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Abstract
In recent years, the state-of-the-art agents for play-
ing abstract board games, like chess and others,
have moved from using intricate hand-crafted mod-
els for evaluating the merits of individual game
states toward using neural networks (NNs). This
development has eased the encapsulation of the rel-
evant domain-specific knowledge and resulted in
much-improved playing strength. However, this
has come at the cost of making the resulting mod-
els ill-interpretable and challenging to understand
and use for enhancing human knowledge. Using a
world-class superhuman-strength chess-playing en-
gine as our testbed, we show how recent model
probing interpretability techniques can shed light
on concepts learned by the engine’s NN. Further-
more, to gain additional insight, we contrast the
game-state evaluations of the NN to that of its coun-
terpart hand-crafted evaluation model and identify
and explain some of the main differences.

1 Introduction
Game-playing agents for abstract board games, like chess
and checkers (and others), almost universally employ both
a search and an evaluation components for coming up with
their move decisions. The former encapsulates the think-
ing ahead process, exploring various possible continuations
of play, whereas the latter determines the merit of individ-
ual game states explored during the search. Traditionally, the
evaluation component is a carefully hand-crafted (possibly
automatically tuned) function modeling the domain-specific
aspects of the game, e.g., for chess, concepts like material,
development, king safety, and soundness of pawn structures.
The evaluation function approximates and maps those dis-
parate concepts into a single numerical value indicating how
desirable a given position is from the perspective of the side
having the move (e.g., the expected game outcome given cor-
rect play by both sides).

One of the most laborious tasks when making state-of-the-
art game-playing agents is developing and carefully tuning
such an evaluation function. However, recent successes using
evaluation functions based on (deep) neural network models
(DNNs), which are learned automatically, have eased this task

considerably and, more impressively, improved gameplay
considerably. The most notable examples of this approach are
the superhuman agents Alpha-Zero [Silver et al., 2018] (for
chess, Shogi, and Go), Leela Chess Zero [LeelaChessZero,
2022] (chess) and Stockfish [Stockfish, 2022c] (chess). How-
ever, such an approach comes at a cost: the learned evaluation
function is not easily interpretable. For example, the agent
might prefer the position for one side, however, it might be
unclear for a human observer, even an expert-level one, why
that is the case. Moreover, the agent has no trivial ways of
explaining its preference in human terms.

For a model to be interpretable, humans should readily un-
derstand the reasoning behind its decisions. NNs are noto-
riously difficult for humans to interpret and are often treated
as black boxes, that is, concealed functions with inputs and
outputs. Such a treatment is generally not desirable because
we humans may need to understand the knowledge encoded
into such models, e.g., to learn and build trust.

In this work, we try to understand better the knowledge
encoded in NNs used by super-human strength game-playing
agents, using chess as our test-bed. More specifically, we use
state-of-the-art interpretability techniques for probing and in-
terpreting the NN model used by Stockfish, (arguably) the
strongest chess-playing engine in existence. Our objectives
are to identify in human understandable terms what chess
concepts the networks learned and what importance it places
on each of them. Furthermore, we examine how the NN’s
position evaluation differs from its hand-crafted counterparts,
thus identifying (at least partially) influential chess concepts
accountable for improved playing strength. The paper’s pri-
mary contributions are: (i) we show how state-of-the-art in-
terpretability methods can gain insights into high-level con-
cepts learned by a world-class game-playing agent, and (ii)
we use the gained insights to pinpoint the relative strengths
and weaknesses of neural-network and handcrafted models.
For example, we show the network’s capability to statically
detect certain threats. Finally, this work adds to the emerg-
ing literature on explaining models learned by game-playing
agents (e.g., [Puri et al., 2020; Pálsson and Björnsson, 2021;
McGrath et al., 2021; McGrath et al., 2022]).

The paper’s organization is as follows. The next section
introduces the terminology and background, followed by our
methods and empirical result sections, respectively, and fi-
nally, we conclude and discuss future work.
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2 Background
This section provides a brief background of model inter-
pretability and how such methods have hitherto been used to
interpret game-playing agents’ actions. It furthermore intro-
duces Stockfish, our test-bed game-playing agent.

2.1 Interpretability
Interpretability of neural networks has received much-added
attention in recent years due to the popularity of DNNs and
the increasing use of ML in serious situations (see e.g. [Bo-
dria et al., 2021; Mi et al., 2020] for a survey). Interpretability
of (black-box) models may be broadly categorized as either
global or local and model-specific or model-agnostic. Global
methods create interpretations valid across all input instances,
whereas local methods’ focus is on interpreting individual
instances. Model-agnostic methods explain any black-box
models, while model-specific methods leverage the model’s
architecture (thus, in reality, not treating the model as an ab-
solute black-box). Our focus will mostly be on global meth-
ods, both model-specific and model-agnostic.

Most prior work on local methods for interpreting models
use feature-based explanations, which alter the input features
(e.g., occlude or perturb them) [Lundberg and Lee, 2017;
Ribeiro et al., 2016]. Such approaches are especially help-
ful in image-based domains and can reveal how different re-
gions in an image contribute to the network’s classification.
Similar approaches have been used to explain chess posi-
tions [Puri et al., 2020]. However, the methods are not eas-
ily applicable to intricate concepts. Thus, to overcome this
shortcoming, more recent explanation techniques, referred to
as concept-based, use high-level human concepts as inter-
pretable units [Alain and Bengio, 2017; Kim et al., 2018;
McGrath et al., 2021].

A popular concept-based model-specific interpretability
methodology for "peeking" into DNNs is probing [Alain and
Bengio, 2017]. Based on the intuition that deep neural net-
works are primarily about distilling computationally useful
representations, one can monitor the output of different layers
within the network for how well they represent various (high-
level) concepts. One can measure how much information a
layer carries for a given concept by training classifiers or re-
gression models (on a dataset separate from the one used for
training the network) to predict a given concept from a layer’s
activations; these models are called probes. The higher the
prediction accuracy of the probe, the more information that
layer carries for representing the concept.

2.2 Interpretability and Games
Research into intelligent game-playing agents has mainly fo-
cused on new algorithms and learning techniques for im-
proved playing strength, with little attention to their capabil-
ity for explaining the reasoning behind their actions.

Early work on intelligent chess-tutoring systems is
scant and somewhat preliminary [HaCohen-Kerner, 1994;
HaCohen-Kerner, 1995; Guid et al., 2013; Sadikov et al.,
2006] and limited follow-up work. More recent work has
instead focused on the interpretability of models, particu-
larly neural networks, e.g., using saliency maps [Pálsson and

Björnsson, 2021; Puri et al., 2020] or concept probing [Mc-
Grath et al., 2022; Lovering et al., 2022].

The concept-probing work reported in [McGrath et al.,
2021; McGrath et al., 2022], which attempts to explain the
concepts learned by AlphaZero’s neural network, is partic-
ularly relevant. As a proxy for human-understandable con-
cepts, it uses, among others, the Stockfish’s classical con-
cepts. Using concept probing, they show that many human-
understandable concepts get represented by the network, and
since it is trained using self-play, the order of the discovery
of these concepts is particularly interesting. They demon-
strate that material concepts are represented well early in the
training process, while more complex and subtle ones emerge
later. Also, treating AlphaZero as a black-box, they show how
concepts such as piece values and Stockfish’s classical con-
cepts relate to the output. By training a linear surrogate model
predicting AlphaZero’s output from a set of concepts, they
show the relative importance of the concepts to one another.

Online sites for playing and looking at chess games do
many provide the option to have computers analyze one’s
games; however, this is first and foremost in the form of a
computer engine analysis simply pinpointing mistakes based
on the engine’s numerical evaluation. One notable exception
to this is DecodeChess [Decodea, 2022], which explains us-
ing human-understandable chess concepts; however, the level
of the explanations is still somewhat rudimentary. Moreover,
the techniques used are proprietary and not published.

2.3 The Stockfish Game-Playing Agent
Stockfish [Stockfish, 2022c] is a free and open-source chess
engine written in C++ and is available for various comput-
ing platforms. Today’s top chess-playing engines all play
at a super-human strength, and, historically, Stockfish has
been the most victorious, with the most recent version leading
most independent rating lists. In contrast to earlier versions,
which use a hand-crafted evaluation function, the more re-
cent versions of the engine can employ either a NN or a hand-
crafted evaluation. Using the NN significantly improves play-
ing strength even though it slows down the thinking-a-head
search slightly. Stockfish, being open-source, state-of-the-art,
and allowing both model-types of evaluation, is thus an ideal
candidate to use for exploring interpretability and contrasting
hand-crafted and NN based evaluations.

3 Methods
Here, we first describe Stockfish’s evaluation models, both
the classical and the neural network. Then, we detail the in-
terpretability methods used and how we applied them.

3.1 Classical Model
The classical evaluation function uses carefully hand-crafted
higher-level concepts (also called features) that are linearly
combined to form an evaluation, i.e.:

fclassical(s) =
N∑
i=1

wi × ci(s) (1)
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Concept Type Weight

Material material 1.0
Winnable material/positional 1.0
Passed-pawns positional 1.0
Imbalance material 1.0
Mobility positional 1.0
King-safety positional 1.0
Threats positional 1.0
Space positional 1.0
Pawns positional 1.0
Knights positional 1.0
Bishops positional 1.0
Rooks positional 1.0
Queens positional 1.0

Table 1: The high-level concepts of the classical evaluation model of
Stockfish. They all compute using a centi-pawn (1/100 of a pawn’s
value) as its unit metric; however, the resulting values may be on a
different scale (i.e. Material may result in values in the thousands,
King-safety and Passed-pawns in the hundreds, and the others typi-
cally less. A positive value indicates an advantage for the player to
move and a negative one advantage for the other player. The scales
of the concept values are pre-tuned to avoid additional weighing —
thus, all weights are 1.0 in the linear combination.

where s is the game state, N is the number of features, and ci
computes the value of concept i.1

As listed in Table 1, Stockfish’s classical evaluation func-
tion uses several higher-level concepts. These concepts are
computed for each game position and linearly combined
to form the final evaluation (from the player’s perspective
having the move). The Material, Imbalance, and (in part)
Winnable concepts are material based. Material accumulates
the value of the pieces based on their type and location, Im-
balance gives a bonus for specific piece configurations (most
notably the bishop pair), and Winnable scales down the score
for specific endgames that are known to be difficult to win
(e.g., queen vs. rook and opposite color bishop endings). The
remaining concepts are positional. The Pawns, Knights, Bish-
ops, Rooks, and Queens features give bonuses to the respec-
tive piece types based on how good or bad a piece is in a
given position. For example, the minor pieces (knights and
bishops) get a bonus if on a good central outpost, and the ma-
jor pieces (rooks and queens) get a bonus if on an open or a
semi-open file. Pawns are penalized for weaknesses such as
being isolated or doubled, which can be a serious weakness,
especially in the endgame where pawns typically play a key
role because of their ability to promote. The Passed-pawns
concept aims at capturing the potential for pawns to promote
in the endgame. The Mobility and Space concepts estimate
in different ways how easily one can maneuver own forces on
the board. The former uses the number of safe squares a piece
can move to as an approximation of its mobility, whereas the

1More specifically, Stockfish uses a so-called phased-evaluation
where it computes the value of each feature differently for the
middle- and end-game, and then linearly weights the two evaluation
based on the approximated game-phase (determined from the mate-
rial on the board). For our intended purposes, this detail is unimpor-
tant and fi represents the resulting phase-weighted value.

Figure 1: Stockfish’ NNUE architecture [Stockfish, 2022b]. It pro-
cesses the values depending on the game phase (8 buckets, depend-
ing on the number of pieces), i.e., it learns different PSQT values
and uses a different layer stack (sub-network) for each bucket.

latter estimates how much space (many squares) in the center
is secure for our pieces. The Threats feature estimates po-
tential threats in the position (e.g., attacks on the opponent’s
weak squares). King-safety explicitly handles threats against
the king, which may be critical.

3.2 Stockfish’ Neural Network
Stockfish (since version 12) uses a neural network called
NNUE [Nasu, 2018] (EUNN Efficiently Updatable Neural
Network) for evaluating game states. The network archi-
tecture was invented for the game Shogi but later ported to
chess/Stockfish, immediately resulting in an 80 ELO point
increase in playing strength (and more since then) [Stockfish,
2022a; Stockfish, 2022b].

The NNUE architecture uses a (shallow) design with linear
and clipped ReLU layers, as depicted in Figure 1. Notable de-
sign choices are routing the inference through different layer
stacks, or sub-networks, depending on the phase (number of
pieces) of the game. Another interesting design choice is to
feed piece-square-table-values (PSQT) directly to the output
after a single linear layer.

3.3 Global Explanations
NNUE is a black-box in the context of explainability re-
search. Although it is shallow, it is non-linear and does not
fall in the category of interpretable models such as tree/rule-
based or linear models. The interpretable models either learn
more structured representations or enable tracing of causal re-
lationships [Schwalbe and Finzel, 2021]. A general approach
uses an interpretable model as a surrogate model to explain
the black-box model’s overall logic. This approach is also
valid for explaining the local behavior, as done in the local
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Concept Description

*_bishop_pair True if * has a bishop pair
*_knight_pair True if * has a knight pair
*_double_pawn True if * has a bishop pair
*_isolated_pawns True if * has isolated pawns
*_connected_rooks True if * has connected rooks
*_has_control_of_open_file True if * has control of open file
has_contested_open_file True if there is a contested open file
#_queens The difference in number of queens
#_pawns The difference in number of pawns
#_rooks The difference in number of rooks
#_knights The difference in number of knights
#_bishops The difference in number of bishops

Table 2: The custom concepts (* stands for white or black)

surrogate approach LIME [Ribeiro et al., 2016]. The surro-
gate model is supposed to mimic the decisions of the black-
box model but transparently and should be judged on its fi-
delity [Bodria et al., 2021], i.e. how well the surrogate model
explains the black-box model.

We use a linear surrogate model mainly because it is in-
trinsic in the design of the classical concepts that their sum
equals the classical evaluation. The linear model used mini-
mizes the residual sum of squares (Ordinary Least Squares).
However, it is non-trivial to choose the appropriate loss, e.g.,
[McGrath et al., 2021] chose to minimize the L1 instead of
the L2 loss, because they found the L2 loss to systematically
underestimate the piece weights. We tried both loss functions,
and although the latter resulted in slightly lower piece values,
they were both in proximity to the literature, and the dynamic
between both evaluation methods remained the same.

To evaluate the importance of the concepts in Stockfish’s
two evaluation models we estimate the Shapley value of each
concept. Shapley value evaluates the contribution of each
concept over all possible combinations of concepts [Lipovet-
sky and Conklin, 2001]. In this research we use Shapley value
sampling [Castro et al., 2009] to evaluate the Shapley values.
The metric for contribution is measured in r2 accuracy.

3.4 Concept Probing
Concept probing aims to determine the emergence of human
concepts in deep learning models [Alain and Bengio, 2017].
It is a global method used to shed light on how well the con-
cept is represented in the network’s activation, z, but not to
explain individual samples. If we suspect that the concept in-
formation is linearly separable from negative samples (where
the concept is not present), we can train models such as

gjl (z
l) = wT

jlz
l + bjl (continuous concepts)

gjl (z
l) = σ(wT

jlz
l + bjl) (binary concepts)

(2)

Then, the accuracy of gjl (z
l) on the held-out test set will

indicate how much information the activations at layer l carry
regarding the concept j. In [McGrath et al., 2021] they men-
tion the challenge of choosing the correct architecture for
concept probing. For such a small network as Stockfish,
new challenges arise where the information is so compressed

that it is hard to linearly separate the concept from nega-
tive (random) samples. Furthermore, we use the high-level
concepts defined in the Stockfish hand-crafted evaluation as
our explaining vocabulary, as well as some lower-level binary
concepts such as whether pawns are doubled or isolated and
rooks are connected or not.

4 Results
In the following subsections, we describe the results gath-
ered. The goal is to understand better the performance in-
crease gained by introducing Stockfish’s NNUE evaluation
function. We begin by describing the experimental setup, and
then in the second subsection, we use model agnostic meth-
ods to explain Stockfish’s NNUE evaluation without analyz-
ing the model’s internals. In the third subsection, we analyze
the internal representation of the model. Here we aim to de-
termine how well Stockfish’s NNUE model represents given
human-understandable concepts. The fourth and final sub-
section highlights some of the main differences between the
classical and NNUE evaluations.

4.1 Experimental Setup
We use version 14.1 of Stockfish, which was the latest release
at the time of the research.

Our experiments need an external dataset to generate the
concept probes. For that we use a dataset generated by Leela
Chess Zero that is listed as a quality dataset (training_data at
[Stockfish, 2022d]), from which we randomly sampled 100k
positions. Henceforth, we defer to this dataset simply as D.
For each position s in D, we compute all relevant concepts
(ci(s)) and Stockfish’s static evaluations by both the classical
and NNUE models, fclassical(s) and fNNUE(s). The result-
ing data is used in our experiments to generate the concept-
based regression surrogate models.

In our concept probing experiments, we use ridge regres-
sion, a linear model that minimizes the squared error with L2
regularization. For each probe, we perform a hyperparameter
search over alpha values (the L2 term multiplier) of [0.01, 0.1,
0.5, 1, 5, 10, 50, 100, 500, 1000]. The error bars of Figures 6
and 7 show the standard error of the mean of cross-validation
results over five splits.

4.2 Model-Agnostic Interpretation
The results we present here treat the NNUE model as a black
box, interpreting its output in terms of its inputs only.

One of the first thing newcomers to chess learn, besides the
rules, is the value of the pieces, presented relative to a pawn’s
value. Assuming a pawn value of one, the chess literature
most commonly gives a knight and a bishop a value of three,
the rook the value of five, and the queen the value of nine. Of
course, many positional factors also determine how effective
the pieces are in different situations, but this assignment is a
good rule of thumb for the pieces’ intrinsic value.

Figure 2 shows how Stockfish’s models value the pieces,
normalized such that a pawn’s value is one. Both models are
mostly in agreement with the chess literature values; how-
ever, seemingly, the classical model values its minor and ma-
jor pieces (especially the queen) slightly more, whereas the
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NNUE Classical ratio

Material 0.412 0.573 0.719
Winnable 0.187 0.147 1.269
Passed pawns 0.055 0.045 1.234
Imbalance 0.040 0.076 0.524
Mobility 0.023 0.035 0.642
King safety 0.019 0.086 0.226
Threats 0.004 0.012 0.365
Rooks 0.003 0.009 0.385
Bishops 0.002 0.003 0.508
Space 0.002 0.008 0.244
Pawns 0.001 0.004 0.337
Knights 0.001 0.001 0.466
Queens 0.000 0.001 0.318

Table 3: Shapley values estimated using Shapley value sampling
with a linear model. Ratio is calculated as the value of NNUE di-
vided by the value of Classical.

NNUE model values them slightly less. In Figure 3, shows
how the models evaluate the relative piece values during dif-
ferent game phases. The overall trend for both models is that
as the game progresses, the relative difference between the
pawns and the other pieces decreases. This may be explained
by the pawns becoming more awake in the endgame, where
being even a single pawn up is often a decisive advantage.

As chess players progress in strength, they start to take nu-
merous other non-material-based concepts into account when
evaluating the merits of chess positions, for example, in line
with the higher-level hand-crafted concepts used in the clas-
sical model. It is thus interesting to look at how well those
concepts explain the NNUE model evaluations. The graph
in Figure 4 shows the result of a concept regression using
the classical high-level concepts to explain the output of the
NNUE model. First, we notice a relatively low fidelity, as
witnessed by the fact that a linear combination of the classical
concepts explains less than 50% of the variation of the NNUE
model (i.e., r2-score), indicating considerable disagreement
between the two models. We also see, when inspecting the
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Figure 2: Piece values using Concept Regression. Each feature cor-
responds to #_* features in Table 2, i.e. its value is the difference in
number of each piece type on the board.
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Figure 3: Comparison between the piece values depending on the
phase of the game. The bucket number indicates which layer stack
will be used; the number of pieces on the board determines the
bucket number, which is calculated by (piece_count− 1)/4.

weights of the linear surrogate model, that they disagree the
most about the relative importance of the Winnable, Space,
and King-Safety concepts, with the NNUE model placing less
weight on those concepts than the classical one. However,
this does not tell us about these concepts’ absolute impor-
tance in the final evaluation.

Table 3 gives us a better grasp of the absolute impor-
tance using Shapley values, which we evaluated using Shap-
ley value sampling. Both models see Material as the most
critical concept, followed by Winnable and Passed Pawns
(both of them being more critical for NNUE than the clas-
sical evaluation). Of the concepts we looked at, taking into
account their overall importance, it seems as King-Safety —
the way the classical model computes it — is not too useful
for the NNUE model. Supposedly, the model has found a
more meaningful way of evaluating king safety.

To assess the contribution of the low-level concepts in Ta-
ble 2, we create a concept vector c(z0) using all concepts in
the table except material and imbalance. We are assessing
the contribution using a linear model, thus we exclude those
concepts to avoid interactions between features representing
the same thing. E.g., the feature imbalance awards a bishop
pair versus having a bishop and a knight. Instead of using the
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Figure 4: This figure shows the weights of two linear surrogate mod-
els used to explain the Classical and NNUE evaluations, respec-
tively. The fitted models give a r2-score of 0.999 for the classical
evaluation and 0.497 for the NNUE evaluation, respectively.

concept material we use the piece concepts used in previ-
ous experiments to describe the difference in the number of
pieces. Figure 5 shows the result, where it becomes appar-
ent that the NNUE favors, other things being equal, concepts
such as the bishop pair, having control of an open file, dou-
bling the opponent’s pawns, and connected rooks.

4.3 Model-Specific Interpretation
In this subsection, we will dissect the model to understand its
reasoning better. We use concept probing to identify if and
how well the model represents those human-understandable
concepts. We probe the model in two places, i) after pre-
processing (i.e. the input, in the HalfKAv2_hm format) and
ii) after the first hidden layer. Comparing the two helps distin-
guish attribution between the model learning and the expres-
sive input representation. Here, we do not look deeper into
the model because the information becomes much more com-
pressed and is processed differently depending on the game
phase, i.e., only one of 8 layer stacks is used each time.

In Figure 6, we show concept probing results performed
on the input and after the first hidden layer. It is interesting
to see that all concepts increase in probing accuracy after the
first linear layer, meaning that the network is learning how
to represent those higher-level concepts. Also, the contrast
between the concepts winnable and space highlights an inter-
esting intuition; winnable is the second most important con-
cept (according to Table 3); the probing accuracy after the
first layer is more than four times higher than on the input.
In contrast, space is the least important concept and receives
almost no increase in probing accuracy.

The relevance of the concepts may change with the game

1 0 1 2 3 4 5 6 7 8 9
Concept weight

white_double_pawn
Space

black_has_control_of_open_file
white_knight_pair
black_bishop_pair

white_isolated_pawns
black_connected_rooks

has_contested_open_file
white_connected_rooks

black_isolated_pawns
black_knight_pair
white_bishop_pair

white_has_control_of_open_file
black_double_pawn

King safety
Threats

Passed pawns
Mobility

# Pawns
# Bishops
# Knights

# Rooks
# Queens

Figure 5: Surrogate model predicting NNUE’s evaluation weights.
We exclude material and imbalance to avoid concept interaction. It
is advantageous to have a bishop pair, to have control of an open file
and connected rooks, and disadvantageous to have doubled pawns.

phase (e.g., an isolated pawn is more of a weakness in the
endgame). Figure 7 shows the concept probing accuracy for
each of the 8 phases (or buckets, with bucket 0 having the
fewest pieces). Here we see that i) the concepts winnable and
passed pawns become more relevant for the model as fewer
pieces are left on the board, ii) the concept material is al-
ways well represented by the model, and iii) king safety and
threats generally have a low agreement with the model but,
proportionately, are better represented earlier in the game and
increase again during the end-game in bucket 1.

4.4 Classical vs NNUE Evaluation
Finally, we conducted a qualitative analysis to gain even fur-
ther insights into the differences in the evaluation of the two
models. We filtered the dataset D for game positions where
the two models were on the opposite view of which side had a
clear advantage. Manual inspection unveiled some common
motives as demonstrated in Figure 8. The overarching theme
resulting from this inspection seems to be that the NNUE
model better evaluates various types of threats (which may
take several moves to materialize), like forks, mating-attacks,
and the potential for promoting pawns.

The king-safety feature is one such example and of partic-
ular interest. Although intricate in the classical model, con-
sidering weak squares, pawn shelter around the king, and the
attacking potentials of the opponent’s pieces, it nonetheless
poorly agrees with the learned model. A more in-depth qual-
itative inspection showed the classical model often overes-
timating the dangers of being able to immediately attack the
opponent’s king with a Rook or a Queen, for example, as seen
in the bottom diagrams in Figure 8, whereas the NNUE model
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Figure 6: Concept probing results on i) the input features and ii)
after the first hidden layer, using the official NNUE weights.
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Figure 7: This figure shows concept probing results on subsets con-
taining only a single bucket using ridge regression, evaluated at the
first hidden layer of the model, using the official NNUE weights.
The bucket number indicates which layer stack will be used; the
number of pieces on the board determines the bucket number, which
is calculated by (piece_count− 1)/4.

is more realistic about the attacking prospects.

5 Conclusions and Future Work
There are several valuable takeaways from this work.

First, both model-agnostic and model-specific explainabil-
ity techniques seem to, for the most part, do a reasonable
job of interpreting and explaining the knowledge acquired
by the game agent’s deep neural network, each with its pros
and cons. However, given the unique architecture of the
NNUE network, some care is needed in applying especially
the model-specific techniques.

Second, we highlighted crucial similarities and differences
in the evaluation of Stockfish’s hand-crafted and NNUE mod-
els. In contrast to the hand-crafted model, the NNUE model
puts less weight on material and emphasizes more dynamic
concepts like passed pawns. Also of interest is the low agree-
ment with some high-level concepts investigated. In par-
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Figure 8: (Upper Left) The NNUE statically detects the fork Nf6
favouring White unlike the classical model; (Upper Right) Black (to
move) wins because promoting with a check, seen (statically) by the
NNUE but not the classical model. (Bottom) The classical model
judges king safety the most critical feature favoring the attacking
player (Black and White, respectively); the NNUE is unimpressed
with the attacks and correctly (slightly) prefers the defending player.

ticular, the NNUE network clearly understands the idea of
king-safety; otherwise, it would not correctly evaluate its (or
the opponent’s) attacking potential. However, the king-safety
concept manually defined in the hand-crafted evaluation func-
tion does not have a clear correspondence in the NNUE net-
work; instead, the NNUE model seemingly has found an al-
ternative and more effective way of evaluating king safety.
Finally, it was impressive to see how the NNUE can stati-
cally detect threats such as forks, promotions, and attacking
potentials, allowing it to see threats right away that would
require a look-ahead search in the classical version of Stock-
fish. It is worth noting that [McGrath et al., 2021] identified
similar tactical abilities in the deep neural network learned
by AlphaZero; however, they attributed that to the network
simultaneously learning a value function and a (look-a-head)
policy. We show such tactics are learnable without simulta-
neous policy learning.

As for future work, more intricate higher-level concepts are
called for to understand further the evaluation differences be-
tween the two models, classical and NNUE, for example, for
king-safety, as our result indicates. Although we chose to fo-
cus on chess only for this work, the concept probing methods
we use are game independent and thus applicable to a wide
array of games/problems. This generality is one of the ap-
peals of the proposed approach. Thus, using these techniques
to analyze, for example, a deep neural network agent learned
by a general-game-playing agent would be of interest, possi-
bly identifying some generic cross-game concepts.
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