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Abstract

Optimizing molecules with desired properties is
a crucial step in de novo drug design. While
translation-based methods have achieved initial
success, they continue to face the challenge of the
“exposure bias” problem. The challenge of pre-
venting the “exposure bias” problem of molecule
optimization lies in the need for both positive and
negative molecules of contrastive learning. That
is because generating positive molecules through
data augmentation requires domain-specific knowl-
edge, and randomly sampled negative molecules
are easily distinguished from the real molecules.
Hence, in this work, we propose a molecule op-
timization method called GPMO, which leverages
a gradient perturbation-based contrastive learning
method to prevent the “exposure bias” problem
in translation-based molecule optimization. With
the assistance of positive and negative molecules,
GPMO is able to effectively handle both real and
artificial molecules. GPMO is a molecule opti-
mization method that is conditioned on matched
molecule pairs for drug discovery. Our empirical
studies show that GPMO outperforms the state-of-
the-art molecule optimization methods. Further-
more, the negative and positive perturbations im-
prove the robustness of GPMO.

1 Introduction

Molecule Optimization (MO) aims to identify a target
molecule, that exhibits improved pharmacological proper-
ties while retaining its similarity to the original molecule.
Traditionally, chemists rely on their knowledge, experi-
ence, and intuition to apply chemical transformations to
promising molecules in order to achieve a balance of de-
sirable properties. Additionally, this manual approach can
be time-consuming, labor-intensive, and may not explore
the full range of possible modifications that could enhance
a molecule’s pharmacological properties. High throughput
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screening tests a large library of compounds to identify those
with desirable pharmacological properties, but it can be an
expensive and inefficient approach to drug discovery.

In contrast to the traditional method, in silico MO through
automated processes to improve drug properties, which can
accelerate the drug design process [Zeng et al., 2022; Ma
et al., 2022; Lin et al., 2020]. Deep learning technolo-
gies, such as reinforcement learning (RL) [Jin et al., 2018a;
You et al., 2018; Zhou et al., 2019] and deep generative
model (DGM) [Zang and Wang, 2020; Chen et al., 2021;
Jin et al., 2020; Liu et al., 2020], have been applied in MO.
RL methods view MO as the Markov decision process, in
which the current state of the molecule is modified through
actions guided by a reward function that reflects desired prop-
erty. While RL methods have shown promise in improving
property, they can significantly alter structure of molecule
[Gao et al., 2021]. DGMs optimize molecules by gener-
ating new structures through translation between molecule
pairs while maintaining the scaffold of the original molecule
through similarity constraints. The translation-based DGMs
are trained using the teacher-forcing training strategy to pre-
dict gold-standard labels of the previous tokens, without be-
ing exposed to incorrectly generated tokens. During the
testing phase, translation-based DGMs rely on the model’s
prediction of the previous ones, which can differ from the
ground-truth contexts. This discrepancy between training and
testing phases is known as the “exposure bias” problem [Lee
et al., 2020].

To address the aforementioned issues, we propose GPMO
that utilizes contrastive learning [Shen et al., 2022] to over-
come the “exposure bias” problem in the teacher-forcing
guided model. To generate negative and positive molecules
for contrastive learning, we incorporate gradient perturba-
tion. After pre-training on a large-scale unlabeled dataset,
GPMO decodes the output of the encoder to generate a tar-
get molecule with multiple property constraints. The input
of GPMO is the condition tokens and the SMILES of start
molecules. During the encoder-decoder process, GPMO gen-
erates the negative and positive molecules without domain-
specific knowledge, and these molecules are used to train
the model with adversarial loss. GPMO generates negative
molecules by adding a small gradient perturbation to the hid-
den state of the target molecule, and the model is trained to
minimize the conditional likelihood of the negative molecule
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to ensure it is classified as a negative example during con-
trastive learning. In GPMO, the positive molecule is gen-
erated using a two-step gradient perturbation on the hidden
state of the target molecule. The Kullback-Leibler (KL) di-
vergence ensures that the distributions of the positive and real
molecules are similar, guaranteeing that the positive molecule
is indeed a positive example. The two-step gradient pertur-
bation keeps the positive molecule far away from the real
molecule in the embedding space. This will produce chal-
lenging molecules that the model is unable to accurately dif-
ferentiate, providing it with more useful pairs to learn from.
It is worth noting that GPMO is different from the one pro-
posed in [Lee et al., 2020]. On one hand, GPMO focuses on
optimizing molecules based on conditional constraints, rather
than simply generating text without specific criteria. In this
way, GPMO can generate molecules with specific property
values. On the other hand, GPMO provides a comprehen-
sive framework for molecule optimization applications, mak-
ing it highly suitable for large-scale optimization tasks. Ex-
perimental results show that GPMO outperforms all baseline
methods in identifying molecules that satisfy specific prop-
erty constraints under various conditions. Our contributions
can be summarized as follows:

• GPMO is the first model to address the “exposure bias”
problem in MO, and it does so by generating positive and
negative molecules for effective contrastive learning.

• GPMO applies positive and negative molecules genera-
tion strategy which is free from domain-specific knowl-
edge and easily accessible in the back-propagation pro-
cess.

• Experimental results show that GPMO achieves SOTA
in properties optimization problems, and can optimize
one molecule into another molecule with better proper-
ties while maintaining the scaffold and exhibiting more
desired properties.

2 Related Work

2.1 Reinforcement Learning Method

The objective of RL is to teach intelligent agents to take ac-
tion in an environment to maximize the cumulative reward.
The environment of the RL method is defined by chemical
rules, and the improvement of a molecule’s property is de-
fined as the reward in RL. The RL method demonstrates ef-
fective property improvement and has the capability to op-
erate in a significantly larger chemical space compared to
deep learning methods [Wang et al., 2021]. However, the RL
method often overcomplicates the molecular structure when
optimizing multiple properties [Nigam et al., 2019]. A newly
developed RL method [Gao et al., 2021] introduces a synthe-
sis tree to alleviate the synthesis problem in MO that arises
from complex structures. The synthesis of an optimized
molecule is ensured by following a path in the synthesis tree.

2.2 Deep Generative Model
DGM are widely employed for molecule optimization, uti-
lizing various approaches such as VAE-based [Gómez-
Bombarelli et al., 2018], GAN-based [Guimaraes et al.,
2017], encoder-decoder based [He et al., 2021], and flow-
based models [Zang and Wang, 2020; Shi et al., 2020].
DGMs for molecule optimization treat the task as a gener-
ative problem, where the starting molecules serve as input,
and the target molecules are the output. Typically, the tar-
get molecules are aimed to be more drug-like compared to
the starting molecules. Modof [Chen et al., 2021] is a DGM
designed for molecule optimization. It predicts the discon-
nection site and modification between the starting and target
molecules.

2.3 Hybrid Method
Hybrid methods include genetic algorithms (GA) method
[Nigam et al., 2019], Markov Chain Monte Carlo (MCMC)
method [Fu et al., 2021], and Bayesian optimization (BO)
method [Moss et al., 2020]. The GA method [Nigam et al.,
2019] incorporates an adaptive penalty mechanism based on
a neural network to promote the exploratory behavior of GA,
thus improving the diversity of generated molecules. The
MCMC method [Fu et al., 2021] first pre-trains two graph
neural networks for substructure-type and molecule topology
predictions. Subsequently, the optimized molecules are sam-
pled from the pre-trained molecule distribution using MCMC
sampling with multiple constraints. The BO method [Moss
et al., 2020] utilizes BO loops on string kernels to encode
molecules into feature-rich spaces and employs GA to obtain
the targeted molecules.

In this work, we present a novel molecule optimization
method that treats molecule optimization as a machine trans-
lation problem. This approach offers contrastive learning
without the requirement of domain-specific knowledge for
generating negative and positive molecules, which helps ad-
dress the “exposure bias” problem encountered in translation-
based methods for molecule optimization.

3 Method

This section outlines the specifics of GPMO, which com-
prises two main steps: pre-training of encoder-decoder and
conditional molecule optimization with contrastive learning.
GPMO learns the grammar of SMILES and the relationships
between molecules in the pre-training stage by masked lan-
guage model (MLM) and SMILES translation task. Condi-
tion tokens are used for conditional molecule optimization.
During conditional molecule optimization, positive and nega-
tive molecules are generated by gradient perturbation for con-
trastive learning.

Figure 1a illustrates that conditional molecule optimiza-
tion involves utilizing both the condition tokens and the
SMILES of the start molecule as inputs for the encoder-
decoder model. The outputs of the encoder-decoder model
are the SMILES of the target molecule. By adopting this ap-
proach, the model is capable of generating a novel molecule
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Figure 1: (a) The overall framework of multi-property MO with gradient-based contrastive learning. The transformer encoder-decoder is
trained for MO with ADMET properties. Condition tokens are used to mark the property changes between start and target molecules. To
facilitate contrastive learning, a gradient perturbation-based method is employed for generating both negative and positive molecules. (b)
Negative perturbation: enforcing the model to distinguish “hard” negative molecules that are near real molecules. (c) Positive perturbation:
enforcing the model to distinguish “hard” positive molecules that are far away from real molecules.

that adheres to the specified conditions while preserving the
essential structural characteristics of the start molecule. The
encoder-decoder model is trained using additional negative
and positive molecules, which are produced through negative
(Figure 1b) and positive perturbations (Figure 1c). Negative
molecules share a similar SMILES string with real molecules
but differ in their context, as modifying a single token can re-
sult in an invalid molecule (the negative molecule in Figure
1a). Compared to the real molecule, the positive molecules
in Figure 1a vary with SMILES but share a similar chemical
structure.

3.1 Problem Definition

MO can be formulated as a seq2seq problem, where the opti-
mization from the start molecule to the target molecule is the
translation between SMILES of molecules. This task is typ-
ically accomplished using an encoder-decoder architecture.
For a given input molecule xi, the encoder converts it into a
high-level representation. Given the latent representation of
xi, the decoder autoregressively generates one token of pre-
diction molecule at a time. The encoder-decoder process can
be defined as Hi = f(xi) and Si = g(Hi), where Hi =
[hi

1,h
i
2, ...,h

i
L] and Si = [si1, s

i
2, ..., s

i
T ] represent the hidden

states of the input molecule with a length of L and the output
molecule with a length of T , respectively. f and g denote the
encoder and decoder respectively. The auto-regressive decod-
ing process during training with teacher forcing, denoted as
pθ

(
yt
∣∣yi

<t,x
i
)
, can be gained by the decoder hidden state sit

with a softmax layer as pθ(yit|yi
<t,x

i) = softmax(Wsit+b),
where W and b are the weight and bias of the linear layer,
respectively. Given a dataset (xi,yi)Ni=1 with N molecules,
the seq2seq model is trained using a maximized likelihood
estimate (MLE), which can be formulated as follows:

LMLE =

N∑
i=1

log pθ(y
i|xi), (1)

where log pθ
(
yi|xi

)
represents the log likelihood of yi con-

ditional on xi. LMLE is maximized to estimate the parameter
of the encoder-decoder.

3.2 Condition Token
GPMO is an approach used to optimize a given start molecule
to a target molecule that exhibits structural similarity while
satisfying conditional constraints. In order to ensure the sim-
ilarity of molecular structures, the start and target molecules
used in GPMO are constrained to comply with MMP relation
[Dalke et al., 2018]. Molecules with MMP relations share
the same scaffold but differ in a single chemical transforma-
tion. Conditional molecule optimization is achieved by us-
ing condition tokens, which encode the changes of desired
properties between the start and target molecules. By incor-
porating condition tokens, the optimization process can be
guided to search for molecules that satisfy the desired prop-
erties encoded in the condition tokens. Three ADMET prop-
erties—LogD, Solubility, and Clint—are used as the proper-
ties to be optimized. LogD refers to the partition coefficient
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of all forms of a compound at a specific pH. Solubility is the
degree to which a substance dissolves in water to make a so-
lution. Clint is the overall hepatic intrinsic clearance.

Specifically, as the condition shown in Figure 1a, the con-
dition tokens are included as part of the GPMO input. The
property changes of LogD can be defined as: ∆(LogD) =
LogD(yi) − LogD(xi). Then, ∆(LogD) is map into a code
table: (−inf,−6.9], (−6.9,−6.7], ..., (6.9, inf). −6.9 and
6.9 are the minimum and maximum values of ∆(LogD).
∆(LogD) is mapped into the corresponding code. For exam-
ple, the condition token of ∆(LogD) = 0.82 can be denoted
as Delta_LogD(0.7,0.9]. In terms of Solubility, the code table
of ∆(Solubility) can be defined as:

code =

{
high_low; if ∆(Solubility) ≤ −0.6,
no_change; if − 0.6 < ∆(Solubility) < 0.6,
low_high; if 0.6 ≤ ∆(Solubility).

(2)
The condition token of solubility can be defined as
Delta_Solubilityhigh_low, Delta_Solubilityno_change, and
Delta_Solubilitylow_high. The condition token of Clint is
similar to Solubility, but the threshold is 0.35. Besides prop-
erty improvement where higher values are desirable, GPMO
can optimize molecules by selectively improving one prop-
erty while keeping other properties unchanged or lower. This
is accomplished by incorporating the condition tokens that
specify the desired property changes.

3.3 Positive and Negative Molecules Generation

To generate negative and positive molecules for contrastive
learning without domain-specific knowledge, two kinds of
gradient perturbation are used. The first kind is a small nega-
tive perturbation, which generates a negative molecule that is
close to the real molecule. The second kind is a large positive
perturbation, which involves two steps to generate a positive
molecule that is far away from the real molecule.

Small Negative Perturbation for Negative Molecule

For negative perturbation d, the log likelihood with respect to
d is pθ(yit|yi

<t,x
i; sit+d) = softmax(W(sit+d)+b). As d

is a negative perturbation, the log-likelihood with respect to d
should be minimized. Generally, a linear approximation can
be defined as:

Ši = Si − λ
g

∥g∥2
, (3)

where g = ∇SiLMLE is the negative perturbation, which is
the gradient of Si in the back-propagation of LMLE . ∥.∥2 is
the l2 norm function and λ controls the weight of negative
perturbation. As g is the gradient of Si, thus Ši is near Si in
the embedding space and different from Si. The contrastive
learning with negative molecule gained by negative perturba-
tion can be defined as:

Lcont− (θ) =
N∑
i=1

log
exp

(
cos

(
zix, z

i
y

)
/τ

)∑
z−
y ∈Ui exp

(
cos

(
zix, z

−
y

)
/τ

) , (4)

where zix = φ(Hi) and ziy = φ(Si). Ui = {Sj ∪ Ši}, Sj =

{Sj : j ̸= i}, and z−y = φ(Ui). φ(.) is a projection function
with a linear layer and an average pooling operation. Sj is
the random molecule in the batch which acts as the negative
molecule. Minimizing of Lcont− (θ) will force the negative
molecule žiy away from the real molecule.

Large Positive Perturbation for Positive Molecule

Two-step perturbation is used to generate a positive molecule
that is far away from the real molecule. The first perturbation
is the gradient with respect to contrastive loss, which maxi-
mizes the similarity between paired molecules and minimizes
the similarity between unpaired molecules in the same batch.
Then, the intermediate positive molecule is obtained based
on the first step of positive perturbation. After that, KL loss
is used to constrain distribution similarity between the inter-
mediate positive molecule and the real molecule. Next, the
second positive perturbation is the gradient based on KL loss.
Finally, another positive molecule is obtained based on the
second step of positive perturbation.

To gain the first gradient perturbation, the contrastive loss
is used to train the model to learn the representations of the
real molecule by contrasting the molecule pairs with the un-
paired molecules. The unpaired molecules are the randomly
sampled non-target output molecule in the same batch. As
shown in Figure 1c, the start and target molecules are pro-
jected onto the latent embedding space. Then, contrastive
learning is used to contrast the paired molecules with the un-
paired molecules. We define this as:

Lcont (θ) =
N∑
i=1

log
exp

(
cos

(
zix, z

i
y

)
/τ

)
∑

zj
y∈Si exp

(
cos

(
zix, z

j
y

)
/τ

) , (5)

where Lcont (θ) maximizes the representation similarity be-
tween molecule pairs and minimizes the similarity between
unpaired molecules within the same batch. Lcont (θ) trains
the model to learn the representations of the real molecule.
The gradient perturbation of Si in the back-propagation of
Lcont (θ) is a positive perturbation. Thus the first positive
perturbation can be defined as f+ = ∇SiLcont.

The first positive perturbation is used to generate the inter-
mediate positive molecule. The hidden state of the interme-
diate positive molecule can be defined as:

S̄i = Si − µ
f+

∥f+∥2
, (6)

where µ controls the weight of the first positive perturbation.
As S̄i is the intermediate positive molecule, the distribution
of S̄i after the softmax layer should be similar to the real
molecule. The KL loss is used to minimize the distribution
between intermediate positive molecule and the real molecule
which can be defined as:

LKL(θ) =

N∑
i=1

DKL(pθ(y
i,xi)||pθ(ȳi,xi)), (7)
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where pθ(ȳ
i,xi) = softmax(WS̄i

t + b). The distribution
similarity of the positive molecule and the real molecule is
achieved by minimizing KL loss.

As the KL loss maximizes the similarity between the inter-
mediate positive and real molecules, the gradient perturbation
obtained from KL loss can also be used as the second posi-
tive perturbation to generate the final positive molecule. The
hidden state of the positive molecule gained by the second
positive perturbation can be defined as:

Ŝi = S̄i − µ
f++

∥f++∥2
, (8)

where f++ = ∇S̄iLKL. The molecule representation Ŝi is
obtained through a two-step positive perturbation, resulting in
a positive molecule that is significant far away from the real
molecule in the embedding space. Then, the contrastive loss
with the positive molecule can be written as:

Lcont+ (θ) =
N∑
i=1

log
exp

(
cos

(
zix, ẑ

i
y

)
/τ

)∑
z−
y ∈Ui exp

(
cos

(
zix, z

−
y

)
/τ

) , (9)

where ẑiy = φ(Ŝi). Lcont+ is the contrastive loss,
which trains the model to learn the representation of the
real molecule by contrasting the hard distinguished positive
molecule with a negative molecule.

Lcont− (θ) and Lcont+ (θ) contrast real molecule with gen-
erated negative and positive molecules, aiming to differenti-
ate between them and align the generated positive molecules
with the real ones. The real molecule acts as an anchor and
its similarity with positive molecule is maximized, while its
similarity with negative molecule is minimized (Figure 1a).
Finally, the parameters of the encoder-decoder can be esti-
mated by minimizing the following objective:

L = max
θ

LMLE (θ)− LKL(θ) + Lcont− (θ) + Lcont+ (θ) .

The minimize of L trains the seq2seq model using diverse
negative and positive examples through contrastive learning,
thereby mitigating the “exposure bias” problem.

3.4 Self-Supervised Pre-Training
To autoregressively decode molecules from input molecules
and conditions, GPMO is pre-trained using self-supervised
tasks such as MLM and SMILES translation. This pre-
training enables GPMO to learn the grammar of SMILES and
the relationship between molecules.

• MLM. Canonical SMILES are used in MLM. For the in-
put of the MLM, 15% of the input tokens are randomly
masked. However, due to the large number of carbon
atoms in molecules, reconstructing only the masked to-
kens may lead to overfitting on carbon atoms. There-
fore, the reconstruction of the entire Canonical SMILES
is predicted instead. The MLM is employed to learn the
grammar of SMILES.

• SMILES translation. A major challenge in MO is under-
standing the relationship between two molecules, which
is not directly captured by MLM task. To address this,

Pairs LogD Solubility Clint
Train 160, 832 [−1.44, 5.65] [−1.51, 5.65] [0.18, 3.03]
Val 17, 872 [−1.37, 5.64] [−1.44, 4.03] [0.20, 2.99]
Test 19, 857 [−1.43, 5.50] [−1.45, 4.01] [0.24, 3.01]

Table 1: Statistics of the dataset. Val is the abbreviation of valida-
tion. The train, validation, and test set are divided with a random
split.

the SMILES translation pre-training task is employed to
train the GPMO model to learn the relationship between
two molecules. In the SMILES translation, a many-to-
one translation approach is employed. It involves using
SMILES with a randomly chosen root atom as the input
and generating the corresponding Canonical SMILES as
the output, where multiple random SMILES representa-
tions of a molecule are encoded into similar embeddings.
This encourages the decoder to focus on improving its
ability to accurately decode Canonical SMILES.

In the pre-training of GPMO, the MLM and SMILES trans-
lation tasks are selected randomly with a 50% chance.

4 Experiment

To showcase the effectiveness of GPMO, extensive experi-
ments were conducted on benchmark tasks. GPMO outper-
forms deep learning techniques, showcasing its potential as a
powerful tool for molecule optimization.

4.1 Experiment Setup

GPMO is trained in the pre-training stage using the dataset
from MOSES [Polykovskiy et al., 2020]. In the molecule op-
timization stage, GPMO utilizes a dataset from previous work
[He et al., 2021], and the statistical information is presented
in Table 1. The table displays the number of molecule pairs
and the property ranges in the train, validation, and test sets.
For property prediction, an ensemble random forest model
trained on [He et al., 2021] is employed.

Baseline Methods

The following MO baselines are compared with GPMO:

• JTNN [Jin et al., 2018b] approaches MO by learning to
translate molecule pairs.

• HierG2G [Jin et al., 2020] employs a hierarchical ap-
proach to encode molecule graphs and creates com-
pounds by connecting structural motifs.

• Modof [Chen et al., 2021] conducts MO by predicting
the removal, addition, or replacement at the disconnec-
tion site.

• Transformer [Vaswani et al., 2017] utilizes a seq2seq ap-
proach for MO, where the starting and target molecules
serve as the input and output, respectively.

• GPMO-w/o-per is a variant of GPMO that does not use
gradient perturbation-based contrastive learning.
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LogD Solubility Clint All Validity MMP Similarity
JTNN 81.72±1.32 99.04±0.61 98.64±0.85 78.76±0.71 89.77±0.68 50.00±0.91 54.14±0.87
HierG2G 88.84±1.08 99.78±0.57 99.78±0.73 85.42±0.62 90.26±0.74 60.42±0.84 44.66±0.62
Modof 91.65±0.99 99.83±0.46 99.86±0.53 87.39±0.44 92.34±0.69 61.66±0.71 59.72±0.56
Transformer 91.12±0.54 99.93±0.21 98.78±0.37 87.38±0.30 93.88±0.48 90.41±0.62 67.37±0.51
GPMO-w/o-per 95.62±0.31 99.73±0.36 99.89±0.14 93.34±0.32 99.91±0.17 88.87±0.46 67.78±0.34
GPMO-w/o-con 93.97±0.11 99.62±0.10 99.80±0.09 91.59±0.08 99.87±0.05 89.46±0.11 66.03±0.07
GPMO 97.28±0.04 99.99±0.00 99.98±0.03 96.72±0.02 99.93±0.04 91.31±0.07 67.33±0.02

Table 2: Overall comparison of baseline methods and variants of GPMO.

Ratio JTNN HierG2G Modof Transformer GPMO

All Validity All Validity All Validity All Validity All Validity
50% 76.01 9.19 83.96 80.24 85.44 89.12 87.26 91.45 94.86 97.31
20% 73.33 78.64 81.97 77.39 82.69 86.99 84.93 88.21 92.82 95.90
10% 70.65 76.21 78.61 75.54 79.74 80.17 76.55 79.34 88.77 86.94

Table 3: Results on smaller datasets. The ratio refers to the proportion of the train, validation, and test datasets we used as the smaller dataset.

• GPMO-w/o-con is a variant of GPMO that does not in-
clude the use of condition tokens in the input of the en-
coder.

Metric

We consider the following metrics for the evaluation of gen-
erated molecules.

• LogD: the proportion of generated molecules that sat-
isfy the LogD constraint, where the absolute difference
in LogD between the generated molecule and target
molecule is no more than 0.4.

• Solubility: the proportion of code(Solubility(y′)-
Solubility(x)) equal to code(Solubility(y)-
Solubility(x)), where x is the start molecule, y′ is
the generated molecule, and y is the target molecule.
Code(.) refers to the code table defined in Eq. (2).

• Clint: the definition of Clint is similar to Solubility.

• All: the proportion of generated molecules that sat-
isfy the constraints for LogD, Solubility, and Clint con-
straints simultaneously.

• Validity: the proportion of chemically valid molecules
among all generated molecules.

• MMP: the proportion of generated molecules that ex-
hibit an MMP relation with the starting molecules. The
MMP relation is defined using the MMP query tool mm-
pdb [Dalke et al., 2018].

• Similarity: the Tanimoto similarity between the starting
and generated molecules with Morgan fingerprint.

4.2 Multi-Property Optimization

As shown in Table 2, GPMO outperforms the state-of-the-art
models on all seven metrics. From the results shown in Table
2, GPMO outperforms baselines on single-property perfor-
mance metrics such as LogD, Solubility, and Clint. In terms

of multi-property optimization, GPMO outperforms the best
baseline method by a significant margin of 9.14% on the All
metric. GPMO achieves the best performance on Validity
due to it is pre-trained on unlabeled data, which enables it
to learn the grammar on SMILES. Our result for the MMP
and Similarity metrics indicate that the molecules generated
from GPMO maintain the MMP relation and chemical sim-
ilarity with the input molecules. Based on our analysis, we
can conclude that GPMO has the ability to generate valid
molecule with improved properties while retaining the start-
ing molecule.

One key factor contributing to GPMO’s impressive perfor-
mance is the use of the condition tokens, which allow for the
differentiation of distinct optimization objectives among pairs
that share the same starting molecule. In contrast, JTNN,
HierG2G, and Modof are unable to distinguish between dif-
ferent molecule pairs that have the same starting molecule.
Consequently, the optimization of these molecule pairs will
be an average of all molecule pairs that share the same start-
ing molecule in the training set. Compared with Transformer,
which also uses condition tokens, GPMO achieves better per-
formance on Validity metric due to its pre-trained on unla-
beled data, which enables it to learn the grammar of SMILES.

When compared with GPMO-w/o-per, GPMO lags behind
on Similarity metric since it learns a broader range of valid
or incorrect samples, resulting in less chemical similarity
with a starting molecule. Our findings reveal that GPMO
outperforms GPMO-w/o-per by an additional 3.38% on the
All score, demonstrating that our model generates a greater
number of desired molecules when compared to its counter-
part. Given that the variance of GPMO-w/o-per is higher than
GPMO, GPMO is more robust than GPMO-w/o-per. This is
likely due to the contrastive learning approach employed by
GPMO. When condition tokens are removed from GPMO, as
in the case of GPMO-w/o-con shown in Table 2, the Valid-
ity rate remains high. However, the All rate drops down to
0.9356 due to the loss of ability to distinguish molecule pairs
with the same starting molecule.
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(a) Start molecular X:
LogD: 2.79, Solubility:
Clint:  

(a) End molecular X:
LogD: 3.11, Solubility:
Clint:  

(a) Start molecular X:
LogD: 2.79, Solubility:
Clint:  

(a) End molecular X:
LogD: 3.11, Solubility:
Clint:  

(a) Start molecular X:
LogD: 2.79, Solubility:
Clint:  

(a) End molecular X:
LogD: 3.11, Solubility:
Clint:  

(a) End molecular X:
LogD: 3.11, Solubility:
Clint:  

(a) Start molecular X: 
LogD: 2.7, Solubility: 2.4 
Clint: 0.5

(b) End molecular Y:
LogD: 3.1, Solubility: 2.7
Clint: 0.5

(c) Round 1:
LogD: 3.2, Solubility: 2.5
Clint:  0.5

(d) Round 2:
LogD: 3.5, Solubility: 2.4
Clint: 0.6

(e) Round 3:
LogD: 3.6, Solubility: 2.4
Clint: 0.4

(f) Round 4:
LogD: 3.8, Solubility: 2.1
Clint: 0.4

(g) Round 5:
LogD: 3.9, Solubility: 2.3
Clint: 0.3

Figure 2: The multi-step molecule optimization with five iterations. The multi-property molecule optimization setting is {(0.3,0.5],
no_change, no_change}. The modified fragments in each step are highlighted in red.

λ, µ All Validity MMP Similarity
1, 1 96.47 99.94 91.31 67.32
1, 3 96.51 99.87 91.29 67.30
1, 5 96.54 99.85 91.33 67.33
3, 1 96.71 99.89 91.24 67.31
3, 3 96.73 99.97 91.38 67.35
3, 5 96.44 99.84 91.37 67.34
5, 1 96.36 99.83 91.32 67.35
5, 3 96.37 99.83 91.37 67.35
5, 5 96.35 99.82 91.35 67.34

Table 4: Performance of GPMO under different hyper-parameters
under different gradient perturbation strengths. Note: λ is the weight
of negative perturbation and µ is the weight of positive perturbation.

4.3 Model Performance on Smaller Datasets

Since experimentally obtained datasets are both expensive
and rare, it is crucial to employ deep learning models that
can handle small-scale datasets. In our study, we conducted
experiments to evaluate the performance of GPMO in com-
parison to baseline methods on reduced versions of the train,
validation, and test datasets, with only 50%, 20%, and 10%
of the original dataset sizes, respectively.

The performance of each method is measured in terms of
the All and Validity metrics, which respectively measure the
method’s ability to perform property optimization and gener-
ate valid molecules. From the results shown in Table 3, we
observe that the All and Validity metrics decayed with the re-
duction of samples. Despite the performance decay observed
with the reduction of training samples, our model still shows
competitive results compared to the baseline methods on the
small-scale dataset. More specifically, in the case of the 10%
dataset, GPMO achieves an 88.77% All metric on propriety
optimization, which is 9.03% higher than the best baseline
method. Moreover, GPMO exhibits a 6.77% improvement
on the Validity metric. These results highlight the benefit-
ing from pre-training tasks, which enable GPMO to exhibit
reduced reliance on labeled data.

4.4 Sensitivity Analysis

Table 4 provides an overview of the overall performance of
GPMO under across various combinations hyper-parameters
λ and µ. We set the weight of negative perturbation λ =
[1, 3, 5] and the weight of positive perturbation µ = [1, 3, 5].
We observe that the variance in performance across differ-
ent gradient perturbations combinations was no more than
0.14, indicating the robustness of GPMO. Our results indicate

that the hyper-parameter combination of λ = 3 and µ = 3
achieved the best performance, suggesting that overly large
or small perturbation are inefficient. This is likely due to
the fact that small perturbations produce negative and posi-
tive samples that show less contrast with real samples, while
large perturbation can generate artificial samples that make it
difficult for the model to convergence.

4.5 Multi-Step Molecule Optimization

In multi-step MO, molecules are continuously optimized
based on prior experience, much like the way chemists op-
timize molecules. To achieve this, we use the currently op-
timized molecule as the starting molecule in the next round
of optimization with the same property constraint. We repeat
this process five times to generate a set of molecules with the
same property constraint.

Figure 2 presents the results of multi-step MO with five
steps, under the property constraints {(0.3,0.5], no_change,
no_change}, which require improving the LogD of the target
molecule while maintaining unchanged Solubility and Clint
properties. The results of multi-step molecule optimization
show an increase in LogD from 2.7 to 3.9, while the Solu-
bility and Clint remain unchanged. Moreover, the scaffold is
preserved throughout the optimization process. In the multi-
step optimization setting, our model is capable of optimizing
the molecule with desired properties while constraining the
same scaffold with a starting molecule.

5 Conclusion

In this work, we propose GPMO, a gradient perturbation-
based contrastive learning network for molecule optimiza-
tion. Extensive experiments demonstrate that with proper
design, GPMO is able to find molecules that satisfy multi-
ple properties and its performance is comparable to advanced
methods using deep learning. The reasons for GPMO’s strong
performance include the use of gradient perturbation con-
trastive learning, the pre-trained LM which reduces the need
for labeled molecule pairs, the condition tokens on proper-
ties distinguish different molecule pairs with the same starting
molecules, and the use of the MMP dataset to ensures scaf-
fold similarity between the starting and generated molecules.
GPMO can be readily adapted to real drug discovery projects,
such as large-scale MMP analysis processes without chemist
guidance. Furthermore, properties other than LogD, Solubil-
ity, and Clint, such as QED/SA and other ADMET properties,
can also be included to search for more promising candidates.
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