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Abstract
Due to the insufficiency of electronic health records
(EHR) data utilized in practical diagnosis predic-
tion scenarios, most works are devoted to learning
powerful patient representations either from struc-
tured EHR data (e.g., temporal medical events, lab
test results, etc.) or unstructured data (e.g., clinical
notes, etc.). However, synthesizing rich informa-
tion from both of them still needs to be explored.
Firstly, the heterogeneous semantic biases across
them heavily hinder the synthesis of representa-
tion spaces, which is critical for diagnosis predic-
tion. Secondly, the intermingled quality of partial
clinical notes leads to inadequate representations
of to-be-predicted patients. Thirdly, typical atten-
tion mechanisms mainly focus on aggregating in-
formation from similar patients, ignoring important
auxiliary information from others. To tackle these
challenges, we propose a novel visit sequences-
clinical notes joint learning approach, dubbed
VecoCare. It performs a Gromov-Wasserstein
Distance (GWD)-based contrastive learning task
and an adaptive masked language model task in
a sequential pre-training manner to reduce het-
erogeneous semantic biases. After pre-training,
VecoCare further aggregates information from
both similar and dissimilar patients through a dual-
channel retrieval mechanism. We conduct diag-
nosis prediction experiments on two real-world
datasets, which indicates that VecoCare outper-
forms state-of-the-art approaches. Moreover, the
findings discovered by VecoCare are consistent
with the medical researches.

1 Introduction
With the widespread adoption of electronic healthcare infor-
mation systems in various healthcare institutions, many deep
learning models have been developed to leverage electronic
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Figure 1: Examples of unstructured clinical notes in EHR data.

health records (EHR) data for important medical applica-
tions [Yang et al., 2017; Ma et al., 2020; Yang et al., 2021;
Feng et al., 2021; Ma et al., 2021; Zhang et al., 2021;
Zhang et al., 2022; Ma et al., 2022; Xu et al., 2023]. Di-
agnosis prediction is one of these vitally important healthcare
scenarios. It predicts the future diagnoses of patients based
on their historical sequences of clinical events, such as the
diagnoses, lab tests, medications, etc.

Due to the data insufficiency in practical scenarios, mak-
ing full use of the information contained in various types
of data becomes the focus of deep learning model design.
From the perspective of the type of EHR data, some try to
leverage the information of structured EHR data (e.g., static
baseline information, lab test values, historical diagnoses,
etc.) to perform the diagnosis prediction [Ma et al., 2017;
Choi et al., 2017; Ma et al., 2018; Luo et al., 2020; Tan et
al., 2022]. While some works delve into mining the unstruc-
tured clinical notes (i.e., texts written by clinical experts with
assessments and concerns regarding patients’ clinical condi-
tions) [Thapa et al., 2022]. As shown in Figure 1, compared
with structured EHR data recording medical events and phys-
iological signals, unstructured clinical notes describe fine-
grained information about the patients’ family history, social
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history, the doctors’ observations and inferences, etc., which
are critically complementary to structured data.

However, synthesizing rich information from structured
and unstructured EHR data is still marginally studied for di-
agnosis prediction. In this work, we exploit the potential syn-
ergies between structured EHR data and unstructured clinical
notes to form a harmonious representation space for accurate
diagnosis predictions. Although seemingly straightforward,
implementing this intuition will encounter the following chal-
lenges:
C1. It is challenging to synthesize two representation
spaces due to data heterogeneity. Some works integrate
keywords of the clinical notes based on the similarity of
medical events and textual clinical notes for diagnosis pre-
diction [Lu et al., 2021]. However, structured data are dis-
crete codes or continuous values that quantitatively describe
changes in a patient’s health status. In contrast, unstructured
clinical notes are mainly clinicians’ qualitative descriptions
in the natural language form. They are incompatible in data
distributions, metric measures, and semantic representation
spaces [Bronstein et al., 2010; Roostaiyan et al., 2017]. With
typical attention mechanisms, it is challenging to reduce het-
erogeneous semantic biases across two types of information
for the joint representation of optimal diagnosis results.
C2. It is tough to learn robust representations due to the
intermingled quality of partial clinical notes. For the sake
of differences in recorders or the urgency of patients’ condi-
tions, some patients’ clinical notes suffer from misspellings,
poor grammar, non-standard abbreviations and insufficient
information [Burke et al., 2014], leading the model to learn
inadequate representations and resulting in sub-optimal per-
formance. Therefore, it is necessary to refer to relevant infor-
mation of other patients by exploiting the potential synergies
and correlations among them to strengthen the utilization of
low-quality clinical notes.
C3. It is difficult to include all valuable patients in the
reference range only by typical methods such as atten-
tion mechanisms. When complementing low-quality clin-
ical notes with other patients’ information, a natural intu-
ition is to focus on significant samples through dot-product
attention [Vaswani et al., 2017]. In this way, larger weights
are assigned to more similar patients (e.g., in Figure 1, pa-
tient #173 and patient #302 are both patients with progres-
sively decreasing hypertensive complications). According to
clinicians’ practical diagnosis experiences, patients with ex-
tremely different or even opposite healthcare statuses (e.g., in
Figure 1, patient #651 is a patient with a progressive increase
in hypertensive complications) are also essential for diagno-
sis predictions [Unay and Ekin, 2011; Jia et al., 2020], which
is ignored by existing approaches.

To cope with these challenges, we put forward
VecoCare, a novel visit sequences-clinical notes joint
learning approach to fuse them into a representation space
seamlessly for accurate diagnosis prediction. Specifically,
our main contributions are summarized as follows:
• To solve the challenge C1, we propose two sequential

pre-training tasks to bridge heterogeneous semantic biases
across structured EHR data and clinical notes. Firstly,
VecoCare incorporates a novel Gromov-Wasserstein Dis-

tance (GWD)-based contrastive learning task to learn a con-
sistent semantic representation space by maximizing the
agreement between visit sequence-clinical note pairs. Sec-
ondly, VecoCare further reduces heterogeneous semantic
biases with an adaptive masked language model task based
on a novel global-local fusing encoder, which can adap-
tively balance the influence of both types of information.

• Addressing challenge C2 and C3, VecoCare employs a
dual-channel retrieval mechanism to aggregate important
auxiliary information from similar and dissimilar patients
for more comprehensive representations.

• We conduct extensive experiments on two real-world EHR
datasets, which show that VecoCare outperforms all
state-of-the-art models in different evaluation metrics, in-
cluding approaches that incorporate task-specific external
knowledge. Besides, the medical findings discovered by
VecoCare are also in accord with medical literature and
can provide valuable medical insights or explanations.

2 Related Work

Over the past decade, there has been lots of works focusing
on diagnosis prediction with deep learning models, with the
vast majority of these methods focusing on mining structured
data. One category of methods attempts to focus on capturing
contextual dependencies between patient visit sequences. For
example, T-LSTM [Baytas et al., 2017] handles irregular time
intervals by enabling time decay. RETAIN [Choi et al., 2016]
proposes a two-level attention mechanism based on recurrent
neural networks (RNN). Dipole [Ma et al., 2017] employs
a combination of bi-directional RNN and attention mecha-
nisms to predict diagnoses of patients’ next visits. LSAN [Ye
et al., 2020] and HiTANet [Luo et al., 2020] employ the self-
attention mechanism to capture the temporal patterns. Fur-
thermore, T-ContextGGAN [Xu et al., 2022] and Chet [Lu et
al., 2022] build a graph structure according to the patient’s
medical history, and use graph neural networks (GNN) to
learn the representation. Another mainstream category tries
to focus on leveraging external medical knowledge graphs to
improve representation learning. For example, GRAM [Choi
et al., 2017] and KAME [Ma et al., 2018] both incorporate
the hierarchy of disease codes to enhance learning. CGL [Lu
et al., 2021] constructs a graph with both medical knowledge
and personal clinical observations, thence employing a col-
laborative graph learning method to learn the representations.
MedPath [Ye et al., 2021] utilizes the personalized knowledge
graph to assist prediction. MetaCare++ [Tan et al., 2022] in-
corporates domain knowledge of hierarchical and syndromic
relations between various diseases. Based on the modeling of
structured data, some existing works try to aggregate impor-
tant information from unstructured clinical notes. For exam-
ple, CGL [Lu et al., 2021] integrates keywords of the clinical
notes based on the similarity of medical events and textual
clinical notes. However, they marginally investigated the het-
erogeneous semantic biases, the intermingled quality of par-
tial clinical notes, and the difficulties in including valuable
samples.
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3 Problem Formulation
EHR Dataset. In this paper, EHR data consist of struc-
tured time-ordered visit sequences and unstructured clinical
notes of patients. Let C =

{
c1, c2, . . . , c|C|, c∗

}
be the en-

tire set of codes used in an EHR dataset, where |C| is the
number of medical codes. Following [Luo et al., 2020], we
also denote a special code c∗ to represent the whole patient
data. For the i-th patient, the visit sequence is defined as
Xi =

[
xcls
i ,x1

i ,x
2
i , · · · ,xT

i

]
, where the t-th visit is denoted

by a multi-hot vector xt
i ∈ {0, 1}|C|. The k-th element of one

visit vector is set to 1 if it contains the medical code ck. xcls
i

denotes the [CLS] token which only contains the special code
c∗. As for the clinical notes, let N =

{
n1, n2, . . . , n|N |

}
be

the dictionary of clinical notes, where |N | is the number of
words. Following [Lu et al., 2021], we select the notes OT

i
from the patient’s T -th visit as another input because it al-
ready contains a summary of the observations from the pre-
vious T visits. For convenience, we drop the superscript T
in OT

i in the rest of this paper. Oi can be represented as
Oi =

[
ocls
i ,o1

i ,o
2
i , · · · ,oM

i

]
, where M is the length of the

clinical notes, om
i is represented by a binary vector {0, 1}|N |,

and ocls
i is the [CLS] token.

Diagnosis Prediction. In this paper, our predictive objective
is presented as a diagnosis prediction task, which is a multi-
label classification problem. Given the previous T visits Xi

and the clinical notes Oi of the i-th patient, the task is to
predict a binary vector yi ∈ {0, 1}|Y|, which represents the
possible diagnoses in the (T + 1)-th visit, where |Y| is the
number of diagnoses.

4 Methodology
Figure 2 shows the architecture of VecoCare. It comprises
the following sub-modules in a sequential manner: 1) GWD-
based Contrastive Learning Module, 2) Adaptive Masked
Language Model Module, 3) Dual-channel Retrieval Module.

4.1 GWD-based Contrastive Learning Module
Base Encoder. Given a sparse binary visit vector xt

i and a
sparse binary word vector om

i , we first encode them to a rela-
tively dense space using two linear functions as follows:

vt
i = Wvx

t
i + bv,

smi = Wso
m
i + bs,

(1)

where Wv ∈ Rdv×(|C|+1), bv ∈ Rdv , Ws ∈ Rds×(|N |+1),
and bs ∈ Rds are trainable parameters. As a result,
the data of each patient can be represented by Vi =[
vcls
i ,v1

i ,v
2
i , · · · ,vT

i

]
and Si =

[
sclsi , s1i , s

2
i , · · · , sMi

]
. To

explicitly capture the global interactions within the visit se-
quence and to obtain a time-aware contextual representation,
we utilize a time-aware Transformer [Luo et al., 2020] fv as
the base visit encoder to extract visit contextual features Hi:[

hcls
i ,h1

i ,h
2
i , · · · ,hT

i

]
= fv

([
vcls
i ,v1

i ,v
2
i , · · · ,vT

i

])
.
(2)

For the clinical notes, we adopt a Transformer [Vaswani et
al., 2017] fs as the text encoder backbone to encode notes
contextual features Ui:[
ucls
i ,u1

i ,u
2
i , · · · ,uM

i

]
= fs

([
sclsi , s1i , s

2
i , · · · , sMi

])
. (3)

To map two types of contextual representations to a joint em-
bedding space, we then employ two distinct non-linear pro-
jection layers (gv and gs) to convert ht

i and um
i into normal-

ized lower-dimensional embeddings h̃t
i ∈ Rd and ũm

i ∈ Rd,
respectively.

To learn a consistent semantic representation space for
alignment and measurement, a natural idea is to maximiz-
ing the agreement between true visit sequences-clinical notes
pairs versus random pairs via contrastive learning [He et
al., 2020]. However, due to the heterogeneity of the data,
the different metric-measure spaces present significant chal-
lenges when attempting to reliably evaluate the similarity be-
tween these two types of contextual representations. The
Gromov-Wasserstein Optimal Transport is employed to min-
imize the transportation cost between two distributions by
directly comparing the metric spaces, rather than evaluat-
ing samples across these spaces [Peyré et al., 2016; Mémoli,
2011]. Essentially, this framework focuses on the distances
between pairs of points within each domain and assesses how
these distances correspond to those in alternate domains. As a
result, we compute the Gromov-Wasserstein distance (GWD)
between the two representation distributions and employ this
distance as a loss function to further optimize the represen-
tation learning. Specifically, let ph and pu represent dis-
crete distributions of two types of contextual representations,
where ph =

{
p0h, p

1
h, . . . , p

T
h

}
and pu =

{
p0u, p

1
u, . . . , p

M
u

}
,∑T

j=0 p
j
h =

∑M
k=0 p

k
u = 1. The GWD between the two dis-

crete distributions ph, pu can be defined as:

Dgw(ph,pu) = min
T∈π(ph,pu)

∑
j,j′,k,k′

TjkTj′k′ ĉ
(
h̃j
i , ũ

k
i , h̃

j′

i , ũ
k′

i

)
,

(4)
where π(ph,pu) denotes all the joint distributions, T repre-
sents the transport plan between two types of features and Tjk

denotes the amount of mass shifted from pjh to pku. In addi-

tion, ĉ
(
h̃j
i , ũ

k
i , h̃

j′

i , ũ
k′

i

)
=

∥∥∥d(h̃j
i , h̃

j′

i

)
− d

(
ũk
i , ũ

k′

i

)∥∥∥
2

is the cost function to measure the distance between differ-
ent metric measure spaces where the distance d

(
h̃j
i , h̃

j′

i

)
=

exp
(
− cos

(
h̃j
i , h̃

j′

i

)
/τg

)
of two features is measured based

on the cosine similarity, τg is the temperature parameter.
Based on GWD, for the i-th visit sequences-clinical notes

contextual features pair (H̃i,Ũi) in a mini-batch, we alter-
nate between treating two distinct feature types as queries and
keys to learn the correct pairings. This results in a pair of
symmetric, temperature-normalized InfoNCE losses [Oord et
al., 2018] that optimize the preservation of mutual informa-
tion between the authentic pairs in the latent space:

ℓv2ti = − log
exp

(
−Dgw

(
H̃i, Ũi

)
/τ

)
∑B

k=1 exp
(
−Dgw

(
H̃i, Ũk

)
/τ

) ,
ℓt2vi = − log

exp
(
−Dgw

(
Ũi, H̃i

)
/τ

)
∑B

k=1 exp
(
−Dgw

(
Ũi, H̃k

)
/τ

) ,
(5)

where B is the batch size and τ is the instance-level temper-
ature hyper-parameter. The overall objective of GWD-based
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Figure 2: The Framework of VecoCare

contrastive learning is the average of the two losses:

Lgwd =
1

2Tr

Tr∑
i=1

(
ℓv2ti + ℓt2vi

)
, (6)

where Tr is the total number of visit sequences-clinical notes
pairs.

4.2 Adaptive Masked Language Model Module
After a pre-training phase based on the GWD-based con-
trastive learning task, VecoCare learns a consistent seman-
tic representation space. To perform deeper feature informa-
tion aggregation and integration, we propose a novel global-
local fusing encoder to enable the coupling of global (self-
attention) and local (convolution) information. Transform-
ers can effectively capture global long-range dependencies.
However, on the one hand, there are temporal patterns of
disease changes in neighboring visits [Ye et al., 2020], and
on the other hand, there are many information-rich local text
fragments (e.g., past medical history, social history, etc.) in
the clinical notes. The inductive bias of convolutional neural
networks (CNN) can help us aggregate local features. Specifi-
cally, given the sequence of features z̃0 =

[
H̃i; Ũi

]
encoded

by pre-trained base encoders and projection layers, we pro-
pose to add an convolution operation on the values when cal-
culating self-attention:

z̃l = LayerNorm
(
z̃l−1 +MHSA

(
z̃l−1

)
+Conv

(
z̃l−1
v

))
,

z̄l = LayerNorm
(
z̃l + FFN

(
z̃l
))

,
(7)

where l = 1, . . . , L refers to the number of such stacked
layers. MHSA refers to the Multi-Head Self-Attention, FFN
refers to a feed forward network, and LayerNorm is the layer
normalization. Following [Vaswani et al., 2017], z̃l−1

v is the
value projected directly from z̃l−1. After L layers, we can ob-
tain the representation z̄L =

[
H̄i; Ūi

]
which captures global

and local token-wise interactions.
Then, we propose an adaptive masked language model

(AMLM) task which randomly masks word tokens and med-
ical code tokens and predicts the ground-truth labels from the

output of the global-local fusing encoder. It integrates the
context of other medical code tokens and textual tokens:

Lc =
∑

ci∈Cmask

− log p (ci) , Ln =
∑

ni∈Nmask

− log p (ni) ,

(8)
where Cmask is the set of masked medical code tokens, Nmask
is the set of masked textual tokens, p (ci) and p (ni) denote
the probability of predicting the original token. We adopt the
same masking strategy and prediction method as BERT [De-
vlin et al., 2018].

In order to mitigate the risk of our model developing an
over-dependence on particular feature types throughout the
pre-training phase, we utilize a technique that actively fine-
tunes the loss weights, ensuring an equitable distribution of
influence across the various feature types. To evaluate the
extent to which the model fits the target, following [Athalye
et al., 2018], we define a relative loss:

L̃∗(t) = L∗(t)/L∗(0), (9)

where L∗(t) and L∗(0) represent the loss values at time t
and at the initial time 0, respectively. A smaller relative loss
demonstrates a more rapid convergence of the model to the
target. Inspired by [Zhao et al., 2022], we dynamically adjust
the loss weights with each update in relation to the relative
loss to ensure that both Lc and Ln experience a relatively
equitable decline throughout the updating procedure:

wc(t) =
mw

[
L̃c(t)

]β
[
L̃n(t)

]β
+

[
L̃c(t)

]β +(1−mw)wc(t−1), (10)

wn(t) = 1− wc(t), (11)
where w∗(t) is the loss weight at time t, β is the hyper-
parameter controlling the degree of updating the loss weight,
and mw is the momentum coefficient hyper-parameter. The
final AMLM loss is calculated as follows:

Lamlm(t) = wc(t)Lc(t) + wn(t)Ln(t). (12)

With the AMLM loss adjustment, VecoCare can further re-
duces heterogeneous semantic biases.
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4.3 Dual-channel Retrieval Module
After performing the above two pre-training stages,
now we obtain the contextual representations H̄i =[
h̄cls
i , h̄1

i , h̄
2
i , · · · , h̄T

i

]
and Ūi =

[
ūcls
i , ū1

i , ū
2
i , · · · , ūM

i

]
from the pre-trained global-local fusing encoder. In order
to simulate the process of a doctor recalling cases related to
the current patient to assist clinical analysis in real world,
VecoCare maintains a patient key-value memory bank,
which consists of the visit sequences representations and the
clinical notes representations of patients in the training set.
Specifically, we denote the patient memory bank G as a vec-
torized indexable dictionary as follows:

G =
{
h̄cls
j : ūcls

j

}Tr

j=1
, (13)

where Tr is the training set size, G is initialized at the begin-
ning of training and updated at each training epoch. For clar-
ity, we use Gk =

[
h̄cls
1 ; h̄cls

2 ; · · · ; h̄cls
Tr

]
∈ RTr×d to denote

the key vectors and Gv =
[
ūcls
1 ; ūcls

2 ; · · · ; ūcls
Tr

]
∈ RTr×d to

denote the value vectors.
For patients with limited information, a natural idea is to

rely on information from other patients with similar health
conditions. Nevertheless, information from other patients
with extremely different or even opposite healthcare statuses
can also be useful for medical prediction and treatment prog-
nosis in healthcare [Unay and Ekin, 2011; Jia et al., 2020].
We contend that conventional attention mechanisms are inad-
equate for modeling negative correlations. Specifically, ac-
cording to [Vaswani et al., 2017], an attention function can
be described as mapping a query and a set of key-value pairs
to an output. A typical implementation involves calculating
the dot products between the query and the keys, followed
by applying a softmax function to derive the weights. The
limitation is that the softmax function would treat the neg-
ative correlation between query and key as inconsequential.
(e.g., executing a dot product and softmax operation on two
vectors with opposite directions yields the smallest weight).
To address this issue, we introduce a dual-channel retrieval
mechanism, comprising both positive and negative channels.
For the positive channel, we use the traditional dot-produt at-
tention [Vaswani et al., 2017]. For the negative channel, we
capture the negative correlation by inverting the values of the
dot-produt between the key and query, and output the oppo-
site of resulting weights after the softmax function:

αpos = Softmax
(
h̄cls
i G⊤

k

)
,

αneg = − Softmax
(
−h̄cls

i G⊤
k

)
,

(14)

where αpos, αneg ∈ RTr. In order to fully capture relation-
ships between different perspectives, we use the weights ob-
tained from the positive and negative channels separately to
obtain the weighted sum of the values:

ūp = αposGv, ūn = αnegGv, (15)

where ūp, ūn ∈ Rd. Finally, we concatenate h̄cls
i , ūcls

i , ūp,
and ūn as the output vector r ∈ R4d for the patient: r =
h̄cls
i ∥ūcls

i ∥ūp∥ūn. We then use a simple linear layer with a
sigmoid activation function on the model output r to calculate

the predicted probability y′
i. In this case, the cross-entropy

loss is applied as the loss function:

Lcls = − 1

B

B∑
i=1

(
y⊤
i log (y′

i) + (1− yi)
⊤
log (1− y′

i)
)
,

(16)
where B is the batch size. y′

i ∈ [0, 1]|Y| is the predicted
probability, and yi ∈ {0, 1}|Y| is the ground truth.

5 Experiments
In this section, we will show the experimental results in-
cluding performance comparison, ablation studies and anal-
ysis to validate the predictive power and interpretability of
VecoCare. The source code is available at 1.

5.1 Experimental Setup
Datasets
• MIMIC-III Dataset We conduct diagnosis prediction on

ICU data from the publicly available Medical Information
Mart for Intensive Care (MIMIC-III) database [Johnson et
al., 2016]. In this study, we select patients with at least two
visits. We use the diagnoses of the last visit as labels and in-
corporate the remaining visits within a 365-day prediction
window as features. For the clinical notes, following [Lu
et al., 2021], we select the notes from the last visit in input
features and filter out notes of type ”Discharge summary”
for fair prediction. We study an 135-class classification
problem that predicts the diseases of a patient by catego-
rizing ICD-9 codes into 135 broader medical groups using
the Unified Medical Language System [Ho et al., 2014].

• RWH Dataset. Another dataset we use is an EHR dataset
from a real-world hospital. The cleaned dataset consists
of 10,408 patients with 458,952 visits. We adopt the same
pre-processing method as used for the MIMIC-III dataset.

Both datasets are fully anonymized and carefully sanitized
before our access. We screen patients with clinical notes in-
formation during their medical visits. For each note, we use
the first 512 words, while the rest are cut off for computa-
tional efficiency.

Baselines
To compare VecoCare with state-of-the-art models, we se-
lect the following models as baselines:

• T-LSTM [Baytas et al., 2017] introduces a time decay
mechanism in LSTM.

• Dipole [Ma et al., 2017] uses bidirectional RNNs and three
attention mechanisms to predict patient visit information.

• GRAM [Choi et al., 2017] utilizes medical ontologies to
derive code representation learning.

• KAME [Ma et al., 2018] predicts patients’ future diag-
noses based on a knowledge attention mechanism.

• HiTANet [Luo et al., 2020] incorporates time-awareness
into the self-attention component.

• CGL [Lu et al., 2021] proposes collaborative graph learn-
ing for enhanced utilization of external medical knowledge.

1https://github.com/xyxpku/VecoCare
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MIMIC-III RWH
Methods mi-AUROC ma-AUROC mi-AUPRC ma-AUPRC mi-AUROC ma-AUROC mi-AUPRC ma-AUPRC

T-LSTM .8817(.008) .5452(.020) .3880(.018) .1229(.009) .8030(.005) .6092(.007) .3068(.007) .1260(.010)
Dipole .8990(.003) .6851(.014) .4480(.009) .1705(.007) .8112(.004) .7012(.006) .3189(.012) .1515(.007)
GRAM .8382(.002) .5215(.012) .4452(.006) .1576(.016) .7819(.003) .6622(.005) .3267(.002) .1375(.003)
KAME .8887(.011) .6165(.011) .4586(.020) .1725(.008) .8147(.002) .7157(.003) .3405(.006) .2195(.010)

HiTANet .9057(.006) .7176(.022) .5195(.008) .2011(.012) .8229(.011) .7527(.021) .3639(.008) .2231(.010)
CGL .9081(.005) .7201(.015) .5298(.009) .2114(.010) .8862(.003) .7809(.010) .4133(.009) .2725(.007)
Chet .9136(.003) .7309(.017) .5372(.007) .2328(.013) .8921(.006) .7913(.009) .4179(.007) .2803(.014)

MetaCare++ .9122(.005) .7235(.009) .5395(.005) .2188(.015) .8994(.007) .7859(.011) .4142(.015) .2711(.006)

VecoCareg− .9097(.002) .7284(.010) .5264(.009) .2239(.012) .9048(.004) .8180(.008) .4219(.011) .2956(.004)
VecoCarea− .8989(.001) .6879(.008) .5030(.002) .1867(.005) .8961(.017) .7953(.029) .3940(.066) .2739(.053)
VecoCared− .9109(.003) .7416(.016) .5404(.018) .2394(.016) .9053(.004) .8175(.008) .4229(.006) .3001(.007)

VecoCare .9179(.001) .7687(.008) .5592(.005) .2646(.012) .9137(.007) .8356(.014) .4336(.013) .3107(.007)

Table 1: Results for the diagnosis prediction task on MIMIC-III and RWH dataset.

• Chet [Lu et al., 2022] attempts to learn on dynamic disease
graphs from patient visit history.

• MetaCare++ [Tan et al., 2022] introduces a clinical meta-
learner to capture temporal relations among patient visits.

For a fair comparison, we take the clinical notes as additional
input, and after obtaining the notes contextual representation
via the base text encoder of VecoCare, we concatenate it
with the patient representation obtained by baseline methods
to perform the prediction. Moreover, we carefully tuned the
hyper-parameters of the baselines on the validation set using
the grid-search strategy to ensure their best performance. We
also conduct the following ablation studies:
• VecoCareg− removes the GWD-based contrastive learn-

ing module from VecoCare.
• VecoCarea− removes the adaptive masked language

model module from VecoCare.
• VecoCared− removes the dual-channel retrieval module

from VecoCare. It directly concatenates h̄cls
i and ūcls

i to
perform the final task.

Evaluation Metrics and Strategy
We assess the performance with four widely used eval-
uation metrics: micro-averaged of the area under ROC
curve (mi-AUROC), macro-averaged AUROC (ma-AUROC),
micro-averaged of the area under the precision-recall curve
(mi-AUPRC) and macro-averaged AUPRC (ma-AUPRC).
AUPRC serves as the most informative and the primary eval-
uation metric when handling highly imbalanced and skewed
datasets like the real-world EHR data [Davis and Goadrich,
2006]. The datasets are divided into the training set, valida-
tion set, and test set with a proportion of 0.70:0.15:0.15. Both
mean and standard deviation of test performance are reported.

5.2 Experimental Results
Table 1 presents the experimental results of the baseline meth-
ods as well as VecoCare on the two datasets. The num-
ber in () denotes the standard deviation. The results indicate
that VecoCare exhibits a notable and persistent advantage
over other baseline methods, especially ma-AUPRC, which
is the most informative and the primary evaluation metric.
We find that VecoCare outperforms CGL which utilizes
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Figure 3: Performance comparison of VecoCare and several base-
lines with different amount of training data on RWH dataset.

keywords from the clinical notes to assist diagnosis predic-
tion. It demonstrates the effectiveness of reducing hetero-
geneous semantic biases and utilizing auxiliary information
from important similar and dissimilar patients. Besides, it is
worth mentioning that VecoCare significantly outperforms
GRAM, KAME, CGL, and MetaCare++ even without any
task-specific external knowledge priors used in these meth-
ods. It further validates the significance of synthesizing rich
information from structured and unstructured EHR data.

We further conduct the ablation studies to examine
the design of VecoCare. The superior performance of
VecoCare than the VecoCareg− and VecoCarea− ver-
ifies that reducing heterogeneous semantic biases can signif-
icantly improve model performance. Moreover, VecoCare
outperforms VecoCared−, demonstrating that it is also ef-
fective to incorporate information from other relevant pa-
tients’ clinical notes.

5.3 Analysis
Robustness Against Data Insufficiency
To further explore the benefits of VecoCare in situations
with limited data availability, we assess its robustness in the
face of inadequate training samples. Specifically, we sim-
ulate data scarcity by reducing the RWH dataset’s training
set from 70% to 30%, 15%, and 10%, while maintaining a
fixed test set for unbiased comparison. We conduct experi-
ments under these conditions, and the ma-AUPRC (± std.)
is plotted in Figure 3. As shown in Figure 3, VecoCare
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Figure 4: An example from the RWH testing set showing the rele-
vant patient information retrieval results.

consistently surpasses the chosen baseline models across all
settings. Moreover, as the training set size diminishes, the
performance of baseline methods declines more rapidly than
that of VecoCare, resulting in a wider performance gap.
Impressively, when utilizing only 10% of the data for train-
ing, VecoCare still attains a ma-AUPRC of 0.2185 on the
RWH dataset, significantly outpacing the baseline methods.
This highlights the excellent performance and robustness of
VecoCare in scenarios with insufficient data.

Case Study for Relevant Patient Information Retrieval
Now in this section we use case studies on the RWH datasets
to show the ability of VecoCare to retrieve relevant patient
information. In this example, Figure 4 shows the data of a pa-
tient diagnosed with hypertension (401.9), chronic ischemic
heart disease (414.9), heart failure (428.9), and acute renal
failure (584.5) at the to-be-predicted visit. We also show
two other patients selected in the training set from the patient
memory bank G with the highest attention weights (absolute
value) in the positive and negative channels, respectively. Al-
though the three patients have suffered from the same hyper-
tension disease (401.9), the disease processes of patient #231
and patient #485 are different and opposite. Specifically, we
can observe that the hypertension complications of the pa-
tient from the testing set (i.e., patient #37) and patient #231
are increasing. However, patient #485 experiences a step-
wise reduction in hypertensive complications. It demonstrate
that VecoCare is adept at concentrating on patients with
analogous disease trajectories while simultaneously paying
close attention to those with vastly different or even oppos-
ing health statuses, which is helpful for the patient’s future
treatment prognosis. For example, doctors can refer to the
treatment procedures in the clinical notes of patient #485 to
mitigate the current patient’s condition with digoxin.

Case Study for Attention Analysis of the Fusing Encoder
To further illustrate the interpretability and reasonableness of
the proposed VecoCare, we conduct case studies to visual-
ize and interpret the attention weights learned by the global-
local fusing encoder. Figure 5 shows the data of two patients
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Figure 5: Attention weight visualization for two patients diagnosed
with diabetes mellitus from the MIMIC-III testing set.

diagnosed with diabetes mellitus at the to-be-predicted visit
and VecoCare successfully predicts the outcome. The av-
erage attention weights of one head calculated by the self-
attention module are shown. The ordinates of the two figures
are the Query token [CLS] xcls

i and the abscissas are the Key
word tokens in the clinical notes. The darker boxes mean that
the patient’s overall representation is more concerned with
the word, and vice versa. For convenience, we visualize only
the most noticed word tokens. In the first example, we can
observe that VecoCare attaches the highest importance to
”Nonalcoholic” and ”steatohepatitis”, aligning with the med-
ical research [Loomba et al., 2012]. As for another exam-
ple, We can observe that VecoCare pays more attention to
”family”, ”history”, and ”diabetes”. According to medical re-
search [Valdez, 2009], a family history of diabetes is a major
risk factor for this disease. Thus, VecoCare can effectively
capture important clinical notes context and reflect them in
the form of attention weights for reliable explanations.

6 Conclusions and Future Works
In this work, we propose a novel visit sequences-clinical
notes joint learning method named VecoCare, which fully
considers the fusion of clinical notes with structured data for
accurate diagnosis prediction. In particular, VecoCare first
reduces heterogeneous semantic biases by two novel sequen-
tially executed pre-training tasks. After that, VecoCare uti-
lizes a dual-channel retrieval mechanism to aggregate infor-
mation from both similar and dissimilar patients, thus learn-
ing a more comprehensive representation. Experimental re-
sults on two real-world EHR datasets demonstrate the clear
advantages of VecoCare over the state-of-the-art baselines
even without any task-specific external knowledge priors. In
the meanwhile, case studies further demonstrate the robust-
ness and novel interpretability of VecoCare. Besides, the
findings are in accord with experts and medical knowledge,
which shows it can provide useful insights. In the future, we
will explore incorporating longer and richer clinical notes as
well as other data types in EHR to bring higher performance
improvements.
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