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Abstract
The high rate of false arrhythmia alarms in inten-
sive care units (ICUs) can negatively impact pa-
tient care and lead to slow staff response time due
to alarm fatigue. To reduce false alarms in ICUs,
previous works proposed conventional supervised
learning methods which have inherent limitations
in dealing with high-dimensional, sparse, unbal-
anced, and limited data. We propose a deep gener-
ative approach based on the conditional denoising
diffusion model to detect false arrhythmia alarms
in the ICUs. Our approach generates predictions
that simulate waveforms of a patient under actual
arrhythmia events conditioning on the patient’s past
waveform data, and uses the distance between the
generated and the observed samples to classify the
alarm. We design a network with residual links and
self-attention mechanism to capture long-term de-
pendencies in signal sequences, and leverage the
contrastive learning mechanism to maximize dis-
tances between true and false arrhythmia alarms.
We demonstrate the effectiveness of our approach
on the MIMIC II arrhythmia dataset for detecting
false alarms in both retrospective and real-time set-
tings.

1 Introduction
Intensive care units (ICUs) provide care for the most vul-
nerable and medically unstable patients within the hospital
setting. By utilizing advanced bedside monitors like elec-
trocardiogram (ECG), arterial blood pressure (ABP) catheter
and pulse oximeter (PPG), clinical staff can closely monitor
the patient’s physiological indicators and get alerts from the
monitors when certain indicators exceed thresholds. How-
ever, ICU false alarm rate is as high as 86%; between 6% and
40% of alarms are true alarms but requiring no immediate ac-
tion, and only 2% to 9% of alarms are important and useful
for the medical care [Lawless, 1994]. The low ICU true alarm
rate brings stress and noise for both patients and medical staff,
leading to decreased quality of patient care and longer stays
in the ICUs [Parthasarathy and Tobin, 2009]. Therefore, the
false alarms present an important open problem in the ICUs.
According to the PhysioNet Challenge in 2015, among all of

the life-threatening arrhythmia alarms, ventricular tachycar-
dia and ventricular flutter/fibrillation have proven to be the
most challenging false arrhythmia alarms to detect.

Prior to the development of the deep learning methods, sig-
nal processing and conventional machine learning techniques
have been developed for detecting false alarm in the ICUs
through a combination of feature engineering and expert-
defined rules. Such methods generally consist of a feature
extractor based on different methods (including digital fil-
tering [Pan and Tompkins, 1985; Engelse and Zeelenberg,
1979], length transform [Zong et al., 2003] and peak en-
ergy detector [Nygårds and Sörnmo, 1983; Oster et al., 2013;
Behar et al., 2014]) and rule-based logics analysis. In fact, the
best-performing methods from Challenge 2015 was based on
a series of decision rules designed by experts [Plesinger et
al., 2015]. These rules include pulse detection [Ansari et al.,
2015], QRS detection [Couto et al., 2015; Sadr et al., 2015],
heart rate and spectral purity values [Fallet et al., 2015], noise
detection. While rule-based approaches often deliver promis-
ing results, they rely on expert-derived rule designs and good
data qualities. These approaches are time consuming to de-
velop requiring domain knowledge, sensitive to changes in
complex patterns of waveform data, and often requiring sig-
nificant manual adjustment of the algorithm before they can
be applied to new datasets.

In recent years, there has been growing interest in machine
learning and deep learning methods to detect the false alarms
in ICUs. Deep learning methods use convolutional neural
networks or recurrent neural networks to encode information
from different channels. For example, Zhou et al. design a
convolutional neural network (CNN) to discriminate between
true and false alarms [Zhou et al., 2022]. The method uti-
lizes Contrastive Learning to simultaneously minimize a bi-
nary cross entropy classification loss and a proposed similar-
ity loss from pair-wise comparisons of waveform segments
over time as a discriminative constraint. Despite the remark-
able feature extraction and representation learning capabili-
ties of deep learning methods, their performance can be hin-
dered by several challenges, including limited samples, un-
balanced labels, and sparse data.

In this paper, we develop a novel deep generative approach
using diffusion modeling [Ho et al., 2020] and contrastive
learning to detect false arrhythmia alarms in the ICUs. Due
to the fact that false arrhythmia alarms can be triggered by
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various causes, the resulting waveforms can exhibit substan-
tial variation. The main idea of our proposed model is to gen-
erate the ”true” alarm waveform segment (the physiological
waveform that occur in actual arrhythmia events) conditioned
on the patient’s past waveform data and compare the gener-
ated waveform predictions with the actual observed wave-
form. If the candidate observed sample is from a genuine
arrhythmia alarm, the distance between the generated wave-
forms and the observed samples will be small; on the other
hand, if the alarm is false, the discrepancy between the two
will be large. We use the diffusion model as our generative
model. However, the original diffusion model cannot gen-
erate the conditional distribution. Inspired by Yusuke et al.
[Yu et al., 2021] and Kong et al. [Kong et al., 2020], we
utilize the conditional score-based diffusion model and sepa-
rate the input into observations and reconstruction target, and
we designed the network with residual link [He et al., 2016]
and transformer [Vaswani et al., 2017] structure to serve as
the denoise process in the diffusion model. Moreover, we
also introduce a contrastive learning mechanism to minimize
the mutual information between the true arrhythmia signal
and the false, which helps the model train better. In the in-
ference process, we generate the true arrhythmia signal with
candidates’ features by the well-trained conditional diffusion
model, and determine the false alarm by the distance between
the generated waveform and the sample waveform. Our ap-
proach requires only a single type of samples for training,
side-stepping the problems encountered in the deep models
described above. We also note that our model is formulated
for time series prediction tasks or anomaly detection tasks,
and is not restricted to the arrhythmia alarm classification.

Our main contributions are as follows:

• We propose a diffusion model-based architecture for ar-
rhythmia detection. Compared with the generative mod-
els of GAN and VAE, our model is easier to train and
more stable. To the best of our knowledge, we are the
first to apply the diffusion model to the field of ICU
alarm determination or anomaly detection.

• We incorporated a contrastive learning framework into
the conditional diffusion model to improve the quality
and accuracy of model generation.

• We propose a novel network structure to enhance the
feature capture capability of the conditional diffusion
model for long time series, and is competitive with ex-
isting baselines designed for these tasks.

2 Related Work
ICU false alarm detection. In order to reduce the false
alarms in ICUs, an extensive number of approaches have been
proposed in this field. Typically, they fall into three gen-
eral categories: 1) Rule-based method, detecting false alarms
based on the rules defined by experts. These methods of-
ten utilize signal processing algorithms to improve the qual-
ity of observed signals. For example, Krasteva et al. use
an expert database including modules for lead quality mon-
itoring, heartbeat detection, heartbeat classification and ven-
tricular fibrillation detection to support the decision module

for final alarm inspection [Krasteva et al., 2015]; 2) Tradi-
tional machine learning based method, such as supported vec-
tor machine (SVM) [Kalidas and Tamil, 2016], decision trees
[Caballero and Mirsky, 2015] and random forest [Eerikäinen
et al., 2015], extracting important features from the arrhyth-
mia signals to enhance detection of false alarm. Hooman
et al. present a neuroevolution based-approach for training
neural networks based on genetic algorithms, reducing the
number of suppressed true alarms by deploying and adapt-
ing Dispersive Flies Optimisation (DFO) [Hooman et al.,
2018]. Mohammad et al. utilize a low-computational game-
theoretic feature selection method based on the genetic al-
gorithm to collect information from various monitoring de-
vices [Mousavi et al., 2020]; 3) Deep learning based method,
by apply neural networks such as CNN, LSTM, and atten-
tion mechanism based network for enhancing the capability
of learning representation of signals. Lehman et al. propose
a supervised denoising autoencoder model utilizing the FFT-
transform to process waveform data at a beat-by-beat basis
[Lehman et al., 2018]. Yu et al. propose two network struc-
tures deep group convolutional neural network (DGCN) and
embedded deep group convolutional network (EDGCN) to
deal with different signal channels [Yu et al., 2021].

Diffusion model. Diffusion models [Ho et al., 2020] have
emerged as a powerful new family of deep generative mod-
els that are prominent in many areas such as text-image gen-
eration, video generation, and molecular design. Compared
to other generative models such as GAN [Goodfellow et al.,
2020], VAE [Kingma and Welling, 2013] and autoregressive
models, diffusion models have the advantages of being easy
to train, stable, versatile and flexible [Wang et al., 2022]. Re-
cently, diffusion models have also been applied to the task of
sequence data generation. Kong et al. propose a denoising
diffusion model to generate high-fidelity audio and achieve
better performance than GAN-based models and Autoregres-
sive models [Kong et al., 2020]. Tashiro et al. present a novel
time series imputation method that leverages score-based dif-
fusion models, exploiting correlations within temporal data
and adopt the form of self-supervised training to optimize the
diffusion models [Tashiro et al., 2021].

3 Methodology
3.1 Denoising Diffusion Probabilistic Models
Diffusion models learn a mapping from latent space to signal
space by sequentially learning to remove noise in a backward
process. It makes use of two Markov chains: a forward chain
that perturbs data to noise, and a reverse chain that converts
noise back to data. New data points are subsequently gen-
erated by first sampling a random vector from the prior dis-
tribution, followed by ancestral sampling through the reverse
Markov chain. The forward process is parameterized as:

q(x1, ..., xt|x0) =

T∏
t=1

q(xt|xt−1), (1)

where q(xt|xt−1) is a transition kernel, which is
usually designed as Gaussian perturbation and obey
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Figure 1: The model structure of our model.

N(xt;
√
1− βtxt−1, βtI). The βt is a small positive con-

stant that represents a noise level. xt can be expressed in
closed form as:

q(x0|xt) = N (xt;
√
αtx0, (1− αt)I), (2)

where α̂ := 1 − βt and αt :=
∏t

i=1 α̂i. Then xt can be
expressed as xt =

√
αtx0 + (1− αt) ε, where ε ∼ N (0, I).

When α ≈ 0, xT is close to the Gaussian distribution.
Briefly speaking, this forward process slowly injects noise

into the data until the data becomes completely noisy. In con-
trast, we need a denoising process to gradually noise down
noisy data into usable data by a learnable Markov chain.
Specifically, the reverse Markov chain is parameterized by
a prior distribution p(xT ) = N (xt; 0, I) and a learnable tran-
sition kernel pθ(xt−1|xt). Where prior distribution can be
constructed due to the conclusion of forward process, and the
transition kernel can take the form of:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)), (3)

where θ denotes the model parameters, learned by deep neu-
ral networks. According to Ho et al. proposed denoising dif-
fusion probabilistic models [Ho et al., 2020], µθ(xt, t) and
σ(xt, t) can be parameterized as:

µθ(xt, t) =
1

αt
(xt −

βt√
1− αt

εθ(xt, t)),

σθ(xt, t) = β̂
1
2
t , where β̂t =

{
β1 t = 1

1−αt−1

1−αt
βt t > 1

.

(4)

Then, we can calculate the parameter θ by training the fol-
lowing objective:

L(θ) := minθEx0 q(x0),ε N (0,I),t||ε− εθ(xt, t)||22. (5)

After training, we can get sample x0 from the transition ker-
nel pθ(xt−1|xt). Since we need to generate signals condi-
tional on the candidate samples, the existing diffusion model

can only generate unconditional samples. Therefore, we need
to extend the model to a form with conditional generation.
Tashiro et al.[Tashiro et al., 2021] and Alcaraz et al. [Al-
caraz and Strodthoff, 2022] propose a conditional diffusion
process, which is, given a sample x0 which contains con-
ditional part xc

0 ∈ x0 and generation target part xg
0 ∈ x0,

the generated objective becomes to predict the target data
distribution when the conditional data distribution is known,
i.e., the forward process q(xg

0|xc
0) and the denoising process

p(xg
0|xc

0). Due to the pθ(x0:T ) can be defined as the trained
model pθ(x0), similarly, we can extend the denoising process
to the conditional case by introducing xg

0 and xc
0 to Eq.3 and

Eq.4:

pθ(x
g
0:T |x

c
0) := p(xg

T )
T∏

t=1

pθ(x
g
t−1|x

g
t , x

c
0),

pθ(x
g
t−1|x

g
t , x

c
0) := N (xg

t−1 : µθ, t|xc
0, σθ(x

g
t , t|x

g
0)I),

(6)

where xg
T N (0, I). Now, we can use deep neural networks to

simulate the reverse process. As in Alcaraz et al[Alcaraz and
Strodthoff, 2022], we train the conditional observation data,
time dimension, and noise space as the input of the neural
network to get the appropriate function to simulate the inverse
process performed.

3.2 Model Architecture
In this section, we present a variant of the Diffwave-based dif-
fusion model. The model’s architecture is depicted schemat-
ically in Figure 1. The inputs of our model include Noise
Space z0, Diffusion Embedding t and Conditional Observa-
tion Data xc

0. Then we utilize a network with residual link
structure to get the trained θ for the denoising process.

Diffusion Embedding. It is important to include the
diffusion-step t as part of the input, as the model need to em-
bed the time step information for modeling the pθ(x

g
0|xc

0) →
pθ(x

g
T |xc

0). we use the following 128-dimensions embedding
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following previous works[Kong et al., 2020]:

tembedding = [sin(10
0×4
63 ), ..., sin(10

63×4
63 ),

cos(10
0×4
63 ), ..., cos(10

63×4
63 )]

(7)

Then we apply two MLP layers to encode the time embed-
ding information. The first MLP layer is outside of the resid-
ual layer for sharing parameters. The second MLP layer is
integrated into residual layers for adjusting the shape, which
makes time embedding can map into the input of each resid-
ual layer.

Residual layer. Both residual and skip connections are
used throughout the network, to speed up convergence and
enable training of much deeper model. Firstly, we use the
spatial normalization network (S-norm) [Deng et al., 2021]
to process inputs of residual layer, which enable the model to
capture fine-grained variation by distilling the local or high-
frequency components from the observed signal. Then, the
processed noise z0 is added to the time embedding t, which is
processed and fed into the feature extraction module:

InputT1 = SN(Conv(z0)) + t, (8)

where InputT1 is input of the first transformer encoder layer.
SN(·) means S-norm layer. We choose the transformer en-
coder as our feature extractor because the self-attentive mech-
anism has a good ability to model long sequences and capture
the temporal and spatial dependencies in multivariate time se-
ries. After the encoder layer, we get the representation X1

en
of noise and time embedding.

X1
en = Encoder1(Conv(InputT1)). (9)

Also, we need to extract the features of the conditional obser-
vations to guide the diffusion model to generate the desired
time series. Since this feature extractor needs to exist in the
residual layer, we chose a 1-layer convolutional neural net-
work to extract the features of the conditional data. Mean-
while, as we need to employ this CNN to extract features of
conditional samples in the contrastive learning module, we
name it Siamese CNN. The hidden representation of the con-
ditional observation data will be added to the result of the first
transformer encoder as the input to the second transformer
encoder:

X2
en = Encoder2(SiameseCNN(xc

0) +X1
en), (10)

where xc
0 is conditional observation data. X2

en means the out-
put of the second transformer encoder. We deploy a gated
activation unit and get final output:

z = tanh(Wf ×X2
en) ⊙ σ(Wg ×X2

en), (11)

where × denotes a convolution operator, ⊙ denotes an
element-wise multiplication operator. σ· and tanh denote
sigmoid function and tanh function, respectively. Wf and
Wg are learnable convolution filters. Finally, z is split into
two parts, each after passing through a learnable convolu-
tional layer, as the input to the next residual layer and part
of the total output of the residual module, respectively.

3.3 Contrastive Learning and Loss Function
To generate higher quality candidate samples, we introduced
Contrastive Learning mechanism into conditional denoise
diffusion model to improve the likelihood of the model gener-
ating positive samples. Specifically, we use Siamese CNN to
extract the features of positive and negative samples, respec-
tively. We introduce a set of negative hidden representation
H ′ = h′

1, h
′
2...h

′
n′ , which is encoded from n′ negative sam-

ples XN = xN
1 , xN

2 , ..., xN
n′ . Conversely, the positive hidden

representations H = h1, h2...hn also are encoded from n
positive samples XP = xP

1 , x
P
2 , ..., x

P
n ,

H ′ = SiameseCNN(XN ), H = SiameseCNN(XP ).
(12)

Then, we can use a contrastive learning loss to maximize the
distance between the features of positive and negative sam-
ples. In the alarm classification task, we want the model to
generate waveforms that are closer to the waveforms of real
alarms and away from the waveforms of false alarms. There-
fore, we use only real arrhythmia waveform data during train-
ing and they are marked as positive samples. We sample from
waveforms that are labeled as false alarms as negative sam-
ples. We choose InfoNCE loss [He et al., 2020] as our con-
trastive loss function LC in this paper:

LC = −
∑
j∈n

log
exp(hj · hj)∑n
i=1 exp(hj · h′

i)
, (13)

where n denotes the number of samples, h′ and h denote
features from negative samples and postive samples, respec-
tively. As we only want to amplify the distance between the
positive and negative sample features, we use the positive
sample itself to reduce the impact in the numerator. Ideally,
we would like a positive sample to compute the distance with
all the negative samples, but this would incur an unaffordable
computational overhead. Hence we can only sample n sam-
ples from the entire negative sample space for the calculation
of the contrastive learning loss.

Since in the conditional diffusion model, pθ (z′|xc
0) can be

used to pick the appropriate noise space z′ to predict the gen-
eration data xg

0. We can use the Eq.5 to train the model.

LD(θ) := minθEx0∼q(x0),ε∼N (0,I),t||ε− εθ(x
g
t , t|xc

0)||22.
(14)

The final training loss is defined as:

LDC = LD + λLC , (15)

where λ is the temperature parameter for adjusting the bal-
ance between diffusion loss and contrastive loss.

3.4 Inference and Detection
Sample. Once the model is trained, we can obtain the param-
eters θ corresponding to the denoising process. The sampling
algorithm is shown in Algorithm 1. Given the denoising pro-
cess, the generative procedure is to first sample an xT ∼
N (0, I), and then gradually sample xt−1 ∼ pθ(x

g
t−1|xt, x

c)
for t = T, T − 1, . . . , 1. And the output xg

0 is the final gen-
eration data. Then we can calculate the distance between the
output and the candidate sample for determining the anoma-
lies.
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Algorithm 1 Sampling of our model
Input:a data sample x0, trained denoising function ϵθ
Output:generated data xg

Denote observed values of x0 as xc
0

Sample xg
T from N (0, I)

for t = T, T − 1, ..., 1 do
Calculate µθ(x

g
t , t) and σθ(x

g
t , t) using Eq.4

Sample xg
t−1 ∼ N (xt−1;µθ(x

g
t , t), σθ(x

g
t , t)I)

end for
return xg

0

Anomaly score. We adopt the reconstruction error to de-
tect anomalies in multivariate time series. Since the model is
trained to learn true arrhythmia patterns of multivariate time
series, the more an observation follows true arrhythmia pat-
terns, the more likely it can be reconstructed and predicted
well with higher confidence. In this paper, we utilize the
Mean Squared Error as reconstruction error to measure the
distance between candidate samples and generation signals:

Ai = ||xi − xg
i ||

2
2, (16)

where Ai denotes the L2 distance between candidate sample
xi and generation result xg

i . Then we set the grid space based
on the specific range, and we adopt a grid search strategy to
find the optimal threshold with a higher Score metric. In our
case, the higher anomaly scores are more likely considered to
be extreme values since the higher anomaly score, the greater
chance it belongs to the false alarm.

4 Experiment
4.1 Dataset
We run our experiment on the MIMIC II dataset. The
Multi-Parameter Intelligent Monitoring for Intensive Care II
(MIMIC II) database was assembled primarily to facilitate the
development and evaluation of ICU decision support systems
[Aboukhalil et al., 2008]. The database currently includes
more than 2,000 records containing multiparameter physio-
logic waveforms and accompanying data which span approx-
imately 10,000 patient-days. Each record contains up to four
channels of continuously monitored waveforms (usually two
leads of ECG, arterial BP, and pulmonary arterial pressure
where available), as well as monitor-generated alarms. Wave-
forms were stored at 125 Hz with 8 bit resolution. For our
research, We extend some data of IABP(intra-aortic baloon
pump) patients into the dataset and label these data. We select
80% of the true alarms in the MIMIC II dataset for training
and 20% of the full sample for test.

4.2 Metrics
We use four metrics for evaluation baseline methods and our
model: True Positive Rate (TPR), True Negative Rate (TNR),
Accuracy and Score proposed by Physionet Challenge 2015
[Clifford et al., 2015]. The true case rate is used to evalu-
ate the ability of the model to identify positive cases from all
samples. The true negative case rate is used to assess the abil-
ity of the model to identify negative cases from all samples.
Accuracy is used to measure the classification ability of the

model for all samples (positive and negative samples). Score
is a metric proposed by the 2015 Challenge because mistak-
enly determining a true alarm as a false alarm in a real-life
scenario can lead to serious consequences. So, score adds a
5x penalty to the FN value to the FN, making results more
focused on high TPR values.

Accuracy =
TP + TN

TP + TN + FP + FN
, (17)

Score =
TP + TN

TP + TN + FP + 5 ∗ FN
. (18)

4.3 Experiment Setup
Our model consists of a network of 36 residual layers with
256 residual and skip channels. The diffusion embedding
layer have three level of diffusion embedding of 128, 256,
and 256 dimensions. Each layer are connected by a swish
activation function. Then, we leverage two Transformer en-
coders for extracting the noise input and conditional input.
Each encoder contains one encoder layer and the “dmodel”
of each encoder layer is 512 and “nhead” is 4, and feed for-
ward layer between each encoder layer have 512 dimensions.
The number of negative samples is 32 and the temperature
parameter of total loss lamda is 0.5. In the inference stage,
we used 200-time steps on a linear schedule for diffusion con-
figuration from a beta of 0.0001 to 0.02. We utilize an Adam
as the optimizer with the learning rate of 1e-4. We randomly
mask the half part of data for train and mask the first half of
data for test. Because of the xnoise ∼ N (0, I) where I = 1,
we shrunk the dataset by a factor of 10 to solve the problem
of sample value out of range. The code is released in Github:
https://github.com/meiyoufeng116/Diffusion-model-in-ICU.

4.4 Compared Methods
The compared methods are summarized as follows: (1).
MLP. We apply the multi-layer perceptron to classify the
alarms’ type. (2). FCN. We use a fully-connected convo-
lutional network as the feature extractor of the input wave-
form. (3). ResNet [He et al., 2016]. We use ResNet-18 as
the feature extractor of the input waveform. (4). Transformer
[Vaswani et al., 2017]. We utilize Transformer as the feature
extractor. The encoder is used for processing input wave-
forms, and the input of decoder is alarm situations. (5). Beat-
GAN [Zhou et al., 2019]. BeatGAN is a GAN-based method
for time series anomaly detection. We replace the generation
module from diffusion model to BeatGAN and use the same
anomaly detection model for evaluating the performance. (6).
TAnoGAN [Bashar and Nayak, 2020]. TAnoGAN is also
a GAN-based method for the time series anomaly detection
model with unsupervised learning. (7). [Zhou et al., 2022].
Zhou et al. propose a contrastive learning approach combined
with convolutional neural networks (CNNs) and to discrimi-
nate the alarm type in ICU. We did not incorporate the rule-
based algorithm within this model. (8). CSDI [Tashiro et
al., 2021]. CSDI is a conditional score-based diffusion mod-
els for time series imputation and prediction. (9). [Plesinger
et al., 2015]. This method is a rule-based method combined
with machine learning, it is also the best method on the Phy-
sioNet Challenge 2015.
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Method
Real-time Retrospective

VT VFB VT VFB

TPR TNR Score Acc TPR TNR Score Acc TPR TNR Score Acc TPR TNR Score Acc

[Plesinger et al., 2015] 73.76 57.29 44.04 64.63 63.63 57.69 38.59 53.00 11.17 93.37 25.29 60.84 13.89 93.54 49.39 79.00
MLP 97.95 9.67 58.40 63.28 51.22 62.71 32.22 58.00 98.98 8.60 59.91 61.34 68.29 77.97 48.68 74.00
Resnet 95.91 20.79 58.99 64.63 92.68 45.76 58.04 65.00 95.91 23.66 60.08 65.82 90.24 66.10 65.52 76.00
FCN 79.69 36.41 40.49 59.24 63.42 59.32 38.13 61.00 88.24 58.78 59.60 75.97 60.98 81.36 44.51 73.00
Transformer 98.21 15.41 61.17 63.71 58.54 52.54 32.74 55.00 96.68 19.71 59.97 64.63 85.37 62.71 58.07 72.00
BeaTGAN 98.46 21.5 64.12 66.41 100.00 38.98 64.00 64.00 98.98 19.00 64.14 65.67 100.00 40.60 65.00 65.00
TAnoGAN 99.23 22.93 66.27 67.46 100.00 42.37 66.00 66.00 98.72 28.67 69.55 67.54 100.00 50.85 71.00 71.00
[Zhou et al., 2022] 99.74 13.62 62.98 64.20 65.84 74.57 45.51 71.00 97.95 27.24 65.39 68.51 97.56 16.95 48.08 50.00
CSDI 98.30 17.98 58.12 60.29 60.00 72.00 49.29 69.00 98.58 13.56 56.67 58.36 24.00 89.33 41.48 73.00

Ours 96.52 57.06 74.10 80.08 91.71 88.81 79.26 90.00 96.36 55.62 73.19 79.40 96.58 78.64 81.44 86.00
±1.44 ±6.11 ±1.22 ±1.78 ±1.95 ±4.37 ±2.19 ±2.10 ±1.02 ±6.94 ±1.45 ±2.41 ±3.65 ±12.16 ±3.29 ±5.90

Table 1: Comparison results on the MIMIC II dataset. Real-time means the dataset does not have any information beyond what was known
to the monitor at the time the alarm was triggered. Retrospective means the dataset includes information after the alarm was triggered. Best
performing result in bold, and the second best is underscored.

4.5 Results

Table.1 presents the results of baseline methods on the Ven-
tricular Tachycardia (VT) and Ventricular Fibrillation (VFB)
datasets. Our proposed method outperforms other baselines
in score and accuracy metrics in both Retrospective and Real-
time scenarios. In the Real-time scenario, the rule-based
method performs [Plesinger et al., 2015] poorly on the VT
dataset but outperforms some deep learning methods on the
VFB dataset. Traditional deep learning methods (MLP, FCN,
Resnet, and Transformer) struggle on the VT dataset, with
high TPR rates but low TNR rates, indicating a tendency
to classify most samples as true alarms. These methods
also suffer from overfitting due to massive parameters and
sparse data. GAN-based methods show better performance,
achieving high TPR on the VFB dataset but leaving room for
improvement in false alarm determination. The contrastive
learning-based model [Zhou et al., 2022] performs well on
the VT dataset but poorly on the VFB dataset, indicating its
weakness in false alarm classification on small datasets com-
pared to GAN-based approaches. CSDI struggles to separate
positive and negative samples on the VT dataset but performs
well in determining false alarms on the VFB dataset. How-
ever, the self-attention in CSDI introduces a large number of
parameters, limiting its layer count and overall performance.

For Retrospective scenarios, traditional deep learning
methods improved on both datasets. The accuracy of FCN
reaches 75.97 on the VT dataset and the accuracy of Resnet
achieves 76 on the VFB dataset. The performance of Beat-
GAN has basically no growth compared to the Retrospective
scenario. In contrast, both scores of TAnoGAN improved,
from 66.52 to 69.55 on the VT dataset and from 66 to 71 on
the VFB dataset. The performances of [Zhou et al., 2022]
and CSDI almost have no change in this scenario. Since deep
learning algorithms need to automatically learn about the sit-
uation which may cause potential false alarms such as noise,
patient movement, and wire shedding, it is difficult for the al-
gorithm to adequately identify these potential patterns with a
severe shortage of training samples. Compared to the above
methods, our method reaches state-of-the-art performance on
all datasets and scenarios. This means that our model is better
able to discriminate false alarms, resulting in highest scores
and accuracy on both datasets.

We also do experiments on the PhysioNet Challenge 2015
dataset. Due to the small size of the dataset, there were only
260 VT records and 50 VFB records available for training.
Under such conditions, our method still outperformed some
of the main baselines, achieving a score of 66.6. [Zhou et al.,
2022], Transformer, FCN, MLP and Resnet whose scores are
56.63, 48.05, 41.18, 44.4 and 48.55, respectively.

5 Discussion
5.1 Ablation Study
In this section, our model has four main components: dif-
fusion model framework, S-norm, transformer encoder, con-
trastive learning. We discuss the impact of different compo-
nents on model performance by performing ablation analysis
on our model with different components. Table2 shows the
results on the VT part of MIMIC II dataset. It is obvious
that the performance achieved by the fully equipped model
exceeds that achieved by other models with only some com-
ponents of the model. Using only the basic diffusion model
framework can only reach a score of 69.22 and 68.98. With
the addition of the S-norm module, the model has no im-
provement in the score metric but a slight increase in the ac-
curacy metric on the retrospective scenario. We also observe
that after applying the contrastive learning into the training
brings improved performance in both score metric and accu-
racy metric, which indicates that contrastive learning module
effectively assists the model in distinguishing the difference
in features between true and false alarms. In addition, we re-
placed the feature extraction module in the model with trans-
former encoder layers. Although this move resulted in a de-
crease in the score metric, it greatly improved the accuracy
rate. From the perspective of TPR and TNR metric, the use
of transformer encoder as a feature extractor can effectively
discriminate true-negative samples, but the ability to judge
true-positive samples is reduced. This is due to the fact that
the self-attention mechanism used by transformer is more ad-
vantageous when modeling long sequences.

5.2 Parameter Discussion
In this section, we evaluate the performance of our model
as a function of the weight of contrastive learning loss. We
have tested the TPR, TNR, Accuracy and Challenge Score of
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Components Retrospective Real-time

Diffusion
Model S-norm Transformer

Encoder
Constractive

Learning TPR TNR Score ACC TPR TNR Score ACC

✓ 97.928 37.025 69.220 72.567 97.698 37.634 68.980 72.687
✓ ✓ 97.442 39.557 69.206 73.338 97.954 37.993 69.658 72.985
✓ ✓ ✓ 97.442 52.330 74.225 78.657 97.442 41.577 70.000 74.179
✓ ✓ ✓ 94.629 52.688 68.568 77.164 93.350 60.215 68.863 79.552

✓ ✓ ✓ ✓ 95.396 64.516 74.528 82.537 95.908 62.724 74.932 82.090

Table 2: Quantitative results of ablation study on the VT events (MIMIC II dataset).

Figure 2: Quantitative results of different weights of contrastive loss.

models trained using different weights of the contrastive loss.
Weight starts at 0.25 and ends at 2, with the step of 0.25. As
Figure 2 shows, we can see that the model achieves the best
score, accuracy and TPR and quite well TNR at the weight of
0.5. Also, we can see that larger weights of contrastive learn-
ing loss bring lower TPR, but relatively, there is an increase
in TNR. This indicates that a larger contrastive learning loss
will improve the model’s ability to identify negative samples,
but does not have much effect on the recognition ability of the
overall model.

5.3 Interpretability of Model
To explain how our model works, we visualized the results of
the model on a true ventricular tachycardia waveform and a
false ventricular tachycardia waveform. As Figure 3 shows,
false ventricular tachycardia alarms are reflected in a flat and
regular waveform on the APB channel. This could be due
to noise on other channels causing this sample to be classi-
fied as a false alarm, when in fact it could be a normal blood
pressure waveform. In contrast, true ventricular tachycardia
waveforms typically exhibit irregular shapes characterized by
high frequency. When the model decisions are false alarms,
the generated result of the model is usually a waveform with
high frequency with irregularity, which leads to a large dif-

Figure 3: Results generated by the model on true alarm and false
alarm waveforms in the Arterial Blood Pressure (ABP) channel.

ference between the generated and the actual samples. And
when the candidate is a true arrhythmia alarm, the distance
between the observed and the generated waveform is smaller.
Although there are still differences in phase, frequency and
amplitude between the generated and the true alarm wave-
form, have smaller differences compared to the distance be-
tween the generated waveform and the false samples.

6 Conclusions
In this paper, we leverage a generative approach to detect
false alarms in ICUs. In order to generate high-quality pa-
tients’ physiological waveforms, we propose a Conditional
Diffusion model based on Contrastive Learning for the gener-
ation of waveforms corresponding to real arrhythmias events.
During the training process, we use the InfoNCE loss to max-
imize the distance between positive andnegative sample fea-
tures to generate better waveforms corresponding to true ar-
rhythmia events. The experimental results on the MIMIC II
dataset demonstrate that our model outperforms other models
on the ICU false alarm detection task. In addition, our pro-
posed model can potentially be applied to other tasks in time
series, such as anomaly detection in time series.
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