incorporate two
mechanisms to address this problem. We argue that enforc-
ing local flatness and global convexity in a gradual manner
is favorable for euclidean-based embedding clustering. Our
first mechanism targets the local geometric configuration. In
particular, we supply the pseudo-supervision module with an
overclustering loss. This loss is used to flatten the strong lo-
cal curves without destroying the global structure. The sec-
ond mechanism adjusts the global geometric configuration.
More precisely, we introduce an adversarial loss to gradually
transform the latent manifolds into convex ones. We build a
discriminator for each cluster. Our discriminators are trained
to make the auto-encoder push convex combinations of sam-
ples with high-confidence clustering assignments inside their
corresponding manifold. By ensuring convexity, the clusters
become linearly separable [Boyd et al., 2004], which in turn
improves the clustering performance.

Contributions. (1) We establish the first single-cell deep
clustering model that tackles the coarse geometric transition

between the first and second training phases. (2) We propose
a mechanism that performs a local geometric transformation
of the latent manifolds. In particular, we introduce an over-
clustering loss to flatten the local curves without destroying
the global structures. (3) We design a second mechanism that
adjusts the global geometric configuration. More precisely,
we introduce an adversarial loss to gradually transform the
latent manifolds into convex ones. (4) We conduct several
experiments on real-world scRNA-seq datasets. The obtained
results confirm the validity of our contributions and show that
the proposed model outperforms state-of-the-art methods.

2 Related Work
We discuss two main strategies: 1) the deep embedding meth-
ods, which perform clustering and feature learning separately,
2) the deep clustering models, which perform clustering and
feature learning jointly. Other relevant methods outside the
field of single-cell research are discussed in Appendix A (all
appendices are provided in the Supplementary Material†).

Deep embedding methods. In [Yu et al., 2021], scGMAI
leverages a deep auto-encoder as an imputation technique,
followed by the Fast Independent Component Analysis (Fas-
tICA) for dimensionality reduction, and a Gaussian Mixture
Model (GMM) for clustering. Instead of performing vanilla
reconstruction, scDCA [Eraslan et al., 2019] operationalizes
a denoising auto-encoder. The decoding task of scDCA is
modeled by the ZINB distribution to capture the character-
istics of the gene expression data. In another work, scGNN
[Wang et al., 2021] achieves multi-modal reconstruction us-
ing several auto-encoders. Moreover, this model relies on a
GNN to aggregate cell–cell relationships. A left-truncated
GMM is applied to uncover regulatory signals within the gene
expression count matrix. Unfortunately, the existing deep
embedding methods overlook the suitability of the geomet-
ric configuration for the clustering task. More precisely, self-
supervised learning leads to curved latent manifolds, thus we
do not expect euclidean-based approaches such as GMM or
k-means to identify the clustering structures effectively.

Deep clustering methods. Compared with scDCA, scDC
[Tian et al., 2019] combines the denoising task with an em-
bedding clustering process. Both tasks are optimized jointly.
More precisely, scDC adopts the clustering loss of DEC [Xie
et al., 2016]. To improve scDC, scDCC [Tian et al., 2021]
expresses prior information and domain-specific knowledge
as soft pairwise constraints, then integrate these constraints
as an additional term in the final loss function. In another
work, scziDesk [Chen et al., 2020] uses a different loss func-
tion compared with scDC. It employs a weighted k-means
loss to strengthen the initial pairwise similarities after en-
coding. Recently, several methods leverage a graph convolu-
tional encoder to maintain the proximity of similar data points
in the latent space. For instance, scGAE [Luo et al., 2021]
replaces the vanilla auto-encoding framework of scDC with a
graph convolutional auto-encoder. In [Yu et al., 2022], scTAG
adopts a topology adaptive graph convolutional auto-encoder.
Unlike scGAE and scTAG, scDSC [Gan et al., 2022] encodes

†https://github.com/MMAMAR/scTConvexMan
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the gene expression data and the associated structural simi-
larities using two encoders, and then maximizes the mutual
information between their outputs. However, all these meth-
ods overlook the coarse geometric transformation caused by
the sharp transition between pretraining and clustering.

3 Proposed Approach
We define the gene expression count matrix X = (xij) ∈
Rns×ng , where ng represents the number of genes, ns is the
number of cells, and the xij element is the count of the jth

gene in the ith cell. We consider the problem of clustering the
scRNA-seq data X and we denote by nc the corresponding
number of clusters. Let C = (c1, ..., cns

) be the sequence of
clustering indices for each cell such that ci ∈ {1, ..., nc}.

The cell representations for scRNA-seq data can have pro-
nounced similarities based on the gene expression count. To
this end, we build a non-directed graph to capture the local
structure characterizing these pronounced similarities. We
define the graph structure by considering the relationship be-
tween each cell and its nearest neighbors. Formally, let G =
(V, E , X) be an attributed graph, where V = {v1, v2, ..., vns}
is a set of ns nodes associated with different cells; eij ∈ E
specifies the existence of an edge between the ith and jth

nodes; and X is used as the attribute matrix of G. Two nodes
vi and vj are connected if and only if xi (xj , respectively) is
located within the k nearest neighbors of xj (xi, respectively)
based on the Euclidean distance. Let A = (aij) ∈ Rns×ns be
the resultant adjacency matrix of G, where aij = 1 if vi and
vj are connected, otherwise aij is set equal to zero.

We build a GNN architecture to extract high-level rep-
resentations from the graph G. In particular, we devise a
graph auto-encoder [Kipf and Welling, 2016] to learn the
node embeddings. The first component is an encoder fE .
The encoding process relies on LE graph convolutional layers
[Kipf and Welling, 2017] that project the graph G into a low-
dimensional latent space. We denote by Z = fE(X,A) ∈
Rns×d the matrix of embedded codes obtained by the encod-
ing process, where d is the dimension of the latent space. The
graph convolutional operation of the lth layer is described:

Z(l) = ReLU(∆̃− 1
2 Ã∆̃− 1

2Z(l−1)W
(l)
E ), (1)

where W
(l)
E represents the training weights of the lth layer;

ReLU is the corresponding activation function; Z(l) is the
output of this layer, Z(0) = X , and Z(LE) = Z; ∆̃− 1

2 Ã∆̃− 1
2

is the normalized adjacency matrix such that Ã = A + I ,
I ∈ Rns×ns is the identity matrix, and ∆̃ = Diag(Ã1ns

).
The second component of the auto-encoding model is a

two-head decoder. The decoding process aims to reconstruct
the input graph G. We denote by GD the attributed graph gen-
erated by the decoding process. The first head f

(1)
D is devoted

to computing the structure of GD using the inner product op-
eration. The output of the first head is the adjacency matrix of
GD denoted Â = f

(1)
D (Z). The second head f

(2)
D is devoted

to computing the attributes of GD. It has LD fully-connected
layers with ReLU activations. The output of the second head
is the feature matrix X̂ = f

(2)
D (Z). We denote by W

(l)
D the

training weights of the lth decoding layer and all the training
weights of our auto-encoder are denoted by the set W .

In addition to the auto-encoding framework, our approach
includes an adversarial training strategy. We use the graph
auto-encoder constrained to the second decoding head (that
is, f (2)

D ◦ fE) as the generator network. Moreover, we devise
nc fully connected discriminators f

(k)
adv : Rd → [0, 1] with

Ladv layers, such that k ∈ {1, ..., nc}. We denote by W
(k,l)
adv

the training weights of the lth layer in the kth discriminator.

3.1 Training Losses
According to the deep clustering paradigm, we train our
model based on self-supervision for the pretraining phase,
then we introduce a pseudo-supervision loss for the cluster-
ing phase. To avoid the coarse geometric transition from
pretraining to clustering, we propose two mechanisms. The
first mechanism targets the local geometric configuration of
the latent manifolds. In particular, we supply the pseudo-
supervision module with an overclustering loss to flatten the
strong local curves without destroying the globally-curved
shape. The second mechanism adjusts the global geometric
configuration. More precisely, we introduce an adversarial
loss to gradually transform the manifolds into convex ones.

Self-supervision Module
It consists of tackling a secondary task that requires a certain
level of data understanding to be solved. The self-supervision
loss is optimized for the first and second phases. The pre-
text task of our approach consists of reconstructing the in-
put graph G. We model the decoding process for the recon-
struction task by the probability distribution p(Â, X̂ |Z). We
develop a two-task decoding design to perform both struc-
ture reconstruction and feature reconstruction. Accordingly,
we factorize the joint distribution p(Â, X̂ |Z) into two inde-
pendent distributions p(Â |Z) and p(X̂ |Z). We parameter-
ize the probability distribution p(Â |Z) by the first decoding
head. We opt for the Bernoulli distribution to capture the bi-
nary nature of each generated edge as described by:

p(Â|Z) =

ns∏
i,j=1

p(âij | zi, zj) =
ns∏

i,j=1

B(âij |βij), (2)

where the probability of generating each edge B(âij |βij) is a
Bernoulli distribution parametrized by βij = sigmoid(zTi zj).

For feature reconstruction, we parameterize the probabil-
ity distribution p(X̂ |Z) by the second decoding head. We
operationalize the ZINB distribution [Wang et al., 2021] to
capture the key aspects of the gene expression data: 1) zero-
inflation (high-sparsity) caused by the true and dropout zeros,
2) discreteness, and 3) over-dispersion (variance greater than
the mean). We model the distribution p(X̂ |Z) as follows:

p(X̂|Z) =

ns∏
i=1

p(x̂i | zi) =
ns∏
i=1

Z(x̂i |πi, µi, σ
2
i ), (3)

where Z(x̂i|πi, µi, σ
2
i ) is the ZINB distribution parameter-

ized by πi, µi, σ
2
i ∈ Rng ; πi = sigmoid(Wπf

(2)
D (zi)) is
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the zero rate vector of this distribution and Wπ denotes the
weight matrix of π; µi = exp(Wµf

(2)
D (zi)) is the mean of

the associated negative binomial and Wµ is the weight matrix
of µ; σ2 = exp(Wσf

(2)
D (zi)) is the variance of the negative

binomial and Wσ is the weight matrix of σ2. The complete
expression of the ZINB mass function with respect to its pa-
rameters πi, µi, σ

2
i is provided in Appendix B to save space.

The self-supervision module reconstructs the input graph
by minimizing the loss function LSS. More precisely, we op-
timize the log-likelihood of the input graph based on the dis-
tribution p(X̂, Â|Z) as described by:

LSS = −log
(
p(GD = G |Z)

)
= LX + LA, (4)

where LX(LA, respectively) is the log-likelihood of the gene
count matrix X (adjacency matrix A, respectively).

Pseudo-supervision Module
It is trained using pseudo-labels during the second phase
to achieve the primary task (i.e., clustering). We design a
pseudo-supervision strategy that puts into action two loss
functions: a clustering loss function Lc and an overcluster-
ing loss function Lo. The overclustering procedure refers to
clustering the data into a number of categories no greater than
the real number of clusters nc.

The goal of the clustering loss is to construct clustering-
friendly latent structures that reduce the within-cluster vari-
ance and maximizes the between-cluster variance. We model
the clustering process using two distributions p(C|Z) and
q(C|Z). Each cluster is characterized by its center. Let{
Φc

j

}nc

j=1
be the set of trainable clustering centers. We initial-

ize the points of this set, after the pretraining phase, by encod-
ing the centers obtained from applying spectral clustering on
A. The first distribution p(C|Z) measures the soft clustering
assignments and factorizes as p(C|Z) =

∏ns

i=1 p(ci | zi). We
compute pcij , which is the probability of assigning the latent
code zi to the jth cluster (i.e., p(ci = j|zi)), according to the
Student’s t-distribution as described by:

pcij =
(1 +

∥∥zi − Φc
j

∥∥2)−1∑
j′(1 +

∥∥∥zi − Φc
j′

∥∥∥2)−1

. (5)

The second distribution q(C|Z) models the target clus-
tering assignments (i.e., pseudo-labels). The factorization
of this distribution is q(C|Z) =

∏nc

i=1 q(ci | zi). We com-
pute the target assignments q(ci|zi) of the ith sample itera-
tively based on the high-confidence assignments of p(ci|zi).
We denote by qcij the probability value q(ci = j|zi). Let
τ1i (τ2i , respectively) be the highest (second highest, respec-
tively) assignment score of the set

{
pcij

}nc

j=1
. We denote by

Ωc =
{
xi ∈ Rng | τ1i − τ2i ⩾ βc

}
the set of reliable samples

for the clustering task, and βc is a fixed threshold. To empha-
size the high-confidence assignments, we compute qcij using:

qcij =


1 if xi ∈ Ωc and j = argmax

j′ (p
c
ij′),

0 if xi ∈ Ωc and j ̸= argmax
j′ (p

c
ij′),

pcij if xi /∈ Ωc.
(6)

Our clustering loss Lc is the KL (Kullback–Leibler) diver-
gence between the soft assignment distribution p(C|Z) and
the target distribution q(C|Z) as described by:

Lc = KL
(
q(C|Z)||p(C|Z)

)
=

ns∑
i=1

nc∑
j=1

qcij log(
qcij
pcij

). (7)

In addition to the clustering loss, we design an overclus-
tering task to flatten the local structures without twisting the
latent manifolds. More precisely, the goal of the overcluster-
ing process is to smooth the local curves while preserving the
globally-curved geometric structures as shown by [Mrabah et
al., 2022]. Let no be the number of clusters for the overclus-
tering task. We model the overclustering process using two
distributions p(O|Z) and q(O|Z), where O = (o1, ..., ons

) is
a sequence of random variables representing the overcluster-
ing indices for each cell, such that oi ∈ {1, ..., no}.

Let
{
Φo

j

}no

j=1
be the set of trainable overclustering cen-

ters. We initialize these points, after the pretraining phase, by
applying k-means to Z. The first distribution p(O|Z) mea-
sures the soft overclustering assignments and factorizes as
p(O|Z) =

∏ns

i=1 p(oi | zi). We denote by poij the probabil-
ity p(oi = j|zi), which is computed as described by:

poij =
(1 +

∥∥zi − Φo
j

∥∥2)−1∑
j′(1 +

∥∥∥zi − Φo
j′

∥∥∥2)−1

. (8)

The second distribution q(O|Z) models the target over-
clustering assignments. The factorization of this distribution
is q(O|Z) =

∏ns

i=1 q(oi | zi). We denote by qoij the probabil-
ity value q(oi = j|zi). Let λ1

i (λ2
i , respectively) be the high-

est (second highest, respectively) assignment score of the set{
poij

}no

j=1
. We denote by Ωo =

{
xi ∈ Rng |λ1

i − λ2
i ⩾ βo

}
the set of reliable samples for the overclustering task and βo

is a fixed threshold. We compute qoij as described by:

qoij =


1 if xi ∈ Ωo and j = argmax

j′ (p
o
ij′),

0 if xi ∈ Ωo and j ̸= argmax
j′ (p

o
ij′),

poij if xi /∈ Ωo.
(9)

The overclustering loss Lo is the KL (Kullback–Leibler)
divergence between the soft assignment distribution p(O|Z)
and the target distribution q(O|Z) as described by:

Lo = KL
(
q(O|Z)||p(O|Z)

)
=

ns∑
i=1

no∑
j=1

qoij log(
qoij
poij

). (10)

Adversarial Module
It handles the global configuration of the latent space. Our ad-
versarial mechanism is responsible for gradually transform-
ing the globally-curved structures into convex ones. During
the training process, the number of reliable samples for clus-
tering increases progressively. We train the adversarial mod-
ule using samples from the set Ωc. As a result, the adversarial
module gradually enforces the convexity constraint from the
core to the outer parts of the manifolds.
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Definition 1. A convex combination x of k points x1, ..., xk is
a linear combination of these points: x = θ1x1 + ...+ θkxk,
where θ1, ..., θk ∈ R+ and

∑
i θi = 1.

Let Ck be the set of samples belonging to the kth clus-
ter. We compute the clustering index of the sample xi using
the formula maxj(pij). Given the representations of m cells
from the kth cluster, x1, ..., xm ∈ Ωc ∩ Ck, we randomly se-
lect m coefficients θ1, ..., θm ∈ R+, such that

∑
i θi = 1. We

construct the point x̂(k)
cvx as a convex combination of the points

x1, ..., xm in the latent space, as articulated by:

x̂(k)
cvx = f

(2)
D (

m∑
i=1

θifE(xi)). (11)

For each cluster Ck, we generate ncvx points according to
Eq. (11). We obtain different samples by randomly select-
ing the initial points x1, ..., xm. We denote by Γk the set of
samples generated for the kth cluster. Each discriminator f (k)

adv
is trained to distinguish between real samples reconstructed
from the set Ωc ∩ Ck and generated samples belonging to the
set Γk. The loss function L(k)

d of the kth discriminator is:

L(k)
d = Ex̂

[
log(1−f

(k)
adv (x̂))

]
+Ex̂cvx

[
log(f (k)

adv (x̂
(k)
cvx))

]
. (12)

We use the graph auto-encoder constrained to the second
decoding head as the generator for the adversarial module.
We train the generator to fool the discriminator into consider-
ing the generated points x̂cvx as real reconstruction samples.
The loss function of the generator Lg is described by:

Lg =

nc∑
k=1

Ex̂cvx

[
log(1− f

(k)
adv (x̂

(k)
cvx))

]
. (13)

The generator is trained to incorporate convex combi-
nations of the latent codes into the embedded manifolds.
The gradual inclusion of each cluster’s convex hull leads to
smoother latent structures and a higher level of convexity.
Clustering convex sets is relatively straightforward because
they have well-defined boundaries. Thus, it is easy to separate
the points inside the set from the points outside it. Theorem
1 shows that disjoint convex sets are linearly separable.
Theorem 1. Hyperplane separation [Boyd et al., 2004]: if A
and B are disjoint nonempty convex sets from Rd, then there
exists a vector u ∈ Rd −{0} and a number c ∈ R, such that:

uTx ⩾ c ∀x ∈ A and uTx ⩽ c ∀x ∈ B,

and the hyperplane
{
x | uTx ⩾ c

}
separates A and B.

3.2 Training Strategy
Our model undergoes a two-phase training process. We pre-
train for T1 iterations. For the first phase, we update the auto-
encoder parameters to minimize the self-supervision function
LSS. For the second phase, we alternate between three train-
ing steps. The first step consists of minimizing the loss func-
tion LSS + γcLc. In the second step, we minimize the loss
function LSS + γoLo. In the third step, we minimize the
loss function LSS + γgLg . The hyperparameters γc, γo, and

Figure 1: Illustration of the clustering phase of scTCM. The matrix
Zcvx ∈ Rncvx×d represents the convex combinations of the latent
codes. It worth to highlight that we use a discriminator for each
cluster. We present a single discriminator to simplify the illustration.

γg control the trade-off between self-supervision and the re-
maining tasks (i.e., clustering, overclustering, and adversarial
training). Moreover, we train the discriminators at each step
by minimizing the loss functions L(k)

d . Adam optimizer is
used for all training phases and steps. The second phase ends
when the average ID of all manifolds becomes equal to the
LID. We illustrate the framework of the second phase in Fig-
ure 1. We provide our algorithm and its computational com-
plexity analysis in Appendix C and Appendix D, respectively.

4 Experiments
We carry out multiple experiments on eight real-world
scRNA-seq datasets of various species. These datasets are
collected using popular sequencing platforms. Information
on the data and preprocessing steps can be found in Appendix
E. We compare the performance of our method, scTCM
(deep clustering of single-cell RNA-seq data: Toward
Convex Manifolds), against state-of-the-art clustering tech-
niques for scRNA-seq. Our comparison includes three deep
embedding methods (scDCA [Eraslan et al., 2019], scGMAI
[Yu et al., 2021], and scGNN [Wang et al., 2021]), three deep
clustering methods (scziDesk [Chen et al., 2020], scDC [Tian
et al., 2019], and scDCC [Tian et al., 2021]), and three deep
graph clustering methods (scTAG [Yu et al., 2022], scDSC
[Gan et al., 2022], and scGAE [Luo et al., 2021]). All of these
approaches are discussed in the related work section. We use
the official code provided by the authors for each baseline
and we tune the hyperparameters if no specific instructions
are given. To ensure reproducibility, our code is available on
https://github.com/MMAMAR/scTConvexMan.

The geometric configuration is evaluated by measuring the
ID and LID of the latent manifolds. A comprehensive expla-
nation of the strategies applied to estimate ID and LID can be
found in Appendix F. We compare the efficiency of the differ-
ent models based on their execution time in seconds. All of
our experiments are performed under consistent hardware and
software setups, as described in Appendix G. In Appendix H,
we thoroughly outline the design and configuration of our ap-
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Metric Dataset Deep Graph Clustering Deep Clustering Deep Embedding
scTCM scTAG scGAE scDSC scziDesk scDC scDCC scDCA scGMAI scGNN

ACC

Muraro 96.41 89.35 89.75 86.52 73.66 75.12 84.35 73.61 61.40 66.30
Plasschaert 97.46 89.01 83.83 91.76 93.56 52.60 61.34 62.66 48.07 53.56
QX LM 99.77 97.77 75.23 78.49 96.67 75.06 82.04 74.52 60.88 63.54
QS Diaph 99.08 98.39 55.51 94.94 97.82 71.84 71.26 72.30 47.93 68.04
QS Heart 98.95 96.13 89.46 92.05 94.46 55.53 68.23 70.72 60.09 63.50
QS LM 99.63 99.17 62.56 86.06 97.80 60.64 74.68 58.53 57.98 85.41
Wang Lung 99.30 95.14 77.11 96.02 97.59 98.97 90.51 98.62 38.56 97.97
Young 85.30 81.35 70.72 67.88 79.81 58.75 67.41 64.57 42.00 50.30
Average 96.99 93.28 75.52 86.71 91.42 68.56 74.97 71.94 52.11 68.57

NMI

Muraro 89.80 82.92 83.53 85.00 77.76 75.49 83.84 76.21 71.68 64.10
Plasschaert 90.54 73.79 68.44 80.02 79.80 61.22 64.97 65.52 57.11 63.17
QX LM 99.01 93.64 79.39 80.61 91.28 84.05 87.98 83.69 76.39 74.43
QS Diaph 95.93 93.28 68.04 91.67 91.40 78.07 81.04 78.38 68.36 71.34
QS Heart 95.90 89.43 78.39 89.58 87.75 65.31 72.75 70.61 69.41 73.20
QS LM 98.40 96.44 72.71 82.73 92.15 70.48 79.94 71.71 71.98 80.35
Wang Lung 92.30 71.50 58.62 74.54 81.46 90.11 57.99 87.38 34.32 84.61
Young 84.86 79.16 65.27 72.18 76.72 61.78 67.66 63.66 49.54 40.03
Average 93.34 85.02 71.79 82.04 84.79 73.31 74.52 74.64 62.34 68.90

ARI

Muraro 93.72 87.02 88.21 89.51 66.30 66.09 74.10 64.59 51.32 49.19
Plasschaert 94.70 76.97 70.64 86.99 85.88 40.70 49.76 50.69 57.11 46.40
QX LM 99.61 95.45 63.31 74.79 91.28 75.00 80.23 74.43 50.61 58.33
QS Diaph 97.88 96.37 42.90 96.15 93.69 64.79 66.03 64.98 41.11 56.09
QS Heart 98.15 94.09 84.89 94.78 92.08 46.73 58.18 59.87 43.68 56.74
QS LM 99.32 98.11 53.79 90.89 94.29 53.84 65.77 54.44 48.99 79.68
Wang Lung 96.90 80.14 59.98 83.48 89.74 95.50 64.10 94.02 13.25 91.31
Young 79.74 70.61 58.87 54.61 66.81 44.69 52.85 50.06 32.87 28.98
Average 95.00 87.34 65.32 83.90 85.00 60.91 63.87 64.13 42.36 58.34

Time

Muraro 330 54 61 88 106 74 83 240 152 733
Plasschaert 766 159 490 242 378 165 216 546 589 1725
QX LM 387 70 189 120 278 73 82 198 321 816
QS Diaph 227 50 46 64 98 58 73 52 78 341
QS Heart 576 87 221 134 406 164 273 261 300 1475
QS LM 240 63 46 52 115 56 78 66 86 413
Wang Lung 956 519 718 150 632 307 190 202 572 1867
Young 647 213 351 202 601 223 203 432 367 1243

Table 1: Clustering results on eight scRNA-seq datasets. Best methods in red and second best in blue.

Method Muraro Plasschaert Young
Adverserial Overclustering ACC NMI ARI Time ACC NMI ARI Time ACC NMI ARI Time

✗ ✗ 93.49 86.80 90.75 101 96.60 88.51 93.06 646 82.11 82.41 74.33 548
✗ ✓ 95.75 88.38 92.63 120 97.18 89.26 94.04 649 84.57 84.08 75.71 577
✓ ✗ 93.87 86.93 91.54 325 97.00 89.29 93.44 732 84.22 84.01 77.59 632
✓ ✓ 96.41 89.80 93.72 330 97.46 90.54 94.70 766 85.30 84.86 79.74 647

Table 2: Impact of the proposed adversarial and overclustering mechanisms on the clustering performance of scTCM. Best results in bold.

proach, including the architecture, the learning rates, and any
other hyperparameters. In particular, our approach has three
data-dependent hyperparameters (βc, βo, and no), which are
fixed using grid search as explained in Appendix H. We hold
the remaining design choices constant across all the datasets.
A qualitative evaluation is included in Appendix I.

Clustering results. Table 1 shows the clustering perfor-
mance of our method against multiple state-of-the-art tech-

niques. For each method, we report the average results of ten
executions. We observe that the deep clustering approaches
generally outperform the deep embedding methods. This
finding underscores the importance of combining embedded
learning and clustering. Additionally, we can see that the
deep graph clustering methods tend to perform better than the
deep clustering approaches. This finding supports the signifi-
cance of extracting the graph from the gene expression count
matrix to use it in the encoding process. Last but not least,
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scTCM(-adv-overclus) scTCM

scTCM(-adv-overclus) scTCM

Figure 2: ID and LID of scTCM(-adv-overclus) and scTCM on Mu-
raro (first row) and Plasschaert (second row). P1 stands for the first
training phase (self-supervision) and P2 stands for the second train-
ing phase (pseudo-supervision).

the proposed method yields the best performance in terms
of ACC, NMI, and ARI compared to all the other methods,
across all the datasets. On average, the NMI and ARI scores
of scTCM are more than 7% higher than the scores of the
second-best method (that is, scTAG). Unlike previous meth-
ods, scTCM has two mechanisms to avoid the coarse geomet-
ric transition between the pretraining and clustering phases.

Geometric study. In Fig. 2, we investigate the evolu-
tion of the latent manifolds during the training process. To
this end, we build a modified version of scTCM. We ob-
tain this version, denoted scTCM(-adv-overclus), by ablat-
ing the adversarial module and the overclustering loss. For
scTCM(-adv-overclus), we observe that the difference be-
tween ID and LID decreases rapidly after the pretraining
phase. Within a few iterations, the latent manifolds undergo
a coarse geometric transformation: from curved (evidenced
by a significant difference between ID and LID) and low-
dimensional structures to flattened and higher-dimensional
ones. In contrast to scTCM(-adv-overclus), scTCM has a less
pronounced decrease in LID and a more moderate increase
in ID even after a considerable number of iterations. The
proposed mechanisms gradually flatten the latent manifolds.
Unlike scTCM(-adv-overclus), the clustering-oriented repre-
sentations of scTCM (Euclidean geometry perspective) are
slowly constructed while protecting the curves from twisting.

Ablation study. In this experiment, we analyze the impact
of our contributions on clustering performance. First, we can
see from Table 2 that the overclustering mechanism improves
the clustering results consistently. Second, performing adver-
sarial training also brings consistent improvement compared
with scTCM(-adv-overclus). It is worth noting that the full
model regularly outperforms all the other variants. These re-
sults validate the synergy of the proposed mechanisms. While
overclustering flattens the local structures, adversarial train-

ACC on Muraro NMI on Muraro

ACC on Young NMI on Young

Figure 3: Sensitivity of scTCM to the hyperparameters no and βo in
terms of ACC and NMI.

ing transforms the global configuration into a convex one. In
addition, we can see from Table 2 that our mechanisms do
not induce significant run-time overhead. These results align
with the computational complexity provided in Appendix D.
Sensitivity analysis. We analyze the sensitivity of our
model to the data-dependent hyperparameters (βc, βo, and
no). We hold the remaining design decisions constant across
all datasets. In Fig. 3, we study the sensitivity to the hy-
perparameters of the overclustering loss (i.e., βo and no). In
Appendix J, we study the sensitivity to the hyperparameter
of the clustering loss (i.e., βc). We found that the proposed
model produces consistent results for a wide range of values.
Especially, fixing no, scTCM yields stable clustering results
as βo varies. As we can see, the ACC and NMI spike when
no is equal to 30 and 10 on Muraro and Young, respectively.

5 Conclusion
In this research, we propose a single-cell deep clustering
model that addresses the coarse geometric transition between
the pretraining and clustering phases. Our approach utilizes
two mechanisms to make the latent representations suitable
for euclidean-based clustering. More precisely, we focus
on two geometric aspects: local flatness and global convex-
ity. The first mechanism is a local geometric transformation
that flattens the local curves without destroying the global
structures. It consists of minimizing an overclustering loss.
The second mechanism adjusts the global geometric con-
figuration by transforming the latent manifolds into convex
ones through an adversarial loss. Our method shows higher
clustering performance against state-of-the-art approaches for
scRNA-seq data. Empirical results provide strong evidence
that this performance is imputed to the proposed mechanisms
and particularly their ability to tackle the coarse geometric
transition between pretraining and clustering.
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