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Abstract
News-driven quantitative trading (NQT) has been
popularly studied in recent years. Most exist-
ing NQT methods are performed in a two-step
paradigm, i.e., first analyzing markets by a financial
prediction task and then making trading decisions,
which is doomed to failure due to the nearly futile
prediction task. To bypass the financial prediction
task, in this paper, we focus on reinforcement learn-
ing (RL) based NQT paradigm, which leverages
news to make profitable trading decisions directly.
In this paper, we propose a novel NQT framework
SpotlightTrader based on decision trajectory
optimization, which can effectively stitch together
a continuous and flexible sequence of trading deci-
sions to maximize profits. In addition, we enhance
this framework by constructing a spotlight-driven
state trajectory that obeys a stochastic process with
irregular abrupt jumps caused by spotlight news.
Furthermore, in order to adapt to non-stationary
financial markets, we propose an effective train-
ing pipeline for this framework, which blends of-
fline pretraining with online finetuning to balance
exploration and exploitation effectively during on-
line tradings. Extensive experiments on three real-
world datasets demonstrate our proposed model’s
superiority over the state-of-the-art NQT methods.

1 Introduction
News-driven quantitative trading (NQT) has attracted great
attention in recent years, which leverages news to capture the
influence over market dynamics for making profitable quan-
titative trading (QT) decisions. Most existing NQT methods
perform trading in a two-step paradigm: they first leverage
news to analyze the market dynamics with some auxiliary
financial prediction task, e.g., price regression [Schumaker
and Chen, 2009], movement classification [Du and Tanaka-
Ishii, 2020], and stock ranking [Sawhney et al., 2021b]; and
then make trading decisions based on their analyze. The
trading performance of the two-step paradigm methods of-
ten relies on the predictive performance, however, which
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may hardly be accurate enough in practice [Millea, 2021;
An et al., 2022]. In this paper, we focus on a more practi-
cal NQT paradigm, i.e., reinforcement learning (RL) based
NQT paradigm, which bypasses the financial prediction and
optimizes trading decisions directly, as shown in Figure 1.

The RL-based NQT paradigm models the complex sequen-
tial decision-making processes from the experience of inter-
action with the market to maximize overall profit directly
[Ye et al., 2020; Sawhney et al., 2021c]. Although existing
RL-based NQT methods produce remarkable results, they fo-
cus on learning effective news representations to enhance the
market state rather than improving the learnability of RL to
generate a series of coherent and profitable trading actions
under the non-stationary financial markets, making them in-
applicable in the online trading environment. Compared to
the aforementioned approaches, we focus on addressing these
prevalent issues in the RL-based NQT paradigm, which cor-
responds to the following three questions.

(Q1) How can we construct an effective RL-based NQT
method to make continuous and flexible trading actions?

(Q2) How can we design an efficient mechanism that can
leverage genuinely valuable information from a large amount
of chaotic news to guide trading actions?

(Q3) How can we adapt the RL-based NQT method to the
non-stationary online trading environment?

Keeping this in mind, our works in this paper are all around
answering the above three questions.

(A1) Novel RL-based NQT Framework. In quantitative
practice, a multi-step profitable trading strategy is often a
flexible action combination with several holding periods, e.g.,
short-term, medium-term, or long-term hold between con-
secutive buy and sell actions. Forming such a strategy re-
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quires ensuring trading action continuity, i.e., shifting trad-
ing actions frequently are not allowed to break the consis-
tency of judgments and objectives of previous actions. To
ensure action continuity, existing RL-based QT methods [Liu
et al., 2020] introduce behavior cloning to learn from expert
experience, which, however, may not be able to handle sit-
uations beyond the scope of the domain knowledge, espe-
cially in non-stationary markets. In addition, it is necessary
for the multi-step profitable trading strategy to comprehen-
sively consider the actions in the long history, so as to flexibly
adjust the actions in different periods and achieve the long-
term goal. Recently, in the RL community, a trajectory opti-
mization framework originating from Decision Transformer
[Chen et al., 2021], treats the RL problem as a sequence
modeling problem under conditional behavior cloning, and
applies transformer architecture to model a decision trajec-
tory. Such a framework learns offline decision trajectories
at a cheap knowledge cost and releases the powerful long-
sequence modeling capability of the transformer architecture,
which inspires our work. Therefore, we propose an RL-based
NQT method named SpotlightTrader inheriting the tra-
jectory optimization framework, which models the trading
decision trajectory and captures the multi-scale intrinsic re-
lations between trading actions, market states, and rewards to
form a continuous and flexible sequence of trading actions.

(A2) Novel spotlight-driven state trajectory modeling.
For NQT, a common approach to leverage news is fusing the
information from all news no matter whether or not the news
is influential to stocks [Ye et al., 2020]. In reality, only a
fraction of the massive and chaotic news stream holds the
potential to influence stock trends [Sawhney et al., 2021c;
Sawhney et al., 2021a], which we term as spotlight news.
Considering all news equally not only dilutes the influence
of spotlight news but also introduces noise to fool trading ac-
tions. Meanwhile, the occurrence of spotlight news will fleet-
ingly and unanticipated break the stock trends that originally
has the characteristics of random walk, and cause some ir-
regular jumps in stock trends (cf. Figure 3). For example,
once the spotlight news occurs, keen speculators will seize
the profitable opportunity and quickly enter the market, re-
sulting in abrupt jumps in the stock trend. Inspired by the
above analysis, we innovatively propose a spotlight-driven
state trajectory module, which first filters spotlight news by
a sparse attention mechanism and then models a state tra-
jectory following a stochastic process with irregular abrupt
jumps caused by spotlight news to guide the trading actions.

(A3) Effective training pipeline for online adaption. The
online RL-based models improve the capability of decision-
making by interacting with the environment, which may not
be suitable for trading, a scenario where online trial and error
are expensive. By contrast, the offline RL-based models may
be more practical [Levine et al., 2020], which leverages previ-
ously collected offline datasets to learn optimal policies with-
out accessing the real market. However, the non-stationary
markets face the severe distribution shift problem [Sun et al.,
2021], which may render previously effective strategies in-
effective if only exploiting historical data without any new
exploration. Therefore, in order to adapt to the online envi-

ronment, we propose a novel training pipeline, which blends
offline pretraining for exploitation with online finetuning for
exploration to enhance SpotlightTrader. In our train-
ing pipeline, we customize effective components, e.g., trading
rollout mechanism, trajectory-level replay buffer, prioritized
sampling policy, and hindsight return recalculation, to effi-
ciently generate, store, and sample data in a trajectory-level
way. The training pipeline prolongs SpotlightTrader’s
lifelong experience, i.e., new rollout decision trajectory im-
mediately becomes part of the growing training set, to further
improve our model’s behavior in a continual online fashion.

In conclusion, we have proposed a novel RL-based NQT
framework for making profitable trading decisions, followed
by an effective spotlight-driven state trajectory modeling to
enhance our proposed framework and an effective training
pipeline for adapting the framework to online environments.
To the best of our knowledge, this is the first work to plug the
RL-based NQT model into the trajectory optimization frame-
work. To verify the effectiveness of SpotlightTrader,
we have conducted comprehensive experimental evaluations
on three real-world datasets to demonstrate our model’s su-
periority over the state-of-the-art NQT methods in terms of
profitability and drawdown risk control.

2 Related Work
2.1 News-driven Quantitative Trading
NQT has attracted extensive research focus from the AI
community, which incorporates natural language process-
ing (NLP) techniques to translate raw unstructured textual
data into meaningful insights for supporting NQT model.
Early works [Ding et al., 2014; Hu et al., 2018] formulate
NQT as a text classification problem by directly predicting
the rise or fall of stock prices based on the extracted fea-
tures, which hardly considers how to execute the trading deci-
sion. In recent years, sentiment-based and event-based NQT
methods model the impact of news on trading. Sentiment-
based NQT methods [Nan et al., 2022; Chen and Huang,
2021] regard the news articles’ sentiments as the trading sig-
nal, which would be affected by the author’s personal stand-
points or writing styles, thus too subjective to assist trad-
ing decision making. Event-based NQT methods [Wu, 2020;
Zhou et al., 2021] extract events from news articles and then
regard events as the trading signal, which heavily relies on
the knowledge extracted from specific events. Nevertheless,
their works are orthogonal to our work, because instead of fo-
cusing on how to model complex news structure or content,
we pay more attention to how news, as an important type of
market observation, participates in and guides trading.

2.2 RL based Quantitative Trading
In recent years, RL has gained huge attention in the field of
quantitative trading (QT) because of its superiority in com-
plex sequential decision making. RL-based QT methods can
be mainly categorized into two kinds in terms of the model
design target. The first kind of method focus on designing
various formulation of MDP to adapt to complex practical
trading rules, e.g., reducing transaction cost [Zhang et al.,
2022], refined trading operations [Wang et al., 2021], and
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Figure 2: Overview of the proposed SpotlightTrader.

allowing short [Asodekar et al., 2022], and then directly ap-
ply classical RL model, e.g., DPG-based [Jiang et al., 2017],
DDPG-based [Sawhney et al., 2021c], PPO-based [Yang et
al., 2020] method, which spends little effort in modeling
the complex relationship between financial environment and
trading actions. The second kind of method spends a lot of ef-
fort on modeling complex states, i.e., extracting effective fea-
ture representations from financial environments by applying
powerful sequential models, under the traditional RL frame-
work [Xu et al., 2021; Sawhney et al., 2021c]. However,
without careful consideration of the optimization of the RL
model itself, these methods suffer from the instability issue
[Hu et al., 2022] empirically when directly applying the mod-
eled state to the decision process. Besides, Liu et al. [2020]
formulate the QT process as a POMDP and learn expert be-
haviors based on behavioral cloning model, which is affected
by the quality of the expert strategy to be imitated.

3 Problem Formulation
3.1 NQT: News-driven Quantitative Trading
NQT refers to the process of constantly buying, holding, or
selling N stocks during T trading rounds for profit by ana-
lyzing recent historical price features and news information.
At each round t, we denote pct =

[
pct,1, , · · · , pct,N

]
as the

close price of all stocks; ht ∈ RN as holding amount vector
of all stocks; bt ∈ R+ as account balance; and rt as account
profit that corresponds to reward in the RL term.

Initially, before actual trading, we set b0 to be the initial
fund available for trading. At each trading round, a trading
agent looks back at the stock price features and the stock-
related news of the past period for making trading decisions,
aiming to maximize the cumulative account profits

∑T
t=1 rt

at the end of the trading period.

3.2 POMDP for News-driven Quantitative Trading
According to the NQT process and the fact that the states of a
financial market can only be observed partially, it is suitable
to model the whole NQT process as a partially observable

Markov Decision Process (POMDP). At each trading round
t, a trading agent leverages a trading policy πθ(·) to take an
action at ∈ A in a particular market state st ∈ S , which
results in reward rt and the transition of state changes to state
st+1. However, only part of the state, i.e., observation ot ∈
O, can be obtained by the agent. Hence, the key components
of the NQT problem formulating as a POMDP are as follows:
Observation. At a round t, ot = [oat ,o

m
t ] is an account-

market observation. The account observation oat com-
prises the account balance bt and the amount of holdings
ht at round t. The market observation omt comprises the
Opening-High-Low-Closing (OHLC) price features pohlct−1 =[
pot−1,p

h
t−1,p

l
t−1,p

c
t−1

]
of all stocks and stock-relevant

news embeddings nt,1:nnews
t

in [t−1, t) of nnews
t pieces of news.

Trading actions. At a round t, at ∈ [−1, 1]N is an action
vector on all stocks. We re-scale this action using a con-
strain Kmax as described in [Kabbani and Duman, 2022],
which represents the maximum allocation (buy/sell shares)
and we denote the re-scaled action as ât,i. The available
trading action ât,i of each stock i includes selling, buying,
and holding, which results in decreasing, increasing, and no
change of the holdings h, respectively, as follows: (1) Buy-
ing: when ât,i ∈ [−bt/p

c
t,i,−1], buy âit shares, and it leads

to ht+1,i = ht,i + ât,i; (2) Selling: when ât,i ∈ [1, ht,i],
sell ât,i shares, and it leads to ht+1,i = ht,i + ât,i; (3)
Holding: when ât,i ∈ (−1, 1) shares, hold the shares, and
it leads to no change in hit. It should be noted that all bought
stocks should not result in a negative balance on the portfo-
lio value. That is, without loss of generality, we assume that
selling orders are made on the first d1 stocks and the buying
orders are made on the last d2 ones, and that at should satisfy
pct,[1:d1]

⊤ât,[1:d1] + bt + pct,[N−d2:N ]
⊤ât,[N−d2:N ] ≥ 0. The

remaining balance is updated as bt+1 = bt + pct
⊤ât.

Reward. We define the reward rt as the change in the value
when an action at is taken as:

rt =
(
bt+1 + pct+1

⊤ht+1

)
−

(
bt + pct

⊤ht
)
− ct (1)

where ct denotes the transaction costs incurred at round t.
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Return-to-go (RTG). The returns-to-go refers to the future
desired returns, which is an important component of the tra-
jectory optimization framework. We calculate the returns-to-
go by gt =

∑T
t′=t rt′ . In order to generate actions based on

future desired returns, we model the returns-to-go instead of
directly modeling the rewards.

4 Method
The architecture of SpotlightTrader is presented in Fig-
ure 2(a). In this section, we first define the decision trajec-
tory, i.e., a sequence of return-to-go, observation, and action,
which is a basic target in decision autoregressive training and
generation (§4.1). We then present the spotlight-driven state
trajectory (SST) module, which recovers the state trajectory
from the partial observation trajectory (§4.2). With the state
trajectory, we present how to make trading decisions in the
trading decision (TD) module (§4.3). After that, to adapt to
an online trading environment, we present a pretrain-finetune
pipeline (§4.4). Finally, we present the model optimization
for model training and finetuning (§4.5).

4.1 Decision Trajectory
In order to keep the continuity of trading actions,
SpotlightTrader inherits Decision Transformer [Chen
et al., 2021] to learn the policy under the conditional behavior
cloning framework. Here, we term a decision trajectory τ as a
sequence of (RTG, observation, action) tuples collected from
any period of consecutive trading rounds, which are amenable
to autoregressive training and generation:

τ = (g1,o1,a1, ..., gL,oL,aL), (2)

where L is the length of the decision trajectory.
We introduce the collection methods of decision trajecto-

ries in the offline training phase and online trading phase.
In the training phase, we collect expert decision trajecto-
ries from existing strategies or replayed trajectories gener-
ated via the partially-trained SpotlightTrader to form
trajectory-wise offline data Jtrain = {τ i}|Jtrain|

i=1 , where τ i is a
decision trajectory with L consecutive (RTG, observation, ac-
tion) tuples. In the trading phase, we rollout trading actions to
generate a brand new trajectory with every L trading round,
which will be elaborated in §4.4.

4.2 SST: Spotlight-driven State Trajectory Module
To precisely characterize state trajectories, SST models the
dynamics of state trajectory, which consists of the stochastic
observation-controlled continuous state trajectory with per-
turbation by the inherent spotlight-driven jump as shown in
Figure 3. With the jump driven by spotlight news, we term
the state trajectory as a spotlight-driven state trajectory.

Dynamics of state trajectory. In SST, each stock has its
own spotlight-driven state trajectory, which will be merged
together as the final state of the trading decision. SST model
spotlight-driven state trajectory as a hybrid system including
a stochastic process with jumps, which extends the neural
ordinary differential equations (Neural ODEs) [Chen et al.,
2018] with two terms: (1) a stochastic latent dynamics term

ts ( )
1h 1Ds h

0t 1h
t

2h
t

State ( )
2h 2Ds h

Jump

Jump

Time

state after a jump
state before a jump

Figure 3: An illustration of the spotlight-driven state trajectory.

that models the stochastic of observation om and (2) a spot-
light jump term that models the discrete spotlight news.

For each stock’s spotlight-driven state trajectory, a Neural
ODE defines a continuous-time transformation of variables,
and we specify the transformation of states at round t by a
stochastic differential equation (SDE) as follows:

dst = fψ(t, st,o
m
t ) · dt+ σϕ(t, st) · dWt︸ ︷︷ ︸

stochastic latent dynamics with observation controlling

+ω(t)jφ(t, st,kt)dt︸ ︷︷ ︸
spotlight-driven jump

, (3)

where fψ and σϕ are the drift and diffusion functions, respec-
tively, and jφ is the jump function. To overcome the discon-
tinuity of the spotlight jumps, we set an indicator function
ω(t), where ω(t) = 1 when the spotlight jump exists at t.

Starting from an initial state s0, the transformed state at
any time t is given by integrating an SDE forward by time:

st = s0 +

∫ t

t′=0

dst′

dt′
dt′. (4)

We elaborate the neural networks in dst, which defines the
stochastic latent dynamics and spotlight jump as follows.
Stochastic latent dynamics. We elaborate on the two terms
in stochastic latent dynamics, i.e., dynamics drift function and
dynamics diffusion function as follows.

Dynamics drift function fψ(t, st,o
m
t ) model the determin-

istic of stochastic process. Given that the observation trajec-
tory reflects part of the state trajectory, it is natural to learn the
drift function based on the observation trajectory. We param-
eterize the internal state dynamics based on observation omt
by a multi-layer perceptron (MLP). This constrains the inter-
nal state dynamics to the observation space and improves the
stability of the state trajectory.

Dynamics diffusion function σϕ(t, st) is necessary to in-
corporate stochasticity into the stochastic latent dynamics,
which we parameterize by an additional MLP.
Spotlight jump. The spotlight jump is modeled by first fil-
tering the spotlight news from the noisy news stream and then
applying it as the control point of the jump function.

Firstly, we introduce the spotlight news filtering mech-
anism. Here, we develop a novel spotlight news filtering
layer based on a sparse attention mechanism [Martins and
Astudillo, 2016], which is beneficial for focusing on the spot-
light news driving market state changes. As shown in Fig-
ure 2(b), at each round t, we obtain a set of candidate news
nt,1:nnews

t
, in which each piece of news i is embed by BERT

[Kenton and Toutanova, 2019] into a news embedding nt,i.
The sparse attention mechanism is adopted to filter spotlight
news and aggregate the representations of all spotlight news
to obtain one spotlight representation kt. Specifically, we first

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4933



generate query Qt, keys Kt, and values Vt from the state and
candidate news representations as:

Qt = LinearQ(st),Kt = LinearK(nt,1:nnews
t

),

Vt = LinearV (nt,1:nnews
t

).
(5)

Then, we leverage the query controlled by the current state to
guide the spotlight representation learning as follows:

kt = sparsemax(
Qt ·Kt

⊤
√
d

)Vt, (6)

where the sparsemax(·) function retains most of the im-
portant properties of softmax(·) function and automatically
prune the large volume of news.

Secondly, we introduce the spotlight jump function
jφ(t, st,kt). The spotlight news introduces a jump ∆st to
the spotlight-driven state trajectory. The jump is parameter-
ized by an MLP that takes the spotlight representation kt and
internal state st as input. Our architecture also assumes that
the spotlight representation does not directly interrupt the in-
ternal state.

Final state embedding. For final state embedding at round
t, we first apply a CNN layer for fusing all stocks’ state em-
beddings learned by SST to obtain the spotlight-driven state
st, then concatenate the trading-account state oat , to form an
overall state representation sfinal

t = [st,o
a
t ].

4.3 TD: Trading Decision Module
In our POMDP setting for NQT, the trading agent needs to
generate a trading action at at each round t. Similar to De-
cision Transformer, we feed a decision trajectory into GPT-2
Transformer [Radford et al., 2019], which applies a causal
mask to enforce the autoregressive structure of decision tra-
jectory. To obtain token embeddings, we embed each ele-
ment ai, gi, sfinal

i in the decision trajectory by a linear layer.
Additionally, a position embedding for each trading round
is learned and added to each token, as one timestep corre-
sponds to three tokens. The token embeddings are then pro-
cessed by a GPT-2 Transformer, which predicts the latest ac-
tion token embedding via autoregressive modeling. Finally,
we added an action prediction layer, followed by a tanh
activation function to make the latest action fall within the
specified range, which outputs actions to buy, hold or sell
the shares of each stock. With the latest action from the TD,
SpotlightTrader makes a trading decision and obtains
the reward according to Eq. (1).

4.4 Pretain-Finetune Pipeline
RL policies trained on purely offline datasets are typically
sub-optimal because the offline trajectories may cover only a
limited part of the state space under a non-stationary financial
market. Therefore, it is in high demand to finetune the pre-
trained RL policy based on the newly collected trajectories
during online trading. The key property of such pretrain-
finetune pipeline is to balance the exploration-exploitation
trade-off, so we devise a sample-efficient online finetune
mechanism, which takes exploration into consideration and
includes four key components introduced as follows.

Algorithm 1: SpotlightTrader’s pipline
Input: Trajectories in training data Jtrain, trading rounds T ,

exploration RTG gonline, trajectory length L, replay
buffer size K, mini-batch size B.

Output: Trading actions a1:T .
/* Pretrain stage */

1 while not converged do
2 Sample B trajectories τ i1,...,iB out of Jtrain.
3 Update the policy πθ by τ i1,...,iB .

/* Finetune stage */
4 Initialize trajectory-level replay buffer: Jreplay ← top K

trajectories in Jtrain.
5 for t = 1, L+ 1, 2L+ 1, ..., T do
6 Trading rollout a new trajectory τ t.
7 Replace the oldest trajectory by τ t in Jreplay.
8 PS: Compute sampling probability P (τ ) and sample B

trajectories out of Jreplay by P (τ ).
9 for each sampled trajectory τ do

10 HRR: Recalculate the RTG sequence g1:L by
gi =

∑L
j=i rj , 1 ≤ i ≤ L and assemble the new

trajectory τ̂ with the hindsight RTG sequence.
11 Update the policy π by τ̂ .

Trading rollout. Firstly, we need to collect online trajec-
tories during actual trading, which depends on the trading
rollout of a learned policy. Specifically, given a pre-defined
desired RTG gt and an initial observation ot at round t, TD
generates the action at = πθ(ot, gt) for trading. Then, we
obtain a reward rt and the next observation ot+1, which gives
us the next RTG as gt+1 = gt − rt. As before, TD generates
at+1 based on ot:t+1, gt:t+1, and at. This process is repeated
to generate an online trajectory until a specified length of the
trajectory is reached.

Trajectory-level replay buffer (TRB). Secondly, we need
a replay buffer to store the trajectories that are used for online
finetuning. Initially, we set a prioritized replay buffer Jreplay,
which is filled with trajectory-level data with the highest re-
turns from offline data, see Line 4 in Algorithm 1. Every time
we completely rollout a trajectory with the current policy, we
refresh the replay buffer in a first-in-first-out manner periodi-
cally. Afterward, we update the policy and rollout again.

Prioritized sampling (PS). Thirdly, we need to select the
data from TRB to form the mini-batch used for online fine-
tuning. Specifically, we enable each mini-batch to consist of
decision trajectories from offline data and rollout data, which
are sampled by a prioritized sampling mechanism [Schaul et
al., 2016], see Line 8 in Algorithm 1. The prioritized sam-
pling mechanism encourages replaying trajectory with higher
expected learning progress more frequently. For each tra-
jectory τ i ∈ Jreplay, we calculate it’s trajectory priority as
pτ i = Lτ i + ϵD, where Lτ i is loss calculated by Eq. (7), and
ϵD is a positive constant for trajectory from offline data to
increase the probability of getting sampled. The probability
P (τ i) of the trajectory τ i is proportional to its priority pτ i ,
namely, P (τ i) =

pτi∑
j pτj

. To consider changes in the sample
distribution, which may affect model optimization, trajecto-
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ries for the network updates are weighted with importance
sampling weights, i.e., wτ i = ( 1

K · 1
P (τ i) )

β , where β is an
annealing parameter [Schaul et al., 2016]. In this way, the
prioritized replay buffer controls the ratio of data between the
offline data and new rolling data.
Hindsight return recalculation (HRR). The return
achieved during a policy rollout and the induced RTG can
differ from the intended RTG, which harms the model
learning. To make each sampled trajectory τ more similar
to the expert trajectories and thus boost learning, we apply
HRR to generate new trajectories τ̂ with the achieved RTG,
as opposed to the intended RTG with a manually set initial
RTG gonline, see Line 10-11 of Algorithm 1.

4.5 Model Optimization
In this subsection, we aim to train our model to make prof-
itable trading decisions, a prime purpose of the model, which
is equivalent to maximizing the high-return stochastic opti-
mal policy distribution π∗

θ(at|g≤t,o≤t,a<t). Further, in or-
der to equip the ability of SpotlightTrader to balance
the exploration-exploitation trade-off in online trading, we
apply the negative log-likelihood (NLL) loss with a policy
entropy [Zheng et al., 2022]. Thus, the loss function based
on the decision trajectories’ distribution T is calculated by:

Lτ =
1

L
E(aτ ,oτ ,gτ )∼T [−

L∑
l=1

(log πθ(a
τ
l |gτ≤l,oτ≤l,aτ<l)

+ λHT
θ (aτ<l|gτ≤l,oτ≤l,aτ<l))],

(7)

where λ serves the role of temperature variable and HT
θ is

the policy entropy. Note that in the offline training phase, the
temperature λ = 0. The loss of mini-batch can be calculated
by L =

∑B
i=1 wτ iLτ i , where B is the mini-batch size.

5 Experiments
We conduct extensive experiments to answer the following
questions:

Q1: How does SpotlightTrader perform on prof-
itability and risk over the trading period?

Q2: How effective are constructing state trajectories with
different information sources?

Q3: How do the key components contribute to the perfor-
mance of SpotlightTrader?

Q4: How do the major parameters affect the performance
and how to choose optimal values?

Q5: How does SpotlightTrader makes decision?

5.1 Experimental Settings
Dataset Descriptions. We conduct experiments on three
real-world datasets1. Twitter-SP500 is a public dataset con-
sist stocks in S&P 500 index from U.S. market and tweets
from Twitter. THS-CSI300 is our collected China market
dataset covering stocks from the CSI 300 Index and news
from iFinD. COVID-SP500 is our collected U.S. stock mar-
ket dataset covering stocks in the S&P 500 index and news

1Data is collected from https://github.com/yumoxu/stocknet-
dataset, http://www.51ifind.com.cn/, and https://aylien.com/.

Dataset Twitter-SP500 THS-CSI300 COVID-SP500

Offline start date 01/01/2014 01/01/2020 01/01/2020
Offline end date 09/30/2015 12/31/2020 04/30/2020
Online start date 10/01/2015 01/01/2021 05/01/2020
Online end date 03/31/2016 06/30/2021 07/31/2020
Online trading rounds 565 118 145
Total number of assets 85 229 488
Total number of news 116,278 51,571 20,542,912
Max news per round 1,815 2,499 587,510
Average news per round 206 143 141,675

Table 1: Datasets descriptions

from Aylien during the COVID-19 pandemic period. Follow-
ing [Jiang et al., 2017; Sawhney et al., 2021c], we preprocess
the price data by missing values filling and normalization, and
we embed the English and Chinese news text by pre-trained
FinBERT [Araci, 2019] and Chinese-FinBERT2. We divide
each dataset into non-overlapping offline and online datasets,
and the statistics of the datasets are presented in Table 1. We
elaborate on the generation of trajectory-level offline data and
provide the offline dataset in our GitHub repository3. The pa-
rameter setting and implement details will be presented in a
longer version of this paper.

Baselines. We compare SpolightTrader with nine NQT
methods in four groups: (1) Regression (REG) based method
(i.e., AZFinText [Schumaker and Chen, 2009] and Game
[Ang and Lim, 2022]) predicts asset returns and trades assets
that are greater than or equal to 1%; (2) Classification (CLF)
based method (i.e.,StockNet [Xu and Cohen, 2018], Stock-
Emb [Du and Tanaka-Ishii, 2020], and HTLSTM [Sawhney
et al., 2021a]) classifies prices trends and trades assets where
prices are expected to rise; (3) Ranking(RAN) based method
(i.e., FAST [Sawhney et al., 2021b] and HISN [Wang et al.,
2022]) ranks assets and trades the most profitable assets; (4)
Reinforcement Learning (RL) based method (i.e., PG-based
SARL [Ye et al., 2020] and DDPG-based Profit [Sawhney et
al., 2021c]) directly makes news-driven trading decisions.

Evaluation Metrics. Following [Sawhney et al., 2021c],
we adopt four widely used metrics. Annualized Percentage
Yield (APY) and Maximum Drawdown (MDD) measure the
returns and risks, respectively. Sharpe Ratio (SR) and Sortino
Ratio (StR) measure the trader’s risk-adjusted returns.

5.2 Performance Comparison and Analysis
To answer Q1, in Table 2, we compare SpotlightTrader
with methods from four different NQT paradigms.

Result 1: Performance on Profitability. In general, we
observe that RL-based methods are typically more profitable,
i.e., achieve higher APY values, compared to the two-step
methods. This is because the RL trading agents optimize ev-
ery trading action for profit generation directly, unlike two-
step methods, where the trading mechanism is only to select
the predicted profitable stocks to trade and the overall prof-
its are not optimized as a reward. These observations vali-
date the necessity of formulating quantitative trading as an

2https://github.com/valuesimplex/FinBERT
3https://github.com/Yangmy412/SpotlightTraderOfflineDataset
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Twitter-SP500 THS-CSI300 COVID-SP500
Categories Methods APY MDD SR StR APY MDD SR StR APY MDD SR StR

Market Index4 0.15 0.13 0.90 1.41 0.07 0.15 0.32 0.46 0.57 0.07 2.49 2.78

REG AZFinText 0.04 ± 0.000 0.09 ± 0.009 0.80 ± 0.000 2.07 ± 0.000 0.04 ± 0.000 0.14 ± 0.000 0.21 ± 0.000 0.32 ± 0.000 0.32 ± 0.000 0.12 ± 0.000 1.07 ± 0.000 1.37 ± 0.000
Game 0.16 ± 0.007 0.12 ± 0.024 1.06 ± 0.220 1.84 ± 0.449 0.08 ± 0.009 0.23 ± 0.025 0.39 ± 0.023 0.59 ± 0.032 0.66 ± 0.008 0.11 ± 0.000 2.17 ± 0.028 2.83 ± 0.037

CLF
StockNet 0.15 ± 0.001 0.13 ± 0.000 0.94 ± 0.007 1.60 ± 0.012 0.12 ± 0.022 0.15 ± 0.008 0.51 ± 0.250 0.78 ± 0.355 0.72 ± 0.114 0.10 ± 0.005 2.51 ± 0.188 3.19 ± 0.252
StockEmb 0.16 ± 0.026 0.13 ± 0.011 0.99 ± 0.186 1.71 ± 0.339 0.05 ± 0.026 0.14 ± 0.004 0.26 ± 0.142 0.40 ± 0.225 0.67 ± 0.022 0.12 ± 0.002 2.18 ± 0.082 2.85 ± 0.097
HTLSTM 0.17 ± 0.027 0.12 ± 0.034 1.01 ± 0.280 1.74 ± 0.559 0.09 ± 0.016 0.15 ± 0.014 0.48 ± 0.091 0.76 ± 0.137 0.69 ± 0.070 0.12 ± 0.010 2.19 ± 0.060 2.95 ± 0.371

RAN FAST 0.19 ± 0.035 0.09 ± 0.023 1.26 ± 0.228 2.06 ± 0.387 0.17 ± 0.102 0.24 ± 0.045 0.52 ± 0.311 0.78 ± 0.460 0.84 ± 0.146 0.16 ± 0.041 1.93 ± 0.316 2.94 ± 0.402
HISN 0.17 ± 0.015 0.11 ± 0.015 1.10 ± 0.109 1.77 ± 0.210 0.11 ± 0.012 0.18 ± 0.006 0.47 ± 0.052 0.67 ± 0.076 0.85 ± 0.050 0.08 ± 0.003 3.65 ± 0.261 4.20 ± 0.292

RL
SARL 0.20 ± 0.017 0.10 ± 0.008 1.27 ± 0.113 1.91 ± 0.268 0.19 ± 0.090 0.14 ± 0.010 0.56 ± 0.078 ∗ 0.83 ± 0.111 0.93 ± 0.158 0.07 ± 0.015 ∗ 3.27 ± 0.592 4.63 ± 0.987 ∗

Profit 0.21 ± 0.021 ∗ 0.09 ± 0.009 ∗ 1.28 ± 0.185 ∗ 2.21 ± 0.295 ∗ 0.20 ± 0.047 ∗ 0.13 ± 0.008 ∗ 0.54 ± 0.134 0.85 ± 0.207 ∗ 0.97 ± 0.051 ∗ 0.08 ± 0.003 4.04 ± 0.286 ∗ 4.53 ± 0.454
Sportlight-

Trader 0.28 ± 0.038 0.08 ± 0.007 1.75 ± 0.274 2.71 ± 0.374 0.32 ± 0.043 0.12 ± 0.014 0.92 ± 0.102 1.32 ± 0.125 1.09 ± 0.067 0.05 ± 0.001 4.65 ± 0.452 6.15 ± 0.693

Improvement5 (%) 34.380 7.601 37.194 22.656 61.659 8.178 65.102 54.326 12.390 24.874 15.100 32.852
p-value6 0.000 0.007 0.000 0.005 0.000 0.008 0.000 0.000 0.000 0.003 0.003 0.001

Table 2: Results of all methods on four metrics (mean ± std, computed across 10 runs).

Information
Sources

Twitter-SP500 THS-CSI300 COVID-SP500
APY MDD APY MDD APY MDD

A (Account) 0.04 0.17 0.03 0.22 0.35 0.10
A+P (Price) 0.16 0.09 0.17 0.16 0.64 0.06
A+N (News) 0.18 0.12 0.11 0.19 0.50 0.10
A+P+N 0.24 0.09 0.27 0.15 1.01 0.07
A+P+SN (Spotlight News) 0.28 0.08 0.32 0.12 1.09 0.05

Table 3: Results of different information sources.

SpotlightTrader
w/o-TRB

w/o-PS
w/o-HRR

w/o-PS
w/o-HRR

SpotlightTrader
w/o-TRB

AP
Y

Twitter-SP500 THS-CSI300 COVID-SP500

Figure 4: Performance of model variants. Purple- and red-shade
show results on APY and MDD, respectively.

RL problem. Furthermore, among the RL-based methods,
our method achieves the highest APY values with an average
improvement of 36.14% over the best-performing baselines.
Our method benefits from not only its novel decision trajec-
tory optimization framework to make flexible long-term and
short-term profitable trading decisions, but also its effective
spotlight news filtering and modeling mechanisms to enhance
the decision trajectory optimization framework.

Result 2: Performance on Risk. From the results in Ta-
ble 2, we observe that our model achieves the lowest MDD
values with an average improvement of 13.55%, indicating
its ability to respond to bearish markets. In addition to the
superior RL-based trading framework in our model over the
two-step strategies, such performance is attributable to our
model’s novel training pipeline design, which adapts the RL-
based framework to online trading environments for avoid-
ing volatile stocks timely during such turbulent environments.
Our proposed strategy also achieves the best performance on
the SR and StR metric, which indicates its superiority in bal-
ancing return and risk.

4The index is S&P 500 (ˆGSPC) in Twitter-SP500 and COVID-
SP500 datasets, and CSI 300 (000300.SH) in THS-CSI300.

5The improvement over the best-performing baselines.
6The improvement is significant based on paired t-test at the sig-

nificance level of 0.05.

APY APY APY

trajectory lengthtrajectory lengthtrajectory length

Twitter-SP500 THS-CSI300 COVID-SP500

Figure 5: Performance on different trajectory lengths.

5.3 Ablation Study
Result 3: Effect of Absorbed Information. To answer Q2,
we evaluate the effectiveness of different information sources
on stock profiling. We report SpotlightTrader’s per-
formance under five cases, which cover all possible combi-
nations of the price feature and news information, in Table
3, from which we have two observations. Firstly, significant
APY and MDD improvements are noted by blending price
features with news information, indicating the contributions
of both news and price features. This is mainly because price
features and news are indispensable stochastic processes and
jumps, respectively, in the state trajectory, which can well
support the generation of profitable trading actions. Secondly,
we find that considering all pieces of news from the news
stream unexpectedly hurts the model’s performance, which
demonstrates that the spotlight news filtering mechanism is
very necessary to reduce the noise from irrelevant news.
Result 4: Effect of Model Variants. To answer Q3,
we conduct an ablation analysis on the adaptability of our
model to online environments. We build three variants
of SpotlightTrader, including w/o-TRB, w/o-PS, and
w/o-HRR, which corresponds to our model without TRB, PS,
and HRR, respectively. From Figure 4, we can conclude that
interactively finetuning using online trading decision trajecto-
ries is crucial to our model, and the priority sampling mech-
anism clearly benefits the model’s adaptability. Besides, fail-
ure to perform hindsight return recalculation will confuse the
model’s estimation of the cumulative return of the trajectory,
making it impossible to seek the optimal trajectory.

5.4 Parameter Analysis: Probing Sensitivity
To answer Q4, we conduct sensitivity experiments on two
important parameters, i.e., trajectory length and online RTG.
Result 5: Effect of trajectory length. The trajectory
length L determines how long the agent’s current action de-
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The Boeing Company (BA)
US Air Traffic Is Finally Picking Up.

Airline Stocks Are Soaring.

Air Canada Restarts Flying.

Jet Airways offers two Boeing aircraft 
to assist Vande Bharat Mission.

'Travel bubbles' between low-risk 
countries planned to help tourism.

(a) Sparse-attention weights and corresponding Spotlight News. (b) Trading actions from SpotlightTrader .
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Figure 6: Case study on Boeing: the filtered spotlight news on May 26, 2020 and the corresponding trading actions afterwards.
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Figure 7: Performance on two online RTG mechanisms.

pends on the past. We depict SpotlightTrader’s perfor-
mance on APY under different trajectory lengths L varying in
{1, 5, 10, 15, 20, 25} in Figure 5. When the trajectory length
is 1, an edge case where each action only depends on the
current RTG and state and our POMDP formulation can be
reduced to a Markov decision process (MDP), our model per-
forms the worst, indicating that the MDP formulation of NQT
is detrimental to trading performance. With the increase in
trajectory length, our model achieves better performance, be-
cause considering long-term historical actions can contribute
to achieving the long-term goal by ensuring trading action
continuity, which supports the analysis as those in the main
text. In addition, it is worth mentioning that a relatively large
trajectory length, i.e., L = 15, is enough to gather enough
information to make a trading decision, and a too-large tra-
jectory length is unnecessary and oversaturated for modeling.

Result 6: Effect of online RTG. The online RTG gonline is
used to set g1 during every trading rollout. Because gonline
may seriously affect the stitching ability of our model on the
trajectory during trading rollout, we discuss two mechanisms
for pre-defined gonline [Zheng et al., 2022], i.e., fixed and dy-
namic RTG. Firstly, in the fixed RTG mechanism, we set the
RTG gonline as the fixed RTG gfix, which is the scale of the
maximum RTG obtained in the pretraining stage. The scale
varies in {0.5, 1, 2}. Secondly, in the dynamic RTG mecha-
nism, we adjust the online exploration RTG gonline to be a dy-
namic RTG gdynamic, which is calculated based on the cumu-
lative rewards of the trajectories, i.e., achieved RTG in each
trajectory, stored in the replay buffer. Specifically, we set
dynamic RTG as the q-th percentile of these non-stationary
achieved RTGs. The percentile q varies in {85%, 90%, 95%}.
We report SpotlightTrader’s performance on APY un-
der different gonline in Figure 7, which shows that the dy-
namic RTG mechanism achieves higher returns compared to
the fixed RTG mechanism, demonstrating the superiority of
our model in adapting to non-stationary financial markets.

5.5 Case Study

We conduct an extended analysis in Figure 6 to elucidate on
SpotlightTrader’s spotlight news filtering result and its
practical applicability to real-world quantitative trading for
answering Q5. Here, we study the U.S. market from May
20, 2020 to June 20, 2020. We visualize the sparse-attention
weights of Boeing (BA), which is an aircraft manufacturer,
and excerpt the briefing of spotlight news to analyze how our
proposed model trade BA on May 26.

Result 7: Analyzing trading actions. In order to explore
how our model forms trading actions, we report BA’s trad-
ing actions for 20 consecutive days from May 26, 2020. On
each day, the sparse attention mechanism in our SST module
filters out a large amount of news and only retains a handful
of more influential ones. For example, on May 26, 2020, we
found that the top 4 news with the highest weights were all
about the loosening of flying bans during COVID-19, which
is very likely to have a positive impact on BA, leading to
BA’s price rises afterward. This case study indicates that
SpotlightTrader has the ability to filter spotlight news,
that is, to find news that can drive price changes to guide
transactions. Under the positive influence of the spotlight
news, our model chose the Buy signal for 3 consecutive days
after May 26, continuously expanding BA’s position. After-
ward, it chose to hold BA for a period of time, and our model
did not sell the position of BA until June 10, 2020, when there
was an obvious downward trend. The above continuous and
explainable trading behavior indicates our model’s powerful
modeling ability for action trajectory, which ensures the con-
sistency and coherence of trading behavior.

6 Conclusions and Future Work

In this paper, we study the NQT task and propose a novel
NQT framework SpotlightTrader, which can release
the powerful long-sequence modeling capability of the trans-
former and effectively stitch together a continuous and flex-
ible sequence of trading decisions. Extensive experiments
demonstrate our model’s superiority in terms of both prof-
itability and drawdown risk control. In the future, we plan to
extend our work into two potential directions, i.e., modeling
complex relations between stocks to coordinate stock trading
decisions and leveraging more multi-modal information, e.g.,
earning calls, to capture the market state more completely.
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