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Abstract

Factor model is a fundamental investment tool in
quantitative investment, which can be empowered
by deep learning to become more flexible and
efficient in practical complicated investing situa-
tions. However, it is still an open question to
build a factor model that can conduct stock pre-
diction in an online and adaptive setting, where the
model can adapt itself to match the current mar-
ket regime identified based on only point-in-time
market information. To tackle this problem, we
propose the first deep learning based online and
adaptive factor model, HireVAE, at the core of
which is a hierarchical latent space that embeds
the underlying relationship between the market sit-
uation and stock-wise latent factors, so that Hire-
VAE can effectively estimate useful latent factors
given only historical market information and sub-
sequently predict accurate stock returns. Across
four commonly used real stock market benchmarks,
the proposed HireVAE demonstrate superior per-
formance in terms of active returns over previous
methods, verifying the potential of such online and
adaptive factor model.

1 Introduction
Originating in asset pricing, factor model is the foundation of
factor-based investing, which simplifies the high-dimensional
characteristics in quantitative investment via an experimental
way to model how factors drive returns and risks. This can
significantly help institutional investors construct diverse and
customized portfolios. But, a better-developed capital mar-
ket brings out more challenges in achieving excess returns in
the market using traditional methods due to more similar in-
vesting actions and overlapping trading positions. Although
the recent nonlinear data-driven methods [Duan et al., 2022;
Wei et al., 2022; Gu et al., 2021] enrich the conventional tool
library built largely from linear methods [Ng et al., 1992;
Fama and French, 2020], they still face serious issues in han-
dling large, abrupt, and sustained market changes and some
factors that worked well in the previous market situation be-
come less effective in the new situation. Therefore, it is of

great importance to model the current market regime and de-
velop an adaptive factor model associated with different mar-
ket situations.

Both practitioners and academics make many attempts to
model the regime change in markets using statistical learning
[Guidolin and Timmermann, 2007], machine learning [Uysal
and Mulvey, 2021], or hybrid methods [Akioyamen et al.,
2020] from different perspectives of the market. Existing
data-driven approaches view regime switching as a clustering
problem and represent each regime as a cluster, subdividing
the market regime based on the information absorbed from
the entire training data. However, this setting is not suitable
for learning a regime-switching model intended for later use
in investment practice. Practice requires an online learning
setting that all data used for learning should be point-in-time
data, meaning that there is no future information leakage at
any timestamp in the training data set.

In this paper, we thus propose a novel end-to-end neural
factor model, referred to as HireVAE, that offers an online
and adaptive regime-switching capability, targeting two crit-
ical questions: Q1: How to keep the regime cluster labels
changing consistently and centers of cluster shifting smoothly
during training? Q2: How to adaptive learn regime-oriented
factor model under different regimes?

To tackle Q1, we develop a module for identifying regimes,
in which it learns a set of dynamic distributions associated
with different regime clusters. To maintain this regime iden-
tifier as a stable clustering module, we design a linear stabi-
lization algorithm to supervise the identifier learn a consistent
clustering that smoothly alternates with a market latent vari-
able. Specifically, a market encoder, which is learned in a
prior-posterior learning framework, will encode the market
information into a market latent variable. This framework
can help the market encoder learn the hidden logic between
the market information and the average future stock returns
in the whole market, which will serve as prior knowledge for
the market encoder in predicting future stock returns given
only current market information. The market latent variable
plays two roles in HireVAE: 1) at first it is used to estimate
the means and variances of K Gaussian distributions, repre-
senting K regimes. 2) Subsequently, it will also be used to
predict K regime indicators measuring the likelihood of each
regime being the most suitable one, from which the one with
the largest likelihood can thus be identified. It’s worth not-
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Figure 1: Identifying market regimes can help make better in-
vestment decisions, and there is an example that identifies regime
changes based on volatility, where volatility acts as an experience-
and-knowledge based indicator that is widely used in practice.

ing that we will sort K estimated regimes by sorting their
means in descending order, as pointed out by [Botte and Bao,
2021], where returns and risk-adjusted measures are linearly
correlated across market regimes, so that we can partition the
whole market situation into market regions following a con-
secutive order. With the help of the market latent variable,
we can then adaptively select the most suitable regime given
current market information. However, one question remains:
How to smoothly update the regime centers and make a con-
sistent regime assignment? To ensure consistency of cluster
assignment during training, the cluster ID is always reordered
in the descending order. In this way, the market latent vari-
able can always be associated with a consistent regime clus-
ter and the additional burden of checking for a “wrong as-
signment” is eliminated. Moreover, to smoothly update the
regime clusters, we use a dynamically weighted moving av-
erage algorithm to update the means and standard deviations
of the clusters, giving more weight to the historical clusters.
To cope with Q2, we develop an encoder with a hierarchi-
cal latent space of market and stock latent variables and a
set of regime-based stock decoders, each of which recov-
ers or predicts stock returns based on regime, market, and
stock latent factors. With this linear stabilization algorithm
for learning market regimes, the end-to-end training frame-
work can adpatively learn different market conditions as well
as the corresponding regime-specific factor model for stock
prediction. In a later section, we will show the advantages
of this algorithm for regime switching with adaptive learning
compared to rule-based regime switching, e.g., categorizing
market regimes with respect to different volatility levels.

Example 1 (Determining regimes helps better decision mak-
ing). Figure 1 shows the structural changes of the CSI All
Share Index, composed of all stocks in China stock market, in
terms of volatility level. When volatility is high, there is usu-
ally a change from a bullish market to a bearish market. In
contrast, medium volatility usually occurs during the period
when the market is changing trend at a more steady pace. The
market begins a long bull run when the low volatility prevails
most of the time.

The contribution of our paper are as follows: 1) To the best
of our knowledge, we are the first to propose regime switch-
ing with online regime learning in an end-to-end training

framework. 2) We provide an adaptive learning framework
for training a regime switch factor model with a hierarchi-
cal latent space that incorporates global observation of stock
market and stock-oriented latent factors. The decoders are
also online trained based on different dynamic market condi-
tions, each of which takes advantage of regime, market, and
stock information in the following downstream tasks. 3) We
develop a linear stabilization algorithm that helps the regime
identification process to learn a more consistent and smoother
clustering deep learning technique.

2 Related Work
Factor Models. The factor model are traditionally regarded
as a pricing model in academia [Fama and French, 1992;
Fama and French, 2020], while practitioners use its anomalies
as factors to capture excess returns from mispricing [Levin,
1995]. In recent years, stock forecasting studies based on
machine learning methods are emerging. Machine learning
based stock prediction methods are closely related to fac-
tor models and can be categorized as factor mining and fac-
tor composition. The former learns a new logical factor
from new data sources or perspective, while the latter finds
a better way to compose the existing factors, which can be
considered as a machine learning based factor model. In
terms of factor mining, existing works on stock prediction
study trading patterns [Wang et al., 2022; Ding et al., 2020;
Zhang et al., 2017], investment reviews [Wang et al., 2021b],
overnight patterns [Li et al., 2021], and the temporal rela-
tionship of stocks [Wang et al., 2021a]. As for factor com-
position as nonlinear factor models, existing works learn
optimal latent factors via a variational autoencoder (Factor-
VAE) [Duan et al., 2022], a deep multifactor model (DMFM),
which builds on hierarchical stock graphs [Wei et al., 2022],
and a deep risk factor model that fuses a set of uncorrelated
risk factors from the original style factors [Lin et al., 2021].
Unlike existing methods, our model aims to learn an adaptive
factor model that can recognize the current market regime and
use a learnable and more appropriate factor composition for
that market regime, which can enable a market-driven invest-
ment decision.

Regime Switching [Hamilton, 1989] provide a statisti-
cal modeling framework to address the problem of regime
switching in various circumstances, such as regime switch-
ing in interest rates [Ang and Bekaert, 2002], asset al-
location [Guidolin and Timmermann, 2007], and financial
markets[Zhu, 2022]. In the cryptocurrency market, [Zhu,
2022] shows that regime switching methods perform bet-
ter than methods without regime switching. Machine learn-
ing based methods open another main direction in model-
ing regime switching, such as Hidden Markov Model [Wang
et al., 2020] and Gaussian Mixed Models [Botte and Bao,
2021]. As a hybrid method, [Akioyamen et al., 2020] applies
principal component analysis and k-means clustering to iden-
tify regimes in financial markets. Deep learning based regime
switching models of energy commodity prices [Mari and
Mari, 2022]. Unlike the existing regime switching method, in
investment practice, we not only need to use an online learn-
ing algorithm to identify market regimes, but also need to
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learn an adaptive factor model based on the determination of
the market regime.
Variational Autoencoder. Variational Autoencoder (VAE)
[Kingma and Welling, 2013], one of the major families of
deep generative models, provides a prior-posterior framework
that encodes the observation as prior knowledge in a latent
space, and later [Vahdat and Kautz, 2020] introuduce a hier-
archical pipeline into VAE. [Chung et al., 2015] is the first
to extend VAE to sequential modeling. Then, the variational
methods are extended to neural machine translation [Su et al.,
2018] and trajectory prediction. In the area of financial ap-
plications, VAE includes topics such as stochastic volatility
models [Luo et al., 2018] and factor models. The latter VAE
family includes applications in factor mining based on social
media in the context of stocks [Xu and Cohen, 2018], appli-
cations in factor composition where [Duan et al., 2022] aims
to learn representative latent factors from existing technical
factors, and [Gu et al., 2021] aims to learn a pricing model.

3 Preliminaries
In this section, we first define the stock prediction problem
and then introduce the problem setting from the perspective
of learning a data-driven method.
Definition 1 (Stock prediction). In general, stock prediction
problem can be defined as learning a mapping f (·; Θ) from
the past information set F<t to future stock return yt+∆t

,
where ∆t is the prediction length, ŷt+∆t

= E (yt+∆t
|F<t) is

its corresponding expected future return, and Θ is the model
parameter of data-driven method f (·).

In our setting, we have a set of samples labeled with time
stamps sorted in chronological order: D = {Dt0 , . . . ,Dtn},
where n is the total number of trading days covered by
the dataset. For a single data sample Dt = {Xt,Mt},
Xt ∈ RT×N×C and Mt ∈ RT×Cm are sequential features
of stocks and the market, where T , N and C(·) represent
the length of the historical sequence, the number of stocks
and the number of features. Moreover, the overall pattern
of the market (global observation) consists of information
from d modalities, based on which it can be segmented as
Mt = [M1

t , . . . ,M
d
t ]. The above are general input dataset.

Besides, the corresponding target set of D is Y =
{Yt0 , . . . ,Ytn}, where Yt = {yt+∆t}, ∆t is the length of
prediction horizon, and yt+∆t ∈ RN is the future cross-
section returns of N stocks in the market over the time period
from t to t+∆t.

Our target is to learn a optimal Θ∗ of a data driven model
f (·; Θ) with learnable parameter Θ such that Ŷ ← f (D; Θ).

4 Methodology
In this section, we introduce HireVAE to identify the mar-
ket regime with online learning in conjunction with a linear
stabilization clustering algorithm and learn an adaptive factor
model to extract the latent logic behind the market and stocks
under different regimes. The brief framework of HireVAE is
given in Figure 2.

The architecture of our model is derived from a VAE
encoder-decoder structure. In contrast to the classical
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Figure 2: The brief architecture of HireVAE.

pipeline, we develop a hierarchical encoder with a two-level
latent space representing a market-stock hierarchy, and cou-
ple it with a set of regime-specific decoders that reconstruct
or predict stock returns based on different market situations.
First, the market encoder extracts market latent factors from
multimodal features. Then, the stock encoder plays the role of
a conditional encoder that extracts stock latent factors based
on stock features and market latent factors. This hierarchi-
cal structure can help the stock latent factor better recognize
the market situation. In the middle of this encoder-decoder
architecture, a regime-switching module acts as a mediator
to match an appropriate regime-specific decoder to the latent
market situation.

Specifically, this architecture consists of four parts: an ex-
planation of the feature extraction procedure from sequential
data, an overview of the hierarchical encoder-decoder struc-
ture, a regime switching learning algorithm, and the learning
objectives in prior-posterior learning.

4.1 Extracting Features from Sequential Data
We establish two inherent feature extractors, i.e., stock-
specific and market-specific extractors.

Stock Features. The stock feature extractor ϕfeat
s , extracts

features es from the historical stock characteristics: es =
ϕfeat
s (X), where X ∈ RT×N×C and es ∈ RN×H represents

the extracted stock features with a hidden size H . Specifi-
cally, es is the latest hidden state obtained by a gated recur-
rent united which summarizes all temporal information.

Market Features. For sequential market data Mt ∈
RT×Cm consists of information with d multimodal features,
we introduce a set of extractors ϕfeat

m,i (·) associated with
different modalities Mi

t ∈ RT×Ci , i = 1, . . . , d, and∑d
i=1 C

i
t = Cm. We use d! cross attention modules [Hou et

al., 2019] to learn pairwise features from each modality pair.
Later, we extract the market features v from all these pair-
wise features by concatenation. In our setting, a market can
be represented by an index composed of all the stocks in the
market. The different modalities are the market momentums
(defined as the cumulative return over a period of time), the
levels of relative trading volume, and the market volatilities
over different time frames.

4.2 Hierarchical Encoder-Decoder Structure
To help the model better identify the market situation and bet-
ter interpret future stock returns in different market situations,
we design the latent space in a hierarchical structure that rep-
resents latent factors from the market and stocks. A pair of
encoders is designed to learn latent variables from market and
stocks based on the market and stock features.
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Posterior Structure in Training Phase
In the training phase, the market encoder generates a market
latent variable, based on which and in conjunction with both
future stock returns and historical stock features a market-
aware stock encoder can learn stock latent features. After
the current market regime is identified by a regime switching
algorithm, a regime-specific decoder can reconstruct future
stock returns.
Market Encoder. The market encoder ϕm

enc extracts poste-
rior market latent factor m from the extracted market infor-
mation v, and future average return of all stocks ȳ:

[µm
post,σ

m
post] = ϕm

enc(v, ȳ),

m ∼ N
(
µm

post, diag(σm
post)

)
,

where m ∈ RHm is the market latent factor following a Gaus-
sian distribution, parameterized by mean µm

post and standard
deviation σm

post and Hm is the market hidden size.
Market-Aware Stock Encoder. The stock encoder ϕs

enc
extracts posterior stock latent factors z from the market la-
tent factor m, stock features es, and future stock returns y:

[µs
post,σ

s
post] = ϕs

enc (v, es,y) ,

z ∼ N
(
µs

post, diag(σs
post)

)
,

where z ∈ RHs is the stock latent factors following a Gaus-
sian distribution, parameterized by mean µs

post and standard
deviation σs

post and Hs is the stock hidden size.
Regime-Switch Factor Decoder. We develop a learning al-
gorithm to distinguish the current market situation from dif-
ferent regimes in the latter part of the paper (Section 4.3).
To learn an adaptive factor model for different market situa-
tions, we design a regime-switch factor decoder consisting of
Nk sub-decoders that can reconstruct future stock returns ŷ
based on stock latent factors z and market latent factors m:

ŷ = ϕdec (z,m, es; c) ,

where c ∈ {1, . . . , Nk} denotes a market regime. More pre-
cisely, c = f(m) where f(·) is a switching function (algo-
rithm) that can identify the regime based on the market latent
factors m.

Prior Structure in Prediction Phase
First, the market prior generates market latent factors m0

based on the extracted market information v from various
modalities. Later, the stock prior generates stock latent fac-
tors z0 based on the market prior variables m0 and stock char-
acteristics es. The decoder predicts future returns based on
the market-stock priors and the regime c determined by the
switch function. Specifically,

[µm
0 ,σm

0 ] = ϕm
prior(v),

m0 ∼ N (µm
0 , diag(σm

0 )) ,

[µs
0,σ

s
0] = ϕs

prior (m0, es) ,

z0 ∼ N (µs
0, diag(σs

0)) ,

ŷ = ϕdec (z0,m0, es; c) with c = f(m0),

where m0 ∈ RHm follows a Gaussian distribution with pa-
rameters µm

0 and σm
0 , and z0 ∈ RHs follows a Gaussian

distribution with parameters µs
0 and σs

0.

Algorithm 1 Linear stabilization clustering algorithm
Input: Training data Dtrain = {Dbatch

1 , . . . ,Dbatch
Nb
} s.t. all

data items are sorted in chronological order
Parameter: Model parameters Φ, regime distribution param-
eters µr ∈ RNr and σr ∈ RNr

+
Output: Regime ci, i = 1, . . . , Nb

1: Randomly initialize µr and σr with σr ≥ 0
2: while i ≤ Nb do
3: Projection to 1D score space: si ← Score

(
Dbatch

i

)
4: Pred. cluster center: µi,σi ← DistShift

(
Dbatch

i

)
5: Sort cluster center: µ∗

i ,σ
∗
i ← Sort (µi,σi)

6: Update cluster center:
µr ← βµr + (1− β)µ∗

i
σr ← βσr + (1− β)σ∗

i

7: Calc. regime prob.: pi ← N
(
si;µr, diag(σ2

r)
)

8: Pred. regime: ci ← ArgMax (pi)
9: end while

10: return regime ci, i = 1, . . . , Nb

4.3 Regime Switching with Online Learning
In order to learn an adaptive factor model that can handle var-
ious regimes, the first step is to identify these regimes based
on point-in-time (PIT) market information. To achieve con-
sistent and smooth market clustering based on a market latent
variable m ∈ RHm extracted from the mixed market fea-
tures v ∈ RHc , we develop an online learning clustering al-
gorithm with linear stabilization summarized in Algorithm 1.
First, we project the market latent variable onto a 1D mea-
sure space, and consider its relative score in this 1D space as
a random variable from a market regime distribution. Then,
we compute the log-likelihood of this score w.r.t the distribu-
tions of different market regimes and choose the regime with
largest log-likelihood as the predicted regime.
Projection to 1D Space. A project layer ϕproj projects the
market latent variable m ∈ RHm onto a 1D regime measure
space. We define s = ϕproj(m), s ∈ R, as the “score” of the
current market situation and it plays a role as a 1D measure
of the overall market status. This market score s is consid-
ered as a given sample in the sample spaces of the different
regimes. Later, we can measure how much more likely this
market score s belongs to a given market regime.
Determination of Market Regimes. Denote the number
of market regimes as Nr. We assume that r is a Gaus-
sian random vector given by r ∼ N (µr, diag(σr)), where
µr ∈ RNr and standard deviation σr ∈ RNr

+ are the repre-
sentatives of regime centers and regime deviations w.r.t Nr

regime clusters. To keep each regime as different as possible,
we use Kullback-Leibler divergence (KL) to measure the dif-
ference between two distributions and define the loss function
in terms of market regimes as

Lreg = −
∑

i=1,...,Nr
j=i+1,...,Nr

KL
(
N
(
µi, σ

2
i

)
||N

(
µj , σ

2
j

))
,

where µi and σi are the i-th element of the mean vector µr
and the deviation vector σr, respectively.
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Regime Learner. To determine the centers of each regime,
the regime learner ϕreg predicts the parameters of the market
regime distribution, i.e. [µr,σr] = ϕreg (m). Specifically,

µr = wµ,rv + bµ,r,

σr = Softplus (wσ,rv + bσ,r) .

To keep the shift of regimes consistent and smooth in 1D mea-
sure space, a sorting function is applied to the mean values of
all regime centers µr ∈ RNr in descending order and the cor-
responding deviation terms are reordered w.r.t. the new order
of sorted mean values. Formally,

[µ∗
r , I

∗
r ] = Sort (µr) ,

σ∗
r = σr[I

∗
r ],

where µ∗
r is a reordered mean vector, I∗

r is its correspond-
ing reordered index w.r.t. its original index, and σ∗

r is a re-
ordered deviation vector w.r.t. this reordered index I∗

r . These
reordered mean and deviation vectors obtained in each batch
are later used to update each regime center (µr and σr) with
a weighted moving average, allowing the regime center to be
updated gradually.
Regime Prediction. We assume that the market score s is a
random variable generated from a market regime distribution
defined as a Gaussian distribution. For Nk regimes, we have
Nk market regime distributions, for each of which we can
calculate the log-likelihood of the current market score s:

l
(
s;µi

r, σ
i
r

)
= − ln(σi

r)−
1

2
ln(2π)− 1

2

(
(s− µi

r)
2

σi
r

)
,

where i = 1, . . . , Nk. The regime is predicted to be the
regime with the maximum log-likelihood among all regimes:

c = argmaxj [l
(
s;µi

r, σ
i
r

)
, i = 1, . . . , Nk],

where c indicates the predicted market regime.

4.4 Learning Objective
Our learning objective consists of three parts, where the first
part is to learn a better future stock return reconstruction, the
second part is to learn latent market features and latent stock
features in a hierarchical structure, and the third part is to
learn a more differentiated regime clusters. Thus, the overall
loss function of our HireVAE is as follows,

Lrec = −
Nr∑
r=1

1f(m)(r) lnPϕdec
(ŷ = y|X,M, z,m; r)

Lhier = KL
(
Pϕenc

(m|M, ȳ) ||Pϕprior
(m|M, ȳ)

)
+

KL
(
Pϕenc (z|X,M,m,y) ||Pϕprior (z|X,M,m)

)
Loverall = Lrec + Lhier + Lreg.

5 Experiments
In this section, we evaluate the proposed HireVAE on real
stock market data, choosing one of the largest emerging mar-
kets as representative, and demonstrate the effectiveness of

Method IC Rank IC Rank ICIR

Linear 0.030 0.031 0.322
GRU 0.046 0.050 0.484
MLP 0.053 0.051 0.537
Trans 0.050 0.040 0.253
GAT 0.029 0.032 0.466
IGAT 0.012 0.018 0.210
DMFM 0.014 0.015 0.480
VAE 0.049 0.059 0.539
CVAE 0.053 0.063 0.628
HiReVAE 0.058 0.066 0.734

Table 1: Evaluation the performance of various methods in terms of
their predictive power.

our model through various experiments. These experiments
are designed to investigate the following research questions.
Exp 1: Does our method outperform the state-of-the-art
methods in terms of factor investing?
Exp 2: Is the improvement in effectiveness mainly due to the
additional market information?
Exp 3: How does regime switch help adaptive learning in
factor models?
Exp 4: Is the hierarchical structure necessary in our design?

5.1 Experiment Settings
Dataset Construction. We conduct the experiment over the
entire China stock market, with price-volume and fundamen-
tal data obtained from the WIND database, and all raw data
processed on a point-in-time basis. The stock pool is con-
structed based on all on-listing stocks, except for stocks that
receive special treatments (ST) and those that have been on
the market for less than three months. When a company is
labeled as ST, which means it suffer losses for two or more
consecutive years. We follow the same paradigm as in [Wei
et al., 2022] to construct stock features and select 58 features
that have a good coverage over the entire stock market. The
length of the sequential data and the prediction horizon are
T = 20 and ∆t = 20, respectively. The stock returns are
calculated on a basis of volume weighted average prices. We
choose the dataset and data split settings as in [Wei et al.,
2022] instead of [Duan et al., 2022] because the former bet-
ter covers the period from 2010 to mid-2022 and has a longer
test set from mid-2015 to mid-2022 than the latter from 2019
to 2020. There are 14 groups of training, validation, and test
datasets. To prevent information leakage, we delete the data
items from the validation dataset when the future stock re-
turns in the validation dataset are covered by the time period
of the test dataset.

Baselines. To allow a fair comparison, we provide the same
sequential data to all methods. We compare our HiReVAE
to the factor models as follows: ① Linear is a linear factor
model derived from [Fama and French, 1992], with average
pooling on the sequential dimension. ② GRU [Chung et al.,
2014] is a factor model in which a GRU extracts the sequen-
tial features and, in conjunction with a linear layer, predicts
future returns. ③ Trans [Ding et al., 2020] is a factor model

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4907



CSI 300 CSI 500 CSI 1000 CNI 2000 CSI ALL
Method AR↑ IR↑ AR↑ IR↑ AR↑ IR↑ AR↑ IR↑ AR↑ IR↑
Linear 11.94 0.30 8.81 0.50 6.98 0.65 5.04 0.49 5.82 0.89
GRU 19.40 0.60 15.04 0.80 12.89 0.96 11.27 0.84 13.25 2.20
MLP 23.04 0.78 20.20 1.10 18.12 1.22 16.87 1.09 19.25 3.53
Trans 7.21 0.18 4.63 0.28 3.03 0.41 0.68 0.24 0.22 0.27
GAT 5.77 0.14 5.65 0.19 4.33 0.29 2.30 0.16 2.08 0.31
IGAT 12.67 0.41 10.32 0.61 8.47 0.69 6.85 0.54 8.43 2.04
DMFM 3.16 0.05 2.13 0.20 0.78 0.35 1.50 0.18 2.24 0.32
VAE 26.49 0.82 25.04 1.11 23.32 1.23 19.05 1.02 23.72 4.38
CVAE 27.78 0.91 25.84 1.24 24.00 1.36 22.76 0.99 24.91 5.46
HiReVAE 30.89 0.89 29.05 1.23 27.14 1.35 25.94 1.18 28.02 5.92

Table 2: The performances on portfolio construction over the period from mid-2015 to mid-2022 (best/2nd best).

based on Transformer. ④ MLP [Levin, 1995] is the first non-
linear factor model with multilayer perceptrons, where we
equip it with a GRU to extract time-series features. ⑤ GAT
[Veličković et al., 2018] is a graph attention work with a fully
connected stock graph. ⑥ IGAT [Wei et al., 2022] is a GAT,
based on a stock-industry graph where there is an edge be-
tween two nodes if two stocks belong to the same industry. ⑦
DMFM [Wei et al., 2022] is a deep multifactor model built
on top of a stock graph. ⑧ VAE [Duan et al., 2022] is a stock
prediction method based on VAE that treats latent stock vari-
ables as the optimal factors thus learned. ⑨ CVAE [Gu et al.,
2021] is a factor model with a conditional autoencoder.

5.2 Exp 1: Effectiveness of HireVAE
In this experiment, we verify the effectiveness of our Hire-
VAE with respect to factor investing. In this context, factor
models are the essential tools in factor investing, where the
objective is to answer two practical questions: 1) whether the
model explains (future) stock returns well and 2) whether it
provides good stock selection.

Predictive Power
To evaluate the predictive power of the compared methods,
we use two metrics widely used in industry and academia
[Duan et al., 2022; Wei et al., 2022], i.e., the rank information
coefficient (IC), the rank information coefficient (RankIC),
and the information ratio of RankIC (RankICIR) , where Ran-
kICIR is the z-score of RankIC. To reconcile deterministic
and generative methods in prediction, we use the means of the
hierarchical priors as the deterministic values and determine
the predicted stock return by ŷ = ϕdec (µ

s
0,µ

m
0 , es; c). By

comparison in Table 1, HireVAE outperforms the compared
methods, illustrating its effectiveness in stock prediction.

Stock Selection
The most widely used method to test the ability of a factor
model in portfolio construction is Top-1-of-G Groups. Specif-
ically, this involves sorting stocks in descending order w.r.t
the expected returns estimated by a factor model and then
dividing the sorted stocks into G groups. In addition, a long-
short portfolio can be created by buying the Top-1 group and
short selling the Bottom-1 group simultaneously. Since short
selling in Chinese stock markets is not always possible for

Method Mkt rIC rICIR AR IR

GRU ✓ 0.051 0.484 13.180 2.202
GRU-s ✗ 0.050 0.485 13.249 2.107

MLP ✓ 0.051 0.537 19.247 3.525
MLP-s ✗ 0.051 0.540 19.251 3.454

VAE ✓ 0.059 0.539 23.724 4.377
VAE-s ✗ 0.059 0.540 23.589 4.267

Table 3: Ablation study of the difference in the use of market in-
formation. RIC rICIR, AR and IR are abbreviations for rank IC,
rankICIR and active return, portfolio information ratio, respectively.
The “-s” stands for the exclusive use of stock characteristics.

each stock, we construct only the portfolio holding the Top-1
group. The frequency of rebalancing is monthly. All transac-
tion costs and taxes are included in our backtesting.

The CSI300, the CSI500, the CSI1000 and the CNI2000
are widely used benchmarks in China stock markets and con-
sist of the most representative stocks in market hierarchy. In
particular, the CSI300 consists of the 300 most liquid and
largest stocks. The CSI500, representing mid-caps, consists
of the 500 most liquid and largest stocks. The CSI1000 con-
sists of the following 1000 stocks representing small caps. In
addition, the CNI2000 is another representative of small caps
and consists of 2000 stocks.

To test the potential of subsequent use in the construction
of enhanced index funds (EIFs), we compare the different
methods. We report two metrics that are widely used in in-
vestment practice: the annualized active return (AR) relative
to an investment benchmark and the information ratio of a
portfolio (IR), the latter being a risk-adjusted measure. We
use ↑ to indicate that a larger value is better. As shown in
Table 2, the HireVAE can achieve better active returns over a
long investment period across different market hierarchies.

5.3 Exp 2: Improvement Not From Extra Info
Theoretically, see our experiment settings in Section 5.1, we
use all stocks included in the CSI All A Share Index, an
overall market representative of Chinese stock markets. At
its core, the index is roughly calculated by a capitalization-
weighted sum of the prices of all stocks, which means that
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Method Algo Enc rIC rICIR AR

RVAE-v Rule ✗ 0.05 0.67 21.62
RVAE Clus ✗ 0.05 0.50 13.72
RCVAE-v Rule ✗ 0.04 0.38 14.85
RCVAE Clus ✗ 0.03 0.32 2.61
HiReVAE-v Rule ✓ 0.06 0.67 24.54
HiReVAE AOL ✓ 0.07 0.73 28.02

Table 4: Ablation study on the rule-based and the end-to-end regime
switching identifier in terms of their predictive power and stock se-
lection performance on all Chinese A-shares. The rIC, rICIR, AR
are abbreviations for rank IC, rankICIR and active return, respec-
tively. “-v” stands for regime change based on rule-based algorithm.

this index is calculated based on the most basic stock charac-
teristics, price and market capitalization. Some of the orig-
inal stock characteristics are also calculated based on these
two basic characteristics. Thus, the market index is a “global
observation” of all stocks and no additional information is
added to the original raw data.

To provide empirical support for the previous argument,
we conduct two experiments. First, all methods use the same
input characteristics for stocks and the market, and the cor-
responding results are reported in Table1 and 2. Second, in
Table 3, we show the comparisons between the baseline meth-
ods in terms of using market information, selecting the base-
line methods that performed well in Exp 1 as our baseline
methods in Exp 2. The results show that the additional mar-
ket information does not help to improve the performance of
a model.

5.4 Exp 3: Adaptive Learning is Better
Determining the regime on the basis of volatility is a way of
establishing regimes on the basis of rules of thumb [Botte
and Bao, 2021]. Inspired by this knowledge and experi-
ence, we develop a rule-based method shown in Algorithm
2. We consider this method as a baseline for regime switch-
ing to its online and adaptive counterpart. Table 4 shows the
performance of the different regime-switching algorithms in
stock prediction and portfolio construction, where we select
the most recommended stocks from the entire market (10%
stocks from the market). In different modeling settings, our
adaptive regime switching algorithm can always outperform
the rule-based and neural clustering counterparts.

5.5 Exp 4: Hierarchy is Necessary
In this experiment, we analyze the necessity of using a hier-
archical structure in two ways: first, does a hierarchical latent
space (HVAE) encode market information better than a single
latent space (VAE)? Second, does the hierarchical structure
help the end-to-end clustering algorithm in adaptive learning
of market regimes.

Table 5 can answer these two questions accordingly. As for
the first question, encoding market information alone does not
provide significant improvement in the non-regime-swithcing
modeling, since the metrics of VAE and HiVAE are similar.
This is reasonable, as we showed in Section 5.3, where the
market information itself does not provide more information

Algorithm 2 Volatility-based regime identification
Input: Volatility dataDσ = {σt0 , . . . , σtn} where all volatil-
ity data items are sorted in chronological order, and the num-
ber of regimes K (K ≥ 2)
Output: Regime ct

1: Initialize σmin = +∞ and σmax = −∞
2: Initialize IK =

[
(K−1)

K , 1
]

and Ik =
[
(k−1)
K , k

K

)
, for

k = 1, . . . ,K − 1
3: while t ≤ tn do
4: σmin ← min(σmin, σt)
5: σmax ← max(σmax, σt)
6: σlevel ← (σt − σmin)/(σmax − σmin)
7: while k ≤ K do
8: if σlevel ∈ Ik then
9: ct ← k.

10: end if
11: end while
12: end while
13: return regime ct

Method Hier MLV rIC rICIR AR

VAE ✗ ✓ 0.06 0.63 23.72
HiVAE ✓ ✓ 0.07 0.68 23.13

RVAE ✗ ✓ 0.05 0.50 13.72
RCVAE ✗ ✓ 0.03 0.32 2.61
HiReVAE ✓ ✓ 0.07 0.73 28.02

Table 5: The result of the experiment showing the need for a hier-
archical structure in learning an online and adaptive regime switch-
ing identifier. The MLV is the abbreviation for the market latent
variable, which indicates whether the MLV participates in regime
switching learning.

than the raw data. However, in the case of regime switching,
the market latent variable plays an important role in end-to-
end regime switching learning, as it is used to estimate the
regime region and predict the corresponding indicators that
measure the probability of being in each regime. This can
be empirically demonstrated by the fact that HireVAE out-
performs the other two regime switching methods without
considering the market latent variable, RVAE and RCVAE,
in terms of predictive power and stock selection ability.

6 Conclusion

In this paper, we present HireVAE, a novel end-to-end neural
factor model that can identify current market regime accord-
ing to point-in-time market information, and subsequently
adapt itself for better prediction. HireVAE achieves such an
ability by a pair of hierarchically organized encoders respec-
tively process global market situation and stock-wise latent
factors. Being the first online and adaptive regime-switch fac-
tor model, HireVAE achieves superior performance on real
stock market data, outperforming classical linear methods
and recent non-linear data-driven methods by a large margin.
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